
18

Secure Communications over
Insecure Networks

It is sometimes necessary to communicate over insecure links without exposing one’s systems.
Cryptography—the art of secret writing—is the usual answer.

The most common use of cryptography is, of course, secrecy. A suitably encrypted packet is
incomprehensible to attackers. In the context of the Internet, and in particular when protecting
wide-area communications, secrecy is often secondary. Instead, we are often interested in authen-
tication provided by cryptographic techniques. That is, we wish to utilize mechanisms that will
prevent an attacker from forging messages.

This chapter concentrates on how to use cryptography for practical network security. It as-
sumes some knowledge of modern cryptography. You can find a brief tutorial on the subject in
Appendix A. See [Kaufman et al., 2002] for a detailed look at cryptography and network security.

We first discuss the Kerberos Authentication System. Kerberos is an excellent package, and
the code is widely available. It’s an IETF Proposed Standard, and it’s part of Windows 2000.
These things make it an excellent case study, as it is a real design, not vaporware. It has been the
subject of many papers and talks, and enjoys widespread use

Selecting an encryption system is comparatively easy; actually using one is less so. There are
myriad choices to be made about exactly where and how it should be installed, with trade-offs
in terms of economy, granularity of protection, and impact on existing systems. Accordingly,
Sections 18.2, 18.3, and 18.4 discuss these trade-offs, and present some security systems in use
today.

In the discussion that follows, we assume that the cryptosystems involved—that is, the crypto-
graphic algorithm and the protocols that use it, but not necessarily the particular implementation—
are sufficiently strong, i.e., we discount almost completely the possibility of cryptanalytic attack.
Cryptographic attacks are orthogonal to the types of attacks we describe elsewhere. (Strictly
speaking, there are some other dangers here. While the cryptosystems themselves may be per-
fect, there are often dangers lurking in the cryptographic protocols used to control the encryption.
See, for example, [Moore, 1988] or [Bellovin, 1996]. Some examples of this phenomenon are

Licensed under a Creative Commons Attribution-Non-Commericial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

https://creativecommons.org/licenses/by-nc-nd/4.0/

313

314 Secure Communications

discussed in Section 18.1 and in the sidebar on page 336.) A site facing a serious threat from a
highly competent foe would need to deploy defenses against both cryptographic attacks and the
more conventional attacks described elsewhere.

One more word of caution: In some countries, the export, import, or even use of any form
of cryptography is regulated by the government. Additionally, many useful cryptosystems are
protected by a variety of patents. It may be wise to seek competent legal advice.

18.1 The Kerberos Authentication System

The Kerberos Authentication System [Bryant, 1988; Kohl and Neuman, 1993; Miller et al., 1987;
Steiner et al., 1988] was designed at MIT as part of Project Athena.1 It serves two purposes:
authentication and key distribution. That is, it provides to hosts—or more accurately, to various
services on hosts—unforgeable credentials to identify individual users. Each user and each service
shares a secret key with the Kerberos Key Distribution Center (KDC); these keys act as master keys
to distribute session keys, and as evidence that the KDC vouches for the information contained in
certain messages. The basic protocol is derived from one originally proposed by Needham and
Schroeder [Needham and Schroeder, 1978, 1987; Denning and Sacco, 1981].

More precisely, Kerberos provides evidence of a principal’s identity. A principal is generally
either a user or a particular service on some machine. A principal consists of the 3-tuple

〈primary name, instance, realm〉

If the principal is a user—a genuine person—the primary name is the login identifier, and the
instance is either null or represents particular attributes of the user, e.g., root. For a service,
the service name is used as the primary name and the machine name is used as the instance,
e.g., rlogin.myhost. The realm is used to distinguish among different authentication domains;
thus, there need not be one giant—and universally trusted—Kerberos database serving an entire
company.

All Kerberos messages contain a checksum. This is examined after decryption; if the check-
sum is valid, the recipient can assume that the proper key was used to encrypt it.

Kerberos principals may obtain tickets for services from a special server known as the Ticket-

Granting Server (TGS). A ticket contains assorted information identifying the principal, encrypted
in the secret key of the service. (Notation is summarized in Table 18.1. A diagram of the data flow
is shown in Figure 18.1; the message numbers in the diagram correspond to equation numbers in
the text.)

Ks[Tc,s] = Ks[s, c, addr, timestamp, lifetime,Kc,s] (18.1)

Because only Kerberos and the service share the secret key Ks, the ticket is known to be authentic.
The ticket contains a new private session key, Kc,s, known to the client as well; this key may be
used to encrypt transactions during the session. (Technically speaking, Kc,s is a multi-session key,
as it is used for all contacts with that server during the life of the ticket.) To guard against replay
attacks, all tickets presented are accompanied by an authenticator:

Kc,s[Ac] = Kc,s[c, addr, timestamp] (18.2)

1. This section is largely taken from [Bellovin and Merritt, 1991].

The Kerberos Authentication System 315

Table 18.1: Kerberos Notation

c Client principal
s Server principal
tgs Ticket-granting server
Kx Private key of “x”
Kc,s Session key for “c” and “s”
Kx[info] “info” encrypted in key Kx

Ks[Tc,s] Encrypted ticket for “c” to use “s”
Kc,s[Ac] Encrypted authenticator for “c” to use “s”
addr Client’s IP address

This is a brief string encrypted in the session key and containing a timestamp; if the time does not
match the current time within the (predetermined) clock skew limits, the request is assumed to be
fraudulent.

The key Kc,s can be used to encrypt and/or authenticate individual messages to the server.
This is used to implement functions such as encrypted file copies, remote login sessions, and
so on. Alternatively, Kc,s can be used for message authentication code (MAC) computation for
messages that must be authenticated, but not necessarily secret.

For services in which the client needs bidirectional authentication, the server can reply with

Kc,s[timestamp + 1] (18.3)

This demonstrates that the server was able to read timestamp from the authenticator, and hence
that it knew Kc,s; Kc,s, in turn, is only available in the ticket, which is encrypted in the server’s
secret key.

Tickets are obtained from the TGS by sending a request

s,Ktgs[Tc,tgs],Kc,tgs[Ac] (18.4)

In other words, an ordinary ticket/authenticator pair is used; the ticket is known as the ticket-

granting ticket. The TGS responds with a ticket for server s and a copy of Kc,s, all encrypted
with a private key shared by the TGS and the principal:

Kc,tgs[Ks[Tc,s],Kc,s] (18.5)

The session key Kc,s is a newly chosen random key.
The key Kc,tgs and the ticket-granting ticket are obtained at session start time. The client

sends a message to Kerberos with a principal name; Kerberos responds with

Kc[Kc,tgs,Ktgs[Tc,tgs]] (18.6)

The client key Kc is derived from a non-invertible transform of the user’s typed password. Thus,
all privileges depend ultimately on this one key. (This, of course, has its weaknesses; see [Wu,

316 Secure Communications

User

KDC

TGS

TGT Request

Encrypted TGT (18.6)

Ticket Request, TGT (18.4)

Encrypted Ticket (18.5)

Service

Ticket, Auth
(18.1,18.2)

Optional Server Response (18.3)

Figure 18.1: Data flow in Kerberos. The message numbers refer to the equations in the text.

1999].) Note that servers must possess secret keys of their own in order to decrypt tickets. These
keys are stored in a secure location on the server’s machine.

Tickets and their associated client keys are cached on the client’s machine. Authenticators are
recalculated and reencrypted each time the ticket is used. Each ticket has a maximum lifetime
enclosed; past that point, the client must obtain a new ticket from the TGS. If the ticket-granting
ticket has expired, a new one must be requested, using Kc.

Connecting to servers outside of one’s realm is somewhat more complex. An ordinary ticket
will not suffice, as the local KDC will not have a secret key for each and every remote server.
Instead, an inter-realm authentication mechanism is used. The local KDC must share a secret
key with the remote server’s KDC; this key is used to sign the local request, thus attesting to the
remote KDC that the local one believes the authentication information. The remote KDC uses this
information to construct a ticket for use on one of its servers.

This approach, though better than one that assumes one giant KDC, still suffers from scale
problems. Every realm needs a separate key for every other realm to which its users need to
connect. To solve this, newer versions of Kerberos use a hierarchical authentication structure. A
department’s KDC might talk to a university-wide KDC, and it in turn to a regional one. Only the
regional KDCs would need to share keys with each other in a complete mesh.

18.1.1 Limitations

Although Kerberos is extremely useful, and far better than the address-based authentication meth-
ods that most earlier protocols used, it does have some weaknesses and limitations [Bellovin and

The Kerberos Authentication System 317

Merritt, 1991]. First and foremost, Kerberos is designed for user-to-host authentication, not host-
to-host. That was reasonable in the Project Athena environment of anonymous, diskless worksta-
tions and large-scale file and mail servers; it is a poor match for peer-to-peer environments where
hosts have identities of their own and need to access resources such as remotely mounted file sys-
tems on their own behalf. To do so within the Kerberos model would require that hosts maintain
secret Kc keys of their own, but most computers are notoriously poor at keeping long-term secrets
[Morris and Thompson, 1979; Diffie and Hellman, 1976]. (Of course, if they can’t keep some
secrets, they can’t participate in any secure authentication dialog. There’s a lesson here: Change
your machines’ keys frequently.)

A related issue involves the ticket and session key cache. Again, multi-user computers are
not that good at keeping secrets. Anyone who can read the cached session key can use it to
impersonate the legitimate user; the ticket can be picked up by eavesdropping on the network,
or by obtaining privileged status on the host. This lack of host security is not a problem for a
single-user workstation to which no one else has any access—but that is not the only environment
in which Kerberos is used.

The authenticators are also a weak point. Unless the host keeps track of all previously used
live authenticators, an intruder could replay them within the comparatively coarse clock skew
limits. For that matter, if the attacker could fool the host into believing an incorrect time of day,
the host could provide a ready supply of postdated authenticators for later abuse. Kerberos also
suffers from a cascading failure problem. Namely, if the KDC is compromised, all traffic keys are
compromised.

The most serious problems, though, result from the way in which the initial ticket is obtained.
First, the initial request for a ticket-granting ticket contains no authentication information, such as
an encrypted copy of the username. The answering message (18.6) is suitable grist for a password-
cracking mill; an attacker on the far side of the Internet could build a collection of encrypted ticket-
granting tickets and assault them offline. The latest versions of the Kerberos protocol have some
mechanisms for dealing with this problem. More sophisticated approaches detailed in [Lomas et

al., 1989] or [Bellovin and Merritt, 1992] can be used [Wu, 1999]. There is also ongoing work on
using public key cryptography for the initial authentication.

There is a second login-related problem: How does the user know that the login command
itself has not been tampered with? The usual way of guarding against such attacks is to use
challenge/response authentication devices, but those are not supported by the current protocol.
There are some provisions for extensibility; however, as there are no standards for such extensions,
there is no interoperability.

Microsoft has extended Kerberos in a different fashion. They use the vendor extension field to
carry Windows-specific authorization data. This is nominally standards-compliant, but it made it
impossible to use the free versions of Kerberos as KDCs in a Windows environment. Worse yet,
initially Microsoft refused to release documentation on the format of the extensions. When they
did, they said it was “informational,” and declined to license the technology. To date, there are no
open-source Kerberos implementations that can talk to Microsoft Kerberos. For more details on
compatibility issues, see [Hill, 2000].

318 Secure Communications

18.2 Link-Level Encryption

Link-level encryption is the most transparent form of cryptographic protection. Indeed, it is of-
ten implemented by outboard boxes; even the device drivers, and of course the applications, are
unaware of its existence.

As its name implies, this form of encryption protects an individual link. This is both a strength
and a weakness. It is strong because (for certain types of hardware) the entire packet is encrypted,
including the source and destination addresses. This guards against traffic analysis, a form of in-
telligence that operates by noting who talks to whom. Under certain circumstances—for example,
the encryption of a point-to-point link—even the existence of traffic can be disguised.

However, link encryption suffers from one serious weakness: It protects exactly one link at a
time. Messages are still exposed while passing through other links. Even if they, too, are protected
by encryptors, the messages remain vulnerable while in the switching node. Depending on who
the enemy is, this may be a serious drawback.

Link encryption is the method of choice for protecting either strictly local traffic (i.e., on one
shared coaxial cable) or a small number of highly vulnerable lines. Satellite circuits are a typical
example, as are transoceanic cable circuits that may be switched to a satellite-based backup at any
time.

The best-known link encryption scheme is Wired Equivalent Privacy (WEP) (see Section 2.5);
its failures are independent of the general problems of link encryption.

18.3 Network-Level Encryption

Network-level encryption is, in some sense, the most useful way to protect conversations. Like
application-level encryptors, it allow systems to converse over existing insecure Internets; like
link-level encryptors, it is transparent to most applications. This power comes at a price, though:
Deployment is difficult because the encryption function affects all communications among many
different systems.

The network-layer encryption mechanism for the Internet is known as IPsec [Kent and Atkin-
son, 1998c; Thayer et al., 1998]. IPsec includes an encryption mechanism (Encapsulating Secu-

rity Protocol (ESP)) [Kent and Atkinson, 1998b]; an authentication mechanism (Authentication

Header (AH)) [Kent and Atkinson, 1998a]; and a key management protocol (Internet Key Ex-

change (IKE)) [Harkins and Carrel, 1998].

18.3.1 ESP and AH

ESP and AH rely on the concept of a key-id. The key-id (known in the spec as a Security Parameter

Index (SPI)), which is transmitted in the clear with each encrypted packet, controls the behavior of
the encryption and decryption mechanisms. It specifies such things as the encryption algorithm,
the encryption block size, what integrity check mechanism should be used, the lifetime of the key,
and so on. The choices made for any particular packet depend on the two sites’ security policies,
and often on the application as well.

The original version of ESP did encryption only. If authentication was desired, it was used in
conjunction with AH. However, a number of subtle yet devastating attacks were found [Bellovin,

Network-Level Encryption 319

IP hdr TCP hdr user data

encrypted TCP hdr, user dataESP/AH hdrIP hdr

(a)

IP hdr TCP hdr user data

encrypted old IP hdr, TCP hdr, user dataESP/AH hdrnew IP hdr

(b)

Figure 18.2: Network-level encryption.

1996]. Accordingly, ESP now includes an authentication field and an anti-replay counter, though
both are optional. (Unless you really know what you’re doing, and have a really good reason, we
strongly suggest keeping these enabled.) The anti-replay counter is an integer that starts at zero
and counts up. It is not allowed to wrap around; if it hits 232, the systems must rekey (see below).

AH can be used if only the authenticity of the packet is in question. A telecommuter who is
not working with confidential data could, for example, use AH to connect through the firewall
to an internal host. On output from the telecommuter’s machine, each packet has an AH header
prepended; the firewall will examine and validate this, strip off the AH header, and reinject the
validated packet on the inside.

Packets that fail the integrity or replay checks are discarded. Note that TCP’s error-checking,
and hence acknowledgments, takes place after decryption and processing. Thus, packets damaged
or deleted due to enemy action will be retransmitted via the normal mechanisms. Contrast this
with an encryption system that operates above TCP, where an additional retransmission mecha-
nism might be needed.

The ESP design includes a “null cipher” option. This provides the other features of ESP—
authentication and replay protection—while not encrypting the payload. The null cipher variant
is thus quite similar to AH. The latter, however, protects portions of the preceding IP header.
The need for such protection is quite debatable (and we don’t think it’s particularly useful); if it
doesn’t matter to you, stick with ESP.

IPsec offers many choices for placement. Depending on the exact needs of the organization,
it may be installed above, in the middle of, or below IP. Indeed, it may even be installed in a
gateway router and thus protect an entire subnet.

IPsec can operate by encapsulation or tunneling. A packet to be protected is encrypted; fol-
lowing that, a new IP header is attached (see Figure 18.2a). The IP addresses in this header may

320 Secure Communications

differ from those of the original packet. Specifically, if a gateway router is the source or destina-
tion of the packet, its IP address is used. A consequence of this policy is that if IPsec gateways
are used at both ends, the real source and destination addresses are obscured, thus providing some
defense against traffic analysis. Furthermore, these addresses need bear no relation to the outside
world’s address space, although that is an attribute that should not be used lightly.

The granularity of protection provided by IPsec depends on where it is placed. A host-resident
IPsec can, of course, guarantee the actual source host, though often not the individual process or
user. By contrast, router-resident implementations can provide no more assurance than that the
message originated somewhere in the protected subnet. Nevertheless, that is often sufficient,
especially if the machines on a given LAN are tightly coupled. Furthermore, it isolates the crucial
cryptographic variables into one box, a box that is much more likely to be physically protected
than is a typical workstation.

This is shown in Figure 18.3. Encryptors (labeled “E”) can protect hosts on a LAN (A1 and
A2), on a WAN (C), or on an entire subnet (B1, B2, D1, and D2). When host A1 talks to
A2 or C, it is assured of the identity of the destination host. Each such host is protected by its
own encryption unit. But when A1 talks to B1, it knows nothing more than that it is talking to
something behind Net B’s encryptor. This could be B1, B2, or even D1 or D2.

Protection can be even finer-grained than that. A Security Policy Database (SPD) can specify
the destination addresses and port numbers that should be protected by IPsec. Outbound packets
matching an SPD entry are diverted for suitable encapsulation in ESP and/or AH. Inbound packets
are checked against the SPD to ensure that they are protected if the SPD claims they should be;
furthermore, they must be protected with the proper SPI (and hence key). Thus, if host A has an
encrypted connection to hosts B and C, C cannot send a forged packet claiming to be from B but
encrypted under C’s key.

One further caveat should be mentioned. Nothing in Figure 18.3 implies that any of the pro-
tected hosts actually can talk to one another, or that they are unable to talk to unprotected host F.
The allowable patterns of communication are an administrative matter; these decisions are en-
forced by the encryptors and the key distribution mechanism.

Currently, each vendor implements its own scheme for describing the SPD. A standardized
mechanism, called IP Security Policy (IPSP), is under development.

Details about using IPsec in a VPN are discussed in Section 12.2.

18.3.2 Key Management for IPsec

A number of possible key management strategies can be used with IPsec. The simplest is static
keying: The administrator specifies the key and protocols to be used, and both sides just use them,
without further ado. Apart from the cryptanalytic weaknesses, if you use static keying, you can’t
use replay protection.

Most people use a key management protocol. The usual one is Internet Key Exchange (IKE)
[Harkins and Carrel, 1998], though a Kerberos-based protocol (Kerberized Internet Negotiation

of Keys (KINK)) is under development [Thomas and Vilhuber, 2002]. IKE can operate with either
certificates or a shared secret. Note that this shared secret is not used directly as a key; rather, it is
used to authenticate the key agreement protocol. As such, features like anti-replay are available.

Network-Level Encryption 321

E A1

GW-A

E A2

B1 GW-B B2

GW-DD1 D2

E

WAN

E

C

F

Figure 18.3: Possible configurations with IPsec.

322 Secure Communications

Certificate-based IKE is stronger still, as one end doesn’t need to know the other end’s secret.
Unfortunately, differences in certificate contents and interpretation between different vendors has
made interoperability difficult. The complexity of IKE itself—in addition to key agreement, it can
negotiate security associations (SAs), add security associations to existing SAs, probe for dead
peers, delete SAs, and so on—has also contributed to this problem.

Work is proceeding on several fronts to address these issues. The IETF’s Public Key Infras-

tructure (X.509) (PKIX) working group is trying to standardize certificates; see [Adams and Far-
rell, 1999; Myers et al., 1999] and the group’s Web page (http://www.ietf.org/html.
charters/pkix-charter.html) for a further list. There is also work to produce a so-
called “IKEv2” key management protocol; while at press time the design is still in flux, there is
little doubt it will be significantly simpler and (we hope) more interoperable.

18.4 Application-Level Encryption

Performing encryption at the application level is the most intrusive option. It is also the most
flexible, because the scope and strength of the protection can be tailored to meet the specific
needs of the application. Encryption and authentication options have been defined for a number
of high-risk applications, though as of this writing none are widely deployed. We will review a
few of them, though there is ongoing work in other areas, such as authenticating routing protocols.

18.4.1 Remote Login: Ssh

Ssh, the Secure Shell [Ylönen, 1996], has become an extremely popular mechanism for secure
remote login. Apart from its intrinsic merits, ssh was developed in (and is available from) Finland,
a country with no restrictions on the export of cryptography. At its simplest, ssh is a more or less
plug-compatible replacement for rlogin, rsh, and rcp, save that its authentication is cryptographic
and the contents of the conversation are protected from eavesdropping or active attacks. It can do
far more.

The most important extra ability of ssh is port-forwarding. That is, either the client or the
server can bind a socket to a set of specified ports; when someone connects to those ports, the
request is relayed to the other end of the ssh call, where a call is made to some other predefined
host and port. In other words, ssh has a built-in tunnel mechanism.

As with all tunnels (see Section 12.1), this can be both good and bad. We sometimes use ssh to
connect in through our firewall; by forwarding the strictly local instances of the SMTP, POP3, and
WWW proxy ports, we can upload and download mail securely, and browse internal Web sites.
Conversely, someone who wanted to could just as easily set up an open connection to an internal
telnet server—or worse.

When ssh grants access based on public keys, certificates are not used; rather, the public
key stands alone in the authorization files. Depending on how it is configured (and there are far
too many configuration options), authentication can be host-to-host, as with the r commands, or
user-to-host. In fact, ssh can even be used with conventional passwords, albeit over an encrypted
connection. If user-to-host authentication is used, the user’s private key is used to sign the con-

Application-Level Encryption 323

nection request. This key is stored in encrypted form on the client host; a typed passphrase is used
to decrypt it.

Ssh can also forward the X11 port and the “authentication channel.” These abilities are poten-
tially even more dangerous than the usual port-forwarding.

The former permits remote windows to be relayed over a protected channel. It uses X11’s
magic cookie authentication technique to ward off evildoers on the remote machine. If the des-
tination machine itself has been subverted, the Bad Guys can set up an X11 connection back to
your server, with all that implies—see Section 3.11 for the gory details. In other words, you
should never use this capability unless you trust the remote machine.

The same is true for the authentication channel. The authentication channel is ssh’s mechanism
for avoiding the necessity of constantly typing your passphrase. The user runs ssh-agent, which
sets up a file descriptor that is intended to be available only to that user’s processes. Any new
invocations of ssh can use this file descriptor to gain access to the private key. The ability to
forward this channel implies that after a login to a remote machine, ssh commands on it can
gain similar access. Again, if the remote machine has been subverted, you’re in trouble—your
cryptographically secure login mechanism has been compromised by someone who can go around
the cipher and use your own facilities to impersonate you to any other machines that trust that key.
The remedy is the same as with X11 forwarding, of course: Don’t forward the authentication
channel to any machines that you don’t fully trust.

There is a mechanism whereby ssh keeps track of host public keys of remote ssh servers.
The first time a user connects to a remote machine over ssh, he or she is shown the public key
fingerprint of the server and asked if the connection should be continued. If the user responds in
the affirmative, then the public key is stored in a file called known-hosts. Then, if the public
key ever changes, either maliciously or by legitimate administration, the user is prompted again.
The hope is that security-conscious users might hesitate and investigate if the public key changes.

Ssh uses a variety of different symmetric ciphers, including triple DES and IDEA, for session
encryption. Your choice will generally depend on patent status, performance, and your paranoia
level.

An IETF working group is developing a new version of ssh. Due to limitations of the current
protocol, the new one will not be backwards-compatible.

18.4.2 SSL—The Secure Socket Layer

SSL is the standard for securing transactions on the Web. The IETF adopted the protocol and
named its version the Transport Layer Security (TLS) protocol [Dierks and Allen, 1999]. We
refer to the protocol as SSL, but all of our comments apply to both protocols. For an excellent
introduction to both protocols, see [Rescorla, 2000b].

There are two purposes for the protocol. The first is to provide a confidentiality pipe between
a browser and a Web server. The second is to authenticate the server, and possibly the client.
Right now, client authentication is not very common, but that should change in the near future, in
particular for intranet applications.

324 Secure Communications

Protocol Overview

Servers supporting SSL must generate a public/private RSA key pair and obtain a certificate for
the public key. The certificate must be issued by one of the root authorities that has its public
signing key in the standard browsers. Popular browsers have hundreds of such keys, begging the
question of whom exactly does everybody trust?

The certification authorities with root public keys in the browsers charge money for the service
of verifying someone’s identity and signing his or her public key. In return for this payment, they
issue a certificate needed to support SSL. The certificate is simply a signed statement containing
the public key and the identity of the merchant, in a special format specified in the protocol.

When a user connects to a secure server, the browser recognizes SSL from the URL, which
starts with https:// instead of http://, and initiates the SSL protocol on port 443 of the
server, instead of the default port 80. The client initiates SSL by sending a message called the SSL
ClientHello message to the server. This message contains information about the parameters
that the client supports. In particular, it lists the cryptographic algorithms and parameters (called
CipherSuites), compression algorithms, and SSL version number that it is running. Note that of
all the major implementations of SSL, only OpenSSL implements compression.

The server examines the CipherSuites and compression algorithms from the client and com-
pares them with its own list. Of the CipherSuites that they have in common, it then selects the
most secure. The server informs the client of the chosen CipherSuite and compression algorithm
and assigns a unique session ID to link future messages to this session. (In version 2, the client
suggested a CipherSuite, the server pruned, and the client chose.) The purpose of the session
ID is to allow the reuse of these keys for some time, rather than generating new ones for every
communication. This reduces the computational load on the client and the server. The next step
involves picking the keys that protect the communication.

Once the CipherSuite is set, the server sends its certificate to the client. The client uses the
corresponding root public key in the browser to perform a digital signature verification on the
certificate. If the verification succeeds, the client extracts the public key from the certificate and
checks the DNS name against the certificate [Rescorla, 2000a]. If they do not match, the user
is presented with a pop-up warning. Next, the client generates symmetric key material (random
bits), based on the CipherSuite that was chosen by the server. This key material is used to derive
encryption and authentication keys to protect the payload between the browser and the server. The
client encrypts the symmetric key material with the public key of the server using RSA, and sends
it to the server.

The server then uses its private key to decrypt the symmetric key material and derives the en-
cryption and authentication keys. Next, the client and the server exchange messages that contain
the MAC of the entire dialogue up to this point. This ensures that the messages were not tampered
with and that both parties have the correct key. After the MACs are received and verified, applica-
tion data is sent, and all future communication during the SSL session is encrypted and MACed.
If a client reconnects to a server running SSL after communicating with a different server, and
if the original SSL session has not expired, the client sends the previous session ID to indicate it

Application-Level Encryption 325

wants to resume using it. In that case, the messages in the SSL protocol will be skipped, and the
keys derived earlier can be used again.

Security

There is more to security than strong cryptographic algorithms and well-designed protocols. Re-
searchers have looked at the design of SSL and the consensus is that it is very good, as crypto-
graphic protocols go [Wagner and Schneier, 1996]. Once you get beyond broken algorithms and
protocols and buggy software, the weakest link in the chain often involves the user. SSL provides
feedback to the user in the form of a lock icon at the bottom of the browser window. All this
means is that the browser is engaging the SSL protocol with some server. It does not say anything
about which server. The burden is on the user to check the security information on the page to
discover who holds the certificate. In fact, all that the user can verify is that a certifying authority,
that has a public key in the browser, issued a certificate for some entity, and that there is a certi-
fication path from that entity to the entity in the certificate. There is no guarantee that the server
who serves a certificate is the entity in the certificate. If the two entities do not match, the browser
typically issues a warning, but users often ignore such warnings. In fact, it is rare that users verify
certificate information at all.

All sorts of threats can compromise the security of SSL. Attacks against the Domain Name
Service (DNS) are very effective against SSL. If someone can map the host name in a URL to an
IP address under his control, and if that person can obtain a certificate from any one of the root
CAs, then he can provide secure service from that site and users have no way of knowing what
happened.

To illustrate that it is not enough to assume that everything is secure just because SSL is used,
let’s look at an example. In early 2000, somebody created a site called PAYPAI.COM—with an I
instead of an l—and sent out e-mail linking to the site. The attacker then obtained a certificate
for PAYPAI.COM, and sent a message to many addresses indicating that someone had deposited
$827 for the recipient, along with a URL to claim the money. As soon as the user logged in to this
fake Web site—but with a real username and password—the attacker had captured the login and
password of the person’s Paypal account. Although the connection was over SSL, people were
fooled because the attacker was using a legitimate certificate.

SSL provides a confidential pipe from a client to a server, but the user is responsible for
verifying the identity of the server. This is not always possible. Besides the network-level threat,
keep in mind that SSL is not a Web panacea. Sensitive data still sits on back-end Web servers,
which may be vulnerable to attack, and in client caches. A well-designed virus could traverse
client machines, farming the caches for sensitive information.

In summary, SSL is not a magical solution for security on the Web. It is very effective at
reducing the ability of eavesdroppers to collect information about Web transactions, and it is the
best thing that we have. It is not perfect because it runs in an imperfect world, full of buggy
computers and human users.

Though originally designed for the Web, SSL is being used with other protocols. There are,
for example, standards for POP3 and IMAP [Newman, 1999] over SSL. Expect to see more of
this; it’s reasonably easy to plug SSL into most protocols that run over TCP.

326 Secure Communications

18.4.3 Authenticating SNMP

The Simple Network Management Protocol (SNMP) [Case et al., 1990] is used to control routers,
bridges, and other network elements. The need for authentication of SNMP requests is obvious.
What is less obvious, but equally true, is that some packets must be encrypted as well, if for no
other reason than to protect key change requests for the authentication protocol. SNMPv3 has a
suitable security mechanism [Blumenthal and Wijnen, 1999].

Authentication is done via HMAC [Krawczyk et al., 1997] with either MD5 [Rivest, 1992b]

or SHA-1 [NIST, 1993; Eastlake et al., 2001]. Both parties share a secret key; there is no key
management.

Secrecy is provided by using DES in CBC mode. The “key” actually consists of two 8-byte
quantities: the actual DES key and a “pre-IV” used to generate the IV used for CBC mode. An
AES specification is under development [Blumenthal et al., 2002].

To prevent replay attacks—situations in which an enemy records and replays an old, but valid,
message—secure SNMP messages include a timestamp and a message-id field. Messages that
appear to be stale must be discarded.

18.4.4 Secure Electronic Mail

The previous two sections focused on matters of more interest to administrators. Ordinary users
have most often felt the need for privacy when exchanging electronic mail. Unfortunately, an
official solution was slow in coming, so various unofficial solutions appeared. This, of course, has
led to interoperability problems.

The two main contenders are Secure Multipurpose Internet Mail Extensions (S/MIME), devel-
oped by RSA Security, and Pretty Good Privacy (PGP). Both use the same general structure—
messages are encrypted with a symmetric cryptosystem, using keys distributed via a public-key
cryptosystem—but they differ significantly in detail.

One significant caveat applies to either of these packages. The security of mail sent and
received is critically dependent on the security of the underlying operating system. It does no
good whatsoever to use the strongest cryptosystems possible if an intruder has booby-trapped the
mail reader or can eavesdrop on passwords sent over a local network. For maximum security, any
secure mail system should be run on a single-user machine that is protected physically as well as
electronically.

S/MIME

S/MIME is a mail encryption standard originally developed by RSA Security. However, many
different vendors have implemented it under license, especially for Windows platforms. Most
notably, it exists in the mailers used by Microsoft IE and Netscape Navigator.

S/MIME uses an X.509-based certificate infrastructure. Each user can decide for himself or
herself which certifying authorities should be trusted.

The actual security provided by S/MIME depends heavily on the symmetric cipher used. The
so-called “export versions”—rarely shipped these days, given the changes in U.S. export rules—
use 40-bit RC4, which is grossly inadequate against even casual attackers.

Application-Level Encryption 327

An IETF working group has been producing new versions of the S/MIME specification, in-
cluding adding modern ciphers like AES.

PGP

Several different versions of PGP exist. The older versions use IDEA to encrypt messages, MD5
for message hashing, and RSA for message key encryption and signatures. To avoid some patent
complications (not all of which matter anymore), some versions can use triple DES or CAST as
well as IDEA for encryption, Diffie-Hellman for message key encryption, and the Digital Sig-
nature Standard for signing. Additionally, SHA has replaced MD5, as the latter appears to be
weaker than previously believed. Recently, the IETF has standardized OpenPGP [Callas et al.,
1998], which is not bound to any particular implementation.

The most intriguing feature of PGP is its certificate structure. Rather than being hierarchical,
PGP supports a more or less arbitrary “trust graph.” Users receive signed key packages from other
users; when adding these packages to their own keyrings, they indicate the degree of trust they
have in the signer, and hence the presumed validity of the enclosed keys. Note that an attacker
can forge a chain of signatures as easily as a single one. Unless you have independent verification
of part of the chain, there is little security gained from a long sequence of signatures.

The freedom of the web of trust notwithstanding, much of the world is moving toward X.509
certificates. This is a probable direction for PGP as well.

With either style of certificate, distribution remains a major problem. There are a number of
PGP key servers around the world; keys can be uploaded and downloaded both manually and
automatically. Sometimes, a private protocol is used; some use LDAP (see Section 3.8.3.)

18.4.5 Transmission Security vs. Object Security

It’s important to make a distinction between securing the transmission of a message and securing
the message itself. An e-mail message is an “object” that is likely to be stored in intermediate
locations on its way from source to destination. As such, securing its transmission with SSL is of
comparatively limited benefit. However, PGP and S/MIME are well-suited to the task, as a digital
signature protects the object’s authenticity, regardless of how it travels through the network.

By contrast, IPsec and SSL protect a transmission channel and are appropriate for protecting
IP packets between two machines, regardless of the contents of the traffic. For point-to-point
communication, transmission security is more appropriate. For store-and-forward applications, it
is more appropriate to secure the objects themselves.

18.4.6 Generic Security Service Application Program Interface

A common interface to a variety of security mechanisms is the Generic Security Service Applica-

tion Program Interface (GSS-API) [Linn, 2000; Wray, 2000]. The idea is to provide programmers
with a single set of function calls to use, and also to define a common set of primitives that can
be used for application security. Thus, individual applications will no longer have to worry about
key distribution or encryption algorithms; rather, they will use the same standard mechanism.

328 Secure Communications

GSS-API is designed for credential-based systems, such as Kerberos or DASS [Kaufman,
1993]. It says nothing about how such credentials are to be acquired in the first place; that is left
up to the underlying authentication system.

Naturally, GSS-API does not guarantee interoperability unless the two endpoints know how
to honor each other’s credentials. In that sense, it is an unusual type of standard in the TCP/IP
community: It specifies host behavior, rather than what goes over the wire.

