
10

Filtering Services

The decision about what services to filter is based on a desired policy. Nonetheless, some general
rules are prudent for most policies. In this chapter, we present our philosophy about these. They
are not to be viewed as hard-and-fast rules, but rather as suggestions, or perhaps as a template
policy to be customized. This chapter discusses what to filter and why. The how is covered in
Chapter 11. The astute reader will note that the services discussed here are a small subset of the
ones from Chapter 2. Rather than discuss every possible service, we focus on the more interesting
ones, with an eye toward pedagogy.

In this chapter, when we describe a service, we include a summary about how to handle it
from a security point of view. It looks something like the following:

protocol out in comment

PROT x y optional comment

In this table, legal values for x and y are as follows:

allow let it through
block don’t let it through
filter an application-level proxy should make the decision
tunnel block the port for PROT, but allow users to tunnel it with a more

secure protocol

The out column refers to the decision about outbound traffic for port PROT. For TCP packets,
“outbound” is straightforward; it refers to connections initiated from the inside. “Inbound” refers
to connections initiated from the outside.

The meaning is less clear for UDP, because the protocol itself is connectionless. Furthermore,
some of the protocols of interest are not simple query/response services. For query/response
services, we thus speak of an “inbound query,” which elicits an “outbound response”; similarly,
“outbound queries” elicit “inbound responses.” For protocols that do not fit this model, we can
speak only of inbound and outbound packets.

Licensed under a Creative Commons Attribution-Non-Commericial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

https://creativecommons.org/licenses/by-nc-nd/4.0/

197



198 Filtering Services

10.1 Reasonable Services to Filter

10.1.1 DNS

DNS represents a dilemma for the network administrator. We need information from the outside,
but we don’t trust the outside. Thus, when we get host name-to-IP address mappings from the
outside, it is best not to base any security-related decisions on them. To be more precise, we
absolutely must not trust such information for internal purposes, though we may have to rely on
it for something like sending sensitive e-mail to external partners.

This has some consequences. Although under some circumstances it might be okay to do
name-based authentication for internal machines, it is never acceptable for external machines. We
must also ensure that no other internal-to-internal trust relationship depends on any information
learned from the outside.

The basic threat is simple: Outsiders can contaminate the DNS cache, notably by including
extraneous information in their responses. The details are explained in [Bellovin, 1995]. The rules
for outbound DNS queries can be summarized as follows:

outbound inbound

protocol query response comment

DNS allow filter block internal info

The best way to filter DNS is to use a DNS proxy that does two things [Cheswick and Bellovin,
1996]. First, it redirects queries for internal information to internal DNS servers. Second, it
censors inbound responses to ensure that no putatively internal information is returned. This is
most likely to occur in the Additional Information or Authoritative Server sections of the response,
but could occur anywhere. Nevertheless, one simple rule covers all cases: If it was not in the
request, we do not want to know it. (Note that a query for internal information will never be sent
to external servers, and hence should never be returned in response to our query.)

Inbound queries are simpler: Put your DNS server in the DMZ. For that matter, you can (and
often should) out-source it;1 as a matter of operational correctness, you should have at least two
DNS servers for each zone, and they should be as far apart as possible [Elz et al., 1997]. Do you
operate your own machines in widely separated parts of the Internet?

You should be especially certain that you don’t have them all on the same LAN. (There are
security reasons, too—what if someone DDoS’s your link? Make them work harder!) The rules
are thus quite simple:

outbound inbound
protocol response query comment

DNS allow DMZ

Dealing with the DNS is one of the more difficult problems in setting up a firewall, especially
if you use a simple packet filter. It is utterly vital that the gateway machine use it, but it poses
many risks.

1. Some people don’t believe in out-sourcing such things. We’re tempted to ask if they run their own fiber, too. Your
ISP—with whom you have a business and contractual relationship—can do far worse things by playing with your traffic
than by playing with your DNS. To be sure, you may want to run the primary server yourself, if only for ease of updates,
and the advent of DNSsec will make that more necessary.



Reasonable Services to Filter 199

fleeble.com. IN SOA foo.fleeble.com. root.foo.fleeble.com. (

200204011 ;serial

3600 ;refresh

900 ;retry

604800 ;expire

86400 ) ;minim

fleeble.com. IN NS foo.fleeble.com.

fleeble.com. IN NS x.trusted.edu.

foo.fleeble.com. IN A 200.2.3.4

foo.fleeble.com. IN MX 0 foo.fleeble.com.

*.fleeble.com. IN MX 0 foo.fleeble.com.

fleeble.com. IN MX 0 foo.fleeble.com.

ftp.fleeble.com. IN CNAME foo.fleeble.com.

Figure 10.1: A minimal DNS zone. The inverse mapping tree is similarly small. Note the use of an alias

for the FTP server. The secondary server (X.TRUSTED.EDU) is a sensitive site; any hacker who corrupted it,

perhaps via a site that it trusts, could capture much of your inbound mail and intercept many incoming ssh

calls. Note also that we do not give X’s IP address; that must reside in the TRUSTED.EDU zone.

What tack you take depends on the nature of your firewall. If you run a circuit or ap-
plication gateway, there is no need to use the external DNS internally. The information you
advertise to the outside world can be minimal (see Figure 10.1). It lists the name server ma-
chines themselves (FOO.FLEEBLE.COM and X.TRUSTED.EDU), the FTP and mail relay machine
(FOO.FLEEBLE.COM again), and it says that all mail for any host in the FLEEBLE.COM domain
should be routed to the relay.

Of course, the inside machines can use the DNS if you choose; this depends on the number of
hosts and system administrators you have. If you do, you must run an isolated internal DNS with
its own pseudo-root. We have done that, but we were careful to follow all of the necessary conven-
tions for the “real” DNS. It is possible to live internally with static host tables, but the details vary
a lot; every operating system is different. Even the location of the hosts file can change. It’s
usually /etc/hosts on UNIX systems, but it can be \windows\hosts, \winnt\hosts,
\windows\drivers\etc\hosts, and so on, on various Microsoft platforms.

At one level, dynamic packet filters can handle DNS as properly as they can any other UDP-
based protocol. But application-level filtering is necessary to deal with the attack mentioned
above.

Inside hosts need to use the DNS to reach outside sites. In some messages to the Firewalls
mailing list, Chapman has described a scheme that works today because of the way most UNIX

system name servers happen to be implemented. But it is not guaranteed to work with all systems.

His approach (see Figure 10.2) is to run name servers for the domain on both the gateway
machine and on some inside machine. The latter has the real information; the gateway’s name
server has the sort of minimal file shown in Figure 10.1. Thus, outside machines have no access
to sensitive internal information.



200 Filtering Services

Gateway
Application

GW!xx→ InDNS
via resolv.conf Inside

DNS

GW!xx← InDNS

(a) Gateway application calling inside machine

Gateway
Application

GW!xx→ InDNS
resolv.conf Inside

DNS

GW!xx← InDNS

InDNS→ GwDNS
via forward Gateway

DNS

InDNS← GwDNS

Outside
World
DNS

(b) Gateway application calling outside machine

Inside
Application

InAPP!xx→ InDNS

Inside
DNS

InAPP!xx← InDNS

(c) Inside application calling inside machine

Inside
Application

InAPP!yy→ InDNS
via resolv.conf Inside

DNS

InDNS→ GwDNS
via forward

InAPP!yy← InDNS

Gateway
DNS

InDNS← GwDNS

Outside
World
DNS

(d) Inside application calling outside machine

Figure 10.2: Passing DNS through a packet filter. The packet filter separates the gateway machine GW from

the inside machines; the latter are always shown as dashed boxes. Note that all incoming packets through

the firewall—that is, all arrows from solid boxes to dashed ones—are from GW to the inside DNS server

INDNS, which lives on a fixed port. The query always starts out in the left-most box; in scenario (b), the

query goes back out through the firewall, as noted in the text.



Reasonable Services to Filter 201

The tricky parts are as follows:

1. Permitting the gateway itself to resolve internal names (for mail delivery, for example)

2. Permitting inside machines to resolve external names

3. Providing a way for the necessary UDP packets to cross the firewall

The first part is handled by creating a /etc/resolv.conf file on the gateway that points to
the internal DNS server. That file tells application programs on the gateway, but not the name
server itself, where to go to resolve queries. Thus, for example, whenever mail wants to find an IP
address, it will ask the inside server.

Name server processes pay no attention to /etc/resolv.conf files. They simply use the
tree-structured namespace and their knowledge of the root name servers to process all requests.
Queries for names they do not know are thus properly resolved.

The second problem involves queries for external names sent to the internal name server. Of
course, this server doesn’t know about outside machines. Rather than talk to the real servers
directly (we cannot permit that, because we can’t get the replies through the firewall safely), the
inside server has a forwarder entry pointing to the gateway in its configuration file. This line
denotes which server should be queried for any names not known locally. Thus, if asked about an
inside machine, it responds directly; if asked about an outside machine, it passes the query to the
gateway’s name server.

Note the curious path taken by a request for an outside name by a process running on the
gateway machine. It first goes to the inside server, which can’t know the answer unless it’s cached.
It then hops back across the firewall to the outside machine’s own server, and thence eventually to
the distant DNS server that really knows the answer. The reply travels the same twisty path.

The reason that the inside and outside servers can talk through the packet filter is that DNS
servers use a constant port number when sending their queries. On older versions, it’s port 53;
newer ones let you configure the port number. This solves the third problem.

One “ı” has been left undotted. If an inside machine opens a connection to some external site,
that site will probably want to look up its host name. The gateway’s DNS server does not have that
information, however, and this sort of failure will cause many sites to reject the connection. For
example, a number of FTP sites require that the caller’s IP address be listed in the DNS. Chapman
suggests using a wildcard PTR record:

*.3.2.127.in-addr.arpa. IN PTR UNKNOWN.fleeble.com.

which will at least offer some answer to the query. But if the external site performs a DNS cross-
check, as described in Section 2.2.2, it will fail. Again, many outside sites will reject connections
if this occurs. UNKNOWN.FLEEBLE.COM has no IP addresses corresponding to the actual inside
machine’s address. To deal with that, a more complete fiction is necessary. One suggestion we’ve
heard is to return a special-format host name for any address in your domain:

42.3.2.127.in-addr.arpa. IN PTR pseudo-127-2-3-42.fleeble.com.

When a query is made for an A record for names of this form, the appropriate record can be
synthesized. (Note that underscores are illegal characters in domain names, though many people
use them.)



202 Filtering Services

10.1.2 Web

Unless you want a revolution on your hands, allow outbound HTTP queries. At the same time,
it is a good idea to use proxy filtering to scan for hostile applets and viruses. Depending on your
security policies, you may want to block some ActiveX controls as well [Bellovin et al., 2000].
However, note that scanning for viruses at the firewall can be quite challenging [Martin et al.,
1997]. Do not place these filters in a place that breaks caching.

The firewall should not allow incoming HTTP traffic, except to your official Web servers.
Of course, your Web servers should be in the DMZ. Packets to port 80 on an internal machine
should be tossed out. These days, most of them are generated automatically by worms seeking
new targets. The rule is as follows:

protocol out in comment

Web allow block Put Web server in DMZ

An alternative ruleset, if you require insiders to use an internal Web proxy, is to permit only it
to talk directly to the world. In this case, the rule looks as follows:

protocol out in comment

Web filter block Put Web server in DMZ

You should probably treat port 443 the same way as port 80.

10.1.3 FTP

FTP is a tricky protocol. Because by default FTP uses PORT mode, which requires a separate,
incoming connection, many stateful firewalls open a hole allowing incoming connections to an
internal machine. This has been shown to be perilous [Martin et al., 1997]. A better idea is
to require PASV FTP for outbound connections [Bellovin, 1994]. Most browsers run in passive
mode (though some require that an option be set), so this should not be a problem. Do not allow
inbound FTP connections, and place the FTP server in the DMZ. The rule is as follows:

protocol out in comment

FTP passive block Put FTP server in DMZ

In order to handle PORT mode, even dynamic packet filters need an application proxy. Some
of them try to get away with looking at just one packet at a time, rather than reassembling the TCP
stream. The technical term for this behavior is “a very bad idea.” Looking at single packets can
break things, if the sender has split data across multiple packets. There have even been reports of
exploitable vulnerabilities in such setups.2

10.1.4 TCP

Is it a good idea to allow incoming and outgoing TCP connections? As a general rule, you have
to trust insiders. If you cannot trust them, then you have a people problem, which is much more
serious than a networking problem. To quote Ranum’s Law, “You can’t solve people problems
with software.”

2. See http://www.kb.cert.org/vuls/id/328867.



Reasonable Services to Filter 203

Because insiders are trusted, is it okay to allow outgoing TCP connections? Not completely.
Although the insiders might be trusted, it is not always certain that the code they are running is
behaving properly. Applets running on users’ machines are considered insiders. Signed applets
can be granted privileges by naı̈ve users; these allow the applets to talk to the file system and
connect to arbitrary places on the network. (Many organizations train their users to click “OK” to
use payroll and other systems.) The TCP connections originating from these applets come from
the inside.

There are other ways that bad things can originate from the inside. Assume that the mail
filter is weeding out viruses and worms. That only works if users obtain their mail via POP3 or
IMAP. If mail is read through a Web-based server, such as Hotmail or Hushmail, there is little to
prevent the poor user from infection via these vectors. Once hit, the inside machine may generate
problematic outgoing TCP connections. (Imagine a dual-mode worm: When it can, it spreads by
direct attacks on vulnerable systems, but it also e-mails copies of itself to users behind firewalls.
Your imagination won’t be stretched very far; these worms exist.)

We don’t really know what to do about this. Disallowing outgoing TCP is Draconian, and
represents a restriction that is probably too strong. Conversely, highly sensitive government sites
may have confidentiality requirements on their data that justify such a policy. The rest of us can
probably live with the risk. Besides, clever malware can exploit application-level proxies in the
same way.

Incoming TCP connections should not be allowed. If there is a strong need for access to an
internal machine from the outside, this should be handled via a dedicated proxy, often from a
machine on the DMZ. If possible, use cryptographically enhanced services such as ssh. It is also
best to limit the sets of machines that can be reached; and, if possible, the set of machines that can
initiate access. The filtering rule for TCP can be summarized as follows:

protocol out in comment

TCP allow block Generally trust insiders

10.1.5 NTP

There are now cheap, extremely accurate time devices available based on the Global Positioning
System and other radio sources. If these are not used, there are time sources on the Internet. You
should limit access to selected, trusted external servers.

If you have a close relationship with the outside time server, you may want to use NTP’s built-
in authentication mechanisms. It is also common to run an external NTP server of your own and
use the firewall to restrict insiders’ access to that server alone.

protocol out in comment

NTP allow allow Specific hosts only

Note that NTP is not a query/response protocol.

10.1.6 SMTP/Mail

There are two common reasons to restrict outbound SMTP traffic. In the old days of the Internet,
badly formatted e-mail messages were common, and an outgoing filter could clean up or reject



204 Filtering Services

incorrect message formats. You may also wish to check outgoing mail for viruses, strange attach-
ments, or even corporate secrets. An alarm for a virus in outgoing mail may be your first clue that
a virus is running around your intranet. Mail programs have been notorious for security problems,
so be sure to keep up with the latest security alerts and patches for your mail software. Scan for
viruses and perhaps other active content, and filter or discard attachments. (If you do the latter,
you may want to also build a moat around your house and office. Moat monsters are optional.)

Some organizations try to scan outbound mail for secrets and dirty words, a military term for
phrases that secret texts are likely to contain. This is a difficult proposition at best; apart from
Ranum’s Law considerations, there is the whole problem of natural language recognition. Unless
you work for a company that is legally required to do such things (some U.S. brokerage firms fall
into this category)—or live in a country that “needs” to do such things—it’s probably not worth
trying.

ISPs have another reason to block outgoing SMTP service, even if they block nothing else.
Spammers find open hosts (“open relays”) or use dial-up access and send thousands of unwanted
e-mail messages from them. Proactive ISPs suppress this activity by blocking outgoing SMTP
service. This is a reasonable policy for services that have messy user populations. Of course,
legitimate users may be blocked from accessing their home SMTP servers. They could use a
tunnel, SMTP AUTH (see Section 3.1.1), or “SMTP after POP” (see Section 3.1.3).

If none of these issues is a concern, then outbound SMTP can be allowed, unfiltered. The rule
is as follows:

protocol out in comment

SMTP allow filter

10.1.7 POP3/IMAP

Inbound POP3 and IMAP are used by outsiders attempting to get mail that is on the inside. These
protocols should be blocked. There are probably passwords flowing in the clear; there is almost
certainly sensitive internal content that shouldn’t be exposed to prying eyes. Even the APOP pro-
tocol, which uses challenge/response, is vulnerable to dictionary attacks. If you want to provide
mail access to the outside, do it with a tunnel; most mail clients and servers now support these
protocols over SSL. But even this permits online password-guessing attacks.

Should internal users be allowed to access external POP3/IMAP servers? From a security
standpoint, this is not a great idea. In addition to the password exposure problem, you have
to worry about malicious content. Sure, users can then tunnel around you using ssh, but if the
policy forbids external e-mail access, then those are misbehaving users who can be dealt with in
other ways. If you do decide to allow queries to external POP3/IMAP servers, do it through an
application-level proxy that scans for viruses, worms, and other executables. (Add a spam filter,
too, as an incentive to use it.) The rule looks as follows:

protocol out in comment

POP3/IMAP filter tunnel Block active content



Reasonable Services to Filter 205

Attachments: Can’t Live With ’Em, Can’t Live Without ’Em

It used to be that typical e-mail contained a two-line ASCII sentence, e.g., “The meeting
has been moved to 2:30.” E-mail now usually contains attachments, specially formatted
files glued into the message.

Unless you are one of the few people who has a life that does not involve interaction
with people who use Windows, you probably have to handle attachments. An attachment
used to mean some kind of a romantic relationship with another human being. Today, it
is a MIME-encoded thing that is often associated with some Microsoft Office application;
at the very least, it’s the same text in both ASCII and HTML, the latter adorned with
embedded images (and Web bugs) as well.

The bloat aside—that same one-line e-mail message is 19 KB as a Word file—there are
security implications as well. These Office applications can contain embedded programs;
such programs are prominent vectors for worms and viruses. (Besides, the file formats
themselves can leak information. When using UNIX tools to view Word files, we’ve seen
not just information that the sender had thought was deleted, but the contents of other

documents that were open at the same time!)
There is also a mismatch between MIME semantics and those of some operating sys-

tems, i.e., Windows. Here are some MIME headers embedded in a copy of Klez some
worm thoughtfully sent us:

Content-Type: audio/x-wav;

name=EASYvolume[1].exe

Content-Transfer-Encoding: base64

The Content-Type field implies what application should be used to process the data,
presumably some sort of audio program in this case, but Windows uses the filename—and
thus treats the attached data as an executable program and runs it. This is bad.

Attachments themselves are not evil—family pictures and PGP messages are sent as
attachments—but the stuff some people attach to messages these days is terrible. A large
financial company once monitored all attachments coming from outside of their intranet
for a week. They found that not one had a business purpose, so they instituted a company
policy that discarded all incoming attachments. As a result, when the Melissa worm struck,
they were largely unaffected. The policy, while Draconian, may not be as unreasonable
as it seems. At the very least, an “Evil Stuff” check should be made, with “evil” defined
as “anything not on the ‘Approved’ list.” Then, if you can get away with it, exclude all

executable content.
Attachments are here to stay, and they’re a good way to e-mail non-ASCII files when

you need to. They are the way the world does business. You can’t live with them; you
can’t live without them.



206 Filtering Services

10.1.8 ssh

One of the principles of computer security is to trust as little as possible. Ssh is one of the things
we trust. As with Mail, it is thus crucial to keep up with bugs and patches. Ssh has indeed
had some serious security problems in the past. Ssh is reasonable to allow through the firewall
because it implements cryptographic authentication and encryption, and is the best way we know
of to allow access through a firewall.

Depending on your internal trust policies, you may want to terminate incoming ssh connec-
tions at the firewall. Here you can do strong, centralized authentication. It’s also attractive to
pretend that doing so prevents people or malicious programs from creating back doors, but it’s
just that: a pretense. If you permit outbound TCP, it’s easy to create back doors, and ssh’s port-
forwarding just lets Bad Guys do it a bit more easily, from the command line. The rule for ssh is
as follows:

protocol out in comment

ssh allow allow Stay current on patches

10.2 Digging for Worms

E-mail isn’t the only way that viruses and worms spread, but it’s one of the most common. If
your user population runs susceptible software (i.e., Windows), you really need to filter incoming
e-mail. If you want to be a good citizen of the Net, you’ll filter outgoing e-mail, too.

One approach, of course, is to screen each piece of incoming mail on each desktop. That’s
a good idea, even if you adopt other measures as well; defense in depth generally pays off. But
desktops are often behind in their updates, and getting new pattern files to them now can be
difficult.

Fortunately, it’s not hard to install a centralized filter for malware. Use MX records to ensure
that all inbound e-mail goes to a central place. Make sure that you include a wildcard MX record,
too, for both your inside and your outside DNS:

example.com. IN MX 10 mail-gw.example.com

*.example.com. IN MX 10 mail-gw.example.com

It’s a good idea to use a different brand of virus scanner for your gateway than for your desktop; all
virus scanners are subject to false negatives. Many goods ones are out there, both commercial and
open source. If you can, obtain your central scanner from the vendor who delivers new patterns
rapidly during times of plague and helminthiasis [Reynolds, 1989].

In some cases, you may want to add your own patterns. There are some legal worms—spam,
actually—but “legal” because the users consented to their spread by not decrypting the legalese in
the license. Antivirus companies have been hesitant to block them, given that they are, technically,
legal, but you’re under no obligation to allow them inside your organization.

Outgoing e-mail should be scanned, too. There’s no convenient analog to MX records; if you
can’t rely on your users to configure their mailers correctly, you can “encourage” them by blocking
outbound connections to TCP port 25. That will also help guard against worms that do their own



Services We Don’t Like 207

SMTP. If you run a DNS proxy of some sort, you can configure it to make your outbound mail
gateway the MX server for the entire Internet:

*. IN MX 10 mail-gw.example.com

Just make sure that you filter out any more-specific inbound records.
Some antivirus software annoys as much as it protects. A number of packages, if they detect a

virus on a piece of incoming e-mail, will send an alert to the sender and all other recipients of that
piece of e-mail. It seems civic-minded enough, but isn’t as big a help as it appears. For one thing,
many worms used forged sender addresses; notifying the putative sender does no good whatsoever.
Moreover, notifying other recipients has bad scaling properties when one of the addressees is a
mass mailing list.

A more dangerous form of annoyance is the trailer that reads something like this:

This piece of e-mail has been scanned, X-rayed, and screened for excessive nitroge-

nous compounds by ASCIIphage 2.71827, and is warranted to be free of viruses,

worms, arthropods, and cyclotrimethylenetrinitramine. It is safe for consumption by

humans and computers.

A trailer like that is about equivalent to naming a file “This is not a virus.exe,” and
teaches users bad habits.

10.3 Services We Don’t Like

10.3.1 UDP

43
Filtering TCP circuits is difficult. Filtering UDP packets while still retaining desired func-
tionality is all but impossible. The reason lies in the essential difference between TCP
and UDP: The former is a virtual circuit protocol, and as such has retained context; the

latter is a datagram protocol, where each message is independent. As we saw earlier, filtering TCP
requires reliance on the ACK bit, in order to distinguish between incoming calls and return packets
from an outgoing call. But UDP has no such indicator: We are forced to rely on the source port
number, which is subject to forgery.

An example will illustrate the problem. Suppose an internal host wishes to query the UDP
echo server on some outside machine. The originating packet would carry the address

〈localhost, localport, remotehost, 7〉,

where localport is in the high-numbered range. But the reply would be

〈remotehost, 7, localhost, localport〉,

and the router would have no idea that localport was really a safe destination. An incoming packet

〈remotehost, 7, localhost, 2049〉



208 Filtering Services

is probably an attempt to subvert our NFS server; and, while we could list the known dangerous
destinations, we do not know what new targets will be added next week by a system administra-
tor in the remote corners of our network. Worse yet, the RPC-based services use dynamic port
numbers, sometimes in the high-numbered range. As with TCP, indirectly named services are not
amenable to protection by packet filters.

A dynamic packet filter can do a better job by pairing up responses with queries. Most use a
timeout to indicate that the “connection” is over. For some protocols, a simple counter will suffice:
Only one response should be sent for most queries.

Barring a good dynamic packet filter, a conservative stance dictates that we ban virtually all
outgoing UDP calls. It is not that the requests themselves are dangerous; rather, it is that we
cannot trust the responses. The only exceptions are those protocols that provide a peer-to-peer
relationship. A good example is NTP, the Network Time Protocol. In normal operation, messages
are both from and to port 123. It is thus easy to admit replies, because they are to a fixed port
number, rather than to an anonymous high-numbered port. One use of NTP—setting the clock
when rebooting—will not work, because the client program will not use port 123. (Of course, a
booting computer probably shouldn’t ask an outsider for the time.)

The filtering rule for UDP can be summarized as follows:

protocol out in comment

UDP block block Hard to distinguish spoof query from a reply

10.3.2 H.323 and SIP

Meeting people on the Net is nice, but it’s not too nice to firewalls. H.323 has several problems:
It requires a complex proxy that can interpret the control messages, it requires the firewall to open
additional ports (always a threat, just as with FTP), and the additional ports are UDP. SIP shares
some of these attributes, but the code is a lot simpler.

Turn off inbound and outbound H.323. Use SIP for your multimedia needs. The rule is as
follows:

protocol out in comment

H.323 block block Use the phone?

10.3.3 RealAudio

The question to ask is if you have a strong business need to use RealAudio. If you must support
it, use the TCP option. RealAudio servers, for outsider access, should be in the DMZ. The rule
for filtering RealAudio is as follows:

protocol out in comment

RealAudio block block If must turn on, use TCP option

Fortunately, the RealAudio program seems to do the right thing more or less automatically.



Other Services 209

10.3.4 SMB

Server Message Block (SMB) is a protocol that assumes a trusted environment. It provides an
abstraction for sharing files and other devices. It is not the kind of thing that you want going into
or out of a trust perimeter. Here is the filtering rule:

protocol out in comment

SMB block block

10.3.5 X Windows

Don’t try to filter X Windows; tunnel it over ssh. Furthermore, make sure the clients are running
on trustworthy machines.

10.4 Other Services

10.4.1 IPsec, GRE, and IP over IP

Each of these protocols is designed to carry IP within some other protocol. In other words, they
create new wires that bypass your firewall. Although this can be a good idea under certain care-
fully controlled circumstances—see Section 12.1—you must block random tunnels. Even for
controlled ones, the only type we trust is IPsec.

10.4.2 ICMP

There have been instances of hackers abusing ICMP for denial-of-service attacks. Nonetheless,
filtering out ICMP denies one useful information. At the very least, internal management hosts
should be allowed to receive such messages so that they can perform network diagnostic functions.
For example, traceroute relies on the receipt of Time Exceeded and Port Invalid ICMP
packets.

Some routers can distinguish between “safe” and “unsafe” ICMP messages, or permit the filter
to specify the message types explicitly. This enables more of your machines to send and respond
to things like ping requests. Conversely, it lets an outsider map your network if you’re not using a
dynamic packet filter that properly matches responses to outbound packets or connections.

Some ICMP cannot be blocked. Path MTU discovery is a must-have, and the ICMP messages
it uses must be allowed in or you won’t be able to talk to certain sites. Fraudulent Destination
Unreachable messages can lead to a denial-of-service attack, but letting them in can improve
performance. There is a trade-off; the price of learning that a destination is unreachable is that
you risk being flooded with ICMP messages and perhaps having some connections torn down.

ICMP provides all sorts of functionality versus security trade-offs. Some firewalking tech-
niques (see Section 11.4.5) use Path MTU ICMP messages. Which do you prefer: random black
holes or being firewalked?



210 Filtering Services

The filtering rule for ICMP can be summarized as follows:

protocol out in comment

ICMP allow some Path MTU requires it, as do other useful services

10.5 Something New

Suppose someone comes to you and asks that the frobozz protocol be allowed through the firewall.
What do you do? There are no simple answers, but we can describe the guidelines we use to
evaluate such requests.

The first question, of course, is whether the calls are inbound or outbound. Outbound calls
present many fewer problems, though of course the nature of the service can change that. But it’s
hard to imagine something worse than ssh’s remote port-forwarding in the hands of an uncooper-
ative employee, who could easily connect port 110—POP3–on some outside machine to port 110
on an inside machine. Here, education is your best choice.

For inbound services, our answer is usually “block.” Because that rarely persuades people, we
generally ask a few more questions. Can the destination machine reside in the DMZ? Often, it
can, but only at the cost of opening a different hole through the firewall. This is generally a good
trade-off, because an attacker will have to penetrate two different protocols to breach your firewall.
Conversely, it means that you have yet another possibly vulnerable machine in your DMZ, with
more access to other DMZ machines. Separating the DMZ into separate subnets is a good idea, if
you can afford it.

Does it use TCP or UDP? Does it use fixed ports or random ports? TCP is generally easier to
control. Fixed ported are easier to identify and filter appropriately.

Does the frobozz protocol use encryption and cryptographic authentication? If so—and if the
crypto is an off-the-shelf standard, rather than something home-brewed—we think more favorably
of it. That’s especially true if the crypto restricts connectivity to a few selected outside sites. We
don’t want to trust outsiders, but we’d rather trust a few than trust the entire Internet.

What is the software like? Has it been through a security review? Much more evil lurks in
code than in protocols. We like things written in Java, because the Java language prevents buffer
overflows, but it’s possible to write insecure code in any language. Does the software require root

or Administrator privileges? Remarkably little code really needs it; often, the requirement is a
sign of programmer laziness.

Does the service try to emulate numerous users? If so, it requires more privileges and more
passwords or other credentials; that makes it more dangerous. We especially don’t like to store

such credentials in the DMZ.
Can the application be jailed safely? How easy is it to use chroot to contain it? Can other

outboard security mechanisms be layered on top of it?
Finally, how strong is the business case for it? (If you’re at a university, read “educational

mission” for “business case.”) We’re much more likely to approve something that’s part of a
product offering than, for example, the latest and greatest MP3-swapping program.


