
8

Using Some Tools and Services

Chapter 2 probably convinced you that we don’t think much of the security of most standard
network services. Very few fit our definition of “secure.” We have three options:

• Live with the standard services we trust

• Build new ones that are more likely to be secure

• Find a way to tame those unsafe, but useful services

Note carefully our use of the word “service.” By it, we include both the protocols and
their common implementations. Sometimes the protocol itself is unsafe—reread Chapter 2, if
necessary—but sometimes the problem is with the existing code base.

The first option limits us too much; there are very few standard or Commercial Off-The-Shelf

(COTS) programs we trust. The second is a bit more appealing, but is not practical for everyone.
If nothing else, writing secure code for a complex protocol is hard; even someone with the time
and the will won’t necessarily produce better code than the existing options provide.

In this chapter, we will tame some existing services, option 3. Most people hold their noses
and use option 1, with a very broad or naı̈ve definition of trust. Some opt for option 2, building it
themselves. Great care must be taken, and few are qualified to do it right.

Note that we have not considered the option of running unsafe services behind a firewall. This
does not make the host secure: it is still vulnerable to anyone with access to it.

8.1 Inetd—Network Services

Inetd is a general tool for launching network servers in response to incoming connections. It can
launch a variety of services: UDP, TCP, RPC, and others. Inetd runs under account root because
it usually listens to services in the privileged range and needs to run server programs under lesser
accounts. A number of simple services can be processed by inetd itself.

Licensed under a Creative Commons Attribution-Non-Commericial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

https://creativecommons.org/licenses/by-nc-nd/4.0/

153



154 Using Some Tools and Services

This model is attractive from the standpoint of security and simplicity. Server programs often
don’t need explicit networking code—inetd connects the process to the network socket through
standard input, standard output, and standard error. The process does not need to run as root, and
we can further restrict the program through other programs such as TCP wrappers.

Typically, inetd launches a new instantiation of a server program for each incoming connec-
tion. This works for low-volume network services, but can become a problem under load, though
modern computers can handle a remarkable number of connections per second using this model.
Most inetd implementations—a number are available—allow limitations on network connection
rates.

The standard inetd program has grown over the years. There is the rate-limiting code men-
tioned above, an internal TCP wrapper, IPsec security, and, of course, IPv6 support—some 3,000
lines of C code in all. Some of this complexity is not needed, and all of it is worrisome: We like
to rely on inetd on some pretty important hosts. Historically, some versions of inetd have had a
few bugs that can shut services down, but none we know of have had security problems.

8.2 Ssh—Terminal and File Access

Ssh is now a vital part of our security toolkit (see Sections 3.5.3 and 18.4.1). Though we are a
little leery of it, it provides vital and probably robust end-to-end encryption for our most important
problems. The reason our enthusiasm is not absolute is that ssh is so feature-rich that its inherent
complexity is bound to introduce flaws in implementation and administration. Version 1 of the
protocol was in widespread use when it was found to be insecure. Even version 2 has been found
to be susceptible to statistical timing attacks [Song et al., 2001]. To accommodate cryptosystem
block sizes, ssh version 2 rounds up each packet to an eight-byte boundary. In interactive mode,
every keystroke that a user types generates a new IP packet of distinctive size and timing, and
packets containing password characters produce no echo packets. These properties help the at-
tacker infer the size of passwords and statistical information that amounts to about one bit per
packet.

We rely on ssh for interactive connections between hosts and for file transport. Besides scp,
a number of important file transport programs—such as rsync and rdist— can use ssh. For these
connections, it is important to configure the authentication correctly. Because they usually run in
scripts when a user isn’t present to supply a password, these need single-factor authentication: a
key. For interactive authentication, we can use two-factor authentication.

The details of configuration are important. We refer to version 2 authentication methods and
configurations in this section, as implemented in OpenSSH.

8.2.1 Single-Factor Authentication for ssh

Ssh has multiple configuration options. One form of authentication is HostbasedAuthentication
or RhostsRSAAuthentication. This mimics the old BSD-style authentication used for rlogin/rsh,
but in a much stronger way. Connection is granted if it comes from the proper IP address, has the
appropriate host key, and the IP address appears in system- or user-supplied hosts.equiv or



Ssh—Terminal and File Access 155

Evaluating Server Software

Programming is hard to do, and safe programming is very hard to do. It’s even harder to
prove that a program is safe and secure. This is an open area for research.

But we can look for some indications of how the programmers approached their task.
We can look for outright bugs or indications of trouble. If we find them, we lose confidence
in the software. If we don’t find them, or see signs of rigorous and systematic paranoia,
we may gain some confidence, especially if the software has proved itself over time. What
decreases our confidence in a piece of software?

• Lack of source code and a good compiler

• Dangerous programming languages. C certainly qualifies, though there have been
security problems in type-safe languages.

• Long programs and numerous features. Less is more.

• Servers running as root that don’t relinquish permissions as soon as they can

• Large configuration languages that are processed before privileges are reduced

• In C, the use of gets, strcpy, strcat, and sprintf, among others. All but the first can
be used safely with very careful programming and numerous checks, but there are
safer versions of each.

• Compilation warning messages

• The use of deprecated language features and libraries

• In C, excessive use of #ifdefs [Spencer and Collyer, 1992]. Programs should not
be woven, unless they are literate [Knuth, 2001].

• A history of bugs

These are rough heuristics. Many attempts have been made to create formally secure
languages and programs over the past 40 years. It would be very useful to continue these
efforts with a special eye toward making safer network services.

Programming is hard.



156 Using Some Tools and Services

.rhosts/.shosts files. We don’t advise that you let your users make security policy, so the
sshd config file might have the following:

HostbasedAuthentication yes

IgnoreRhosts yes

IgnoreUserKnownHosts yes

PasswordAuthentication no

RhostsAuthentication no # protocol 1 only

RhostsRSAAuthentication yes # protocol 1 only

As written, this authentication trusts any user on the client. DenyUsers and AllowUsers can
be used to modify this trust a bit. This authentication depends on a constant IP address for the
client, which probably won’t do for a traveling laptop. This IP dependence probably adds a little
security, as the host key, if stolen, can’t be used from another host without IP spoofing. Of course,
if the attacker can steal your host private key, you’ve probably already lost control of the host
itself.

We can remove this IP dependence using DSA or RSA authentication. This is based on
the presence of a private key in a user’s key ring. It cannot be combined with the IP-based
authentication—ssh tries one, then the other.

For DSA authentication with UNIX clients, we generate a key on the client:

ssh-keygen -t dsa

which puts a public/private key pair in .ssh/id dsa.pub and .ssh/id dsa, respectively.
(Use -t rsa for RSA keys.) ssh-keygen asks for a password to lock this key entry; it must be
empty for single factor authentication. Append id dsa.pub to .ssh/authorized keys2

on the server, and add

DSAAuthentication yes

to both the client and server ssh configuration files.

The server now trusts the client using single-factor authentication. This trust is often asym-
metric: The client may be at a higher trust level than the server. Automated scripts can now run
ssh, scp, and other programs that use them, like rsync, without human intervention. Access to the
server can be limited by restricting the programs it will run. This could be used to allow users
to provision parts of a Web server or FTP archive on a DMZ without having access to the whole
server.

Either of these authentication methods is better than nothing, even between relatively insecure
clients and servers. These tools are a good first step toward tightening the security of these hosts
and their communications, and routine encryption of low-priority traffic can make it harder for an
eavesdropper to identify the high-value data streams and hosts. It is worthwhile even if only pass-
word authentication is used, as it masks some (but not all) of the information about the password.



Ssh—Terminal and File Access 157

8.2.2 Two-Factor Authentication

The single-factor authentication described above is fine if the client is highly unlikely to be com-
promised. Ssh does support various two-factor authentication schemes, though there are a bewil-
dering array of options.

The second factor is a passphrase that must be entered. We must ask where the information
needed to process that phrase is stored. If an attacker can find a way to mount a dictionary attack
on the phrase, the security of the system is diminished considerably, because people pick lousy
passwords.

For example, the DSA key mentioned in the previous section can be protected by a passphrase
if we want two-factor authentication. The passphrase unlocks the key, which is then used to
connect to the server. If the key resides on a laptop that is stolen, a passphrase may be the only
obstacle protecting the server, at least until the theft is noticed.

Can the attacker run a dictionary attack on the passphrase? To do so, the attacker’s program
needs to determine if each guess is correct. Does the format of the key file enable the program to
determine if it made the right guess? The ssh designers could go either way. They could make
any guess produce a bit string that might be correct, with no way to verify the correctness other
than actually connecting to the server and trying. This means the server would retain control over
its incoming authentication queries. Replies could be limited to a few tries, attempts logged, and
the access shut out. These are nice security properties, but they are confusing to the user. An
authorized user who mistyped the passphrase would be denied access, and it would be harder to
figure out why. User support has considerable costs.

The ssh designers picked the second option: A passphrase can be checked for validity imme-
diately, without connecting to the server. This simplifies support issues. Moreover, the original
public DSA key is probably still on the client host, without protection, so attackers could verify
the key themselves, though with considerably more computing costs.

The passphrase improves the security of DSA authentication, but we have seen that it would
be better to have the password processed off-machine. Ssh offers options for this. It supports
Kerberos, which stores the password elsewhere, but it is not clear that this can be combined with a
required host or DSA key—we have not tried it. Password authentication plus DSA authentication
would do the trick, but ssh doesn’t support the combination. The password checking would be
performed by the server, which could check for dictionary attacks. Similarly OTP authentication
is supported, but only as a single authentication method. The OTP printout is only a single factor,
something you have. If it is implemented in a palmtop computer, for example, it can be true
two-factor authentication.

Ssh does support some authentication tokens, and it is easy to modify the server to support
others. These can provide genuine two-factor authentication on their own.

8.2.3 Authentication Shortcomings

Even with all these options, ssh doesn’t allow us to implement some of the policies we think are
best.

Oddly, ssh does not support known host plus password authentication. If the calling com-
puter has an unknown host key, we might wish to enforce two-factor authentication by using an



158 Using Some Tools and Services

authentication device (see Section 7.3). These permit a challenge/response authentication that
gives us a two-factor authentication, and ssh can support this, but not based on whether the calling
host is known or not. Of course, an unknown host may be untrusted for good reason.

Some versions of ssh support Pluggable Authentication Modules (PAMs), which could proba-
bly be configured to implement the policies we desire. Alas, PAM is not always supported by ssh,
and the UsePrivilegeSeparation option makes this implementation more difficult.

The real problem is that these different authentication methods are not orthogonal. This leads
to complexity both in the code and in trying to administer such a system. We’d be happier if the
administrator could configure authentication “chains,” conditional on the source IP address:

10.0.0.0/8: RSA | RhostsRSAAuthentication Password

*: RSA | RhostsRSAAuthentication Kerberos

Note that this address–based authentication is very different from the IP address-based au-
thentication we decry for the r- commands in Section 3.5.2. Those commands rely solely on the
IP address for authentication. Here, the IP address is used for identification, but authentication is
based on the possession of a strong cryptographic key.

8.2.4 Server Authentication

When using ssh, it’s important that the client authenticate the server, too. There are existing tools,
such as sshmitm and ettercap, that let an attacker hijack an ssh session. Users are warned about
this—they’re told that the server’s public key is unknown or doesn’t match—but most people
ignore these warnings. This is an especially serious matter if passwords are being used. You may
wish to consider using

IgnoreUserKnownHosts yes

if your user population can’t be trusted to do the right thing.

8.3 Syslog

Syslog, written by Eric Allman, is useful for managing the various logs. It has a variety of features:
the writes are atomic (i.e., they won’t intermix output with other logging activities), particular
logs can be recorded in several places simultaneously, logging can go off-machine, and it is a
well-known tool with a standard format. The syslogd daemon listens for log entries on a local
pipe and, optionally, from a UDP port.

The program has been a source of worry: it runs as root, and is used on vital hosts. There
has been a serious advisory on it (see CERT Advisory CA-95:13) of the usual stack-smashing
kind; see Section 5.3. Many versions let you turn off the network listener (check your local
documentation; the magic letter differs from system to system); you should do this on important
hosts. If your version doesn’t let you turn off UDP access to it, download, compile, and install a
version that does.



Network Administration Tools 159

Syslog’s UDP packets can get lost on the wire and in the kernel. There’s a move afoot to
document the syslog protocol as a standard, and add reliable delivery to it; see RFC 3195 [New
and Rose, 2001].

Besides being safer, it eliminates a potential denial-of-service attack. A vandal who sends 100
KB/sec of phony log messages would fill up a 200 MB disk partition in about half an hour. That
would be a lovely prelude to an attack. Make sure that your filters do not let that happen.

It is often a good idea to keep your files in an off-machine logging drop safe. Hackers generally
go after the log files before they do anything else, even before they plant their back doors and
Trojan horses. You’re much more likely to detect any successful intrusions if the log files are on
the protected inside machine.

8.4 Network Administration Tools

This topic is vast, and so are the number of tools available for network administration. The
following sections describe a couple of standbys worth mentioning.

8.4.1 Network Monitoring

It is a difficult job to police and understand Internet traffic. There can be billions of packets
involving millions of players. The packet rates can challenge the latest hardware running highly
efficient software. Fortunately, most of the traffic is stereotypical: We can understand much of
what’s going on and ignore it, focusing on the unusual packets. Chapter 15 examines this problem
in some detail.

We can monitor a network from a host that is actually under attack, or even compromised,
but it is not a good idea—it is better to pick another host with access to the packet flow. It is
even better if this host does not interact with the network, as sniffing computers usually run in
promiscuous mode. Dave Wagner suggested some techniques developed by students in his class
for detecting hosts in promiscuous mode (they often respond to packets that they shouldn’t see)
[Wu and Wong, 1998], and there are tools available, such as L0pht’s AntiSniff.

8.4.2 Using Tcpdump

By far, the best alternative is external monitoring à la The Cuckoo’s Egg [Stoll, 1989, 1988]. For
network monitoring, we recommend the tcpdump program. Though its primary purpose is proto-
col analysis—and, indeed, it provides lovely translations of most important network protocols—it
can also record every packet going across the wire. Equally important, it can refrain from record-
ing them; tcpdump includes a rich language to specify what packets should be recorded.

The raw output from tcpdump isn’t too useful for intrusion monitoring—several simultaneous
conversations may be intermixed in the output file. You can find a number of publicly available
tools to process tcpdump data—Stephen Northcutt’s Shadow IDS is a good example.

41
Some monitoring tools have contained security holes—special packets can crash or even
subvert the monitoring host! All of these monitoring programs share another common
danger: The very kernel driver that allows them to monitor the Net can be abused by



160 Using Some Tools and Services

Those With Evil Intentions to do their own monitoring—and their monitoring is usually geared
toward password collection or connection hijacking. You may want to consider omitting such
device drivers from any machine that does not absolutely need it. But do so thoroughly; many
modern systems include the capability to load new drivers at runtime. If you can, delete that
capability as well. (If you can’t delete that capability, consider using a different operating system
for such tasks.)

Conversely, if you have any unprotected machines on your DMZ net—for example, exper-
imental machines—you must protect yourself from eavesdropping attacks launched from those
systems. Any passwords typed by your users on outgoing calls (or any passwords you type when
administering the gateway machine) are exposed on the path from the inside router to the regional
net’s router; these could easily be picked up by a compromised host on that net. The easiest way
to stop this is to install a filtering bridge or a “smart” hub to isolate the experimental machines.
Figure 8.1 shows how a DMZ net could be modified to accomplish this.

Note well: Such bridges, hubs, and switches are generally not designed as security devices,
and should not be relied upon. There are many well-known ways to subvert the filtering, such
as sending to or from sufficiently many MAC addresses that you overflow the filtering tables, or
engaging in ARP-spoofing. If you’re serious, you need a dedicated network tap, such as those
made by NetOptics or Finisar. If you don’t want to go that far, use a separate router port.

Another popular monitoring program is ethereal, which features a GUI interface that reminds
us of some commercial network monitoring devices.

8.4.3 Ping, Traceroute, and Dig

Although not principally security tools, the ping and traceroute programs have been useful in
tracing packets back to their source. Ping primarily establishes connectivity. It indicates whether
or not hosts are reachable, and it will often tell you what the problem is if you cannot get through.

Traceroute is more verbose; it shows each hop along the path to a destination. It sends out
packets with increasing time-to-live (TTL) fields. This field is decremented each time it arrives at a
new router. When it hits zero, most routers return a packet death notice (an ICMP Time Exceeded)
and the packet is dropped. This lets traceroute, or similar programs, deduce the outgoing paths of
the packets. There are limitations to this information: The routing may change during the scan and
packets may travel down different paths, imputing connections that aren’t there. More important,
the return paths can be quite different: A large percentage of Internet connections are asymmetric
[Paxson, 1997].

Both ping and traceroute can use a number of different packets to probe a network. ICMP
echo packets are the typical default, and usually work well. Some firewalls block UDP packets
(always a good idea) but allow various ICMP messages through. Probes to TCP port 80 (http)
often travel where others are not allowed—which makes the program tcptraceroute useful.

’Tis a thin line between good and evil. These tools can be used for hacking, and hacking tools
can be used for network administration (see Section 6.8).

We rely on dig to perform DNS queries. We use it to find SOA records, to dump subtrees when
trying to resolve an address, and so on. You may already have the nslookup program on your
machine, which performs similar functions. We prefer dig because it is more suitable for use in
pipelines.



Network Administration Tools 161

DMZ

Router
(choke)

Inside Nets

ISP
Router

Mail GW
(outside)

Exposed Net

Filtering
Bridge

Exposed
Machines

To the
Internet

Isolation via a filtering bridge

“Smart” 10BaseT Hub

Router
(choke)

Mail GW
(outside)

Exposed
Machines

ISP
Router

To the
Internet

Isolation via a “smart” 10BaseT hub

Figure 8.1: Preventing exposed machines from eavesdropping on the DMZ net. A router, instead of the

filtering bridge, could be used to guard against address-spoofing. It would also do a better job protecting

against layer-2 attacks.



162 Using Some Tools and Services

The name server can supply more complete information—many name servers are configured
to dump their entire database to anyone who asks for it. You can limit the damage by blocking
TCP access to the name server port, but that won’t stop a clever attacker. Either way provides a
list of important hosts, and the numeric IP addresses provide network information. Dig can supply
the following data:

dig axfr zone @target.com +pfset=0x2020

Specifying +pfset=0x2020 suppresses most of the extraneous information dig generates, mak-
ing it more suitable for use in pipelines.

8.5 Chroot—Caging Suspect Software

UNIX provides a privileged system call named chroot that confines a process to a subtree of the
file system. This process cannot open or create a file outside this subtree, though it can inherit file
handles that point to files outside the restricted area.

Chroot is a powerful tool for limiting the damage that buggy or hostile programs can do to a
UNIX system. It is another very important layer in our defenses. If a service is compromised, we
don’t lose the entire machine. It is not perfect—user root may, with difficulty, be able to break out
of a chroot-limited process—but it is pretty good.

Chroot is one of a class of software tools that create a jail, or sandbox, for software execution.
This can limit damage to files should that program misbehave. Sandboxes in general provide an
important layer for defense-in-depth against buggy software. They are another battleground in the
war between convenience and security: The original sandboxes containing Java programs have
often been extended to near impotence by demands for greater access to a client’s host.

Chroot does not confine all activities of a process, only its access to the file system. It is a
limited but quite useful tool for creating sandboxes. A program can still cause problems, most of
them in the denial-of-service category:

• File System Full: The disk can be filled, perhaps with logging information. Many UNIX

systems support disk quota checks that can confine this. Sometimes it is best to chroot to a
separate partition.

• Core Dumps: These can fall under the file-system-full category. The chroot command
assures that the core dump will go into the confining directory, not somewhere else.

• CPU Hog: We can use nice to control this, if necessary.

• Memory Full: The process can grab as much memory as it wants. This can also cause
thrashing to the swap device. There are usually controls available to limit memory usage.

• Open Network Connections: Chroot doesn’t stop a program from opening connections
to other hosts. Someone might trust connections from our address, a foolish reliance on
address-based authentication. It might scan reachable hosts for holes, and act as a conduit
back to a human attacker. Or, the program might try to embarrass us (see Chapter 17).



Chroot—Caging Suspect Software 163

A root program running in such an environment can also operate a sniffer, but if the attack-
ing program has root privileges, it can break out in any event.

Life can be difficult in a chroot environment. We have to install enough files and directories
to support the needs of the program and all the libraries it uses. This can include at least some of
the following:

file use
/etc/resolv.conf network name resolution
/etc/passwd user name/UID lookups
/etc/group group name/GID lookups
/usr/lib/libc.so.1 general shared library routines
/usr/lib/libm.so

/lib/rld shared library information (sometimes)
/dev/tty for seeing rld error messages

Statically loaded programs are fairly easy to provide, but shared libraries add complications.
Each shared library must be provided, usually in /lib or /usr/lib.

It can be hard to figure out why a program isn’t executing properly in a jail. Are the error
messages reported inside or outside the jail? It depends on when they happen. It can take some
fussing to get these to work.

The UNIX chroot system call is available via the chroot command. The command it executes
must reside in the jail, which means we have to be careful that the confined process does not have
write permission to that binary. The standard version of the chroot command lacks a mechanism
for changing user and group IDs, i.e., for reducing privileges. This means that the jailed program
is running as root (because chroot requires root privileges) and must change accounts itself. It is
a bad idea to allow the jailed program root access: All known and likely security holes that allow
escape from chroot require root privileges.

Chrootuid is a common program that changes the account and group in addition to calling
chroot. This simple extension makes things much safer. Alas, we still have to include the binary
in the jail.

We can use this program to try to convince some other system administrator to run a service
we like on their host. The jail source is small and easy to audit. If the administrator is willing to
run this small program (as root), he or she can install our service with some assurance of safety.

Many other sandboxing technologies are available under various operating systems. Some in-
volve special libraries to check system calls, i.e., [LeFebvre, 1992]. Janus [Goldberg et al., 1996]

examines system calls for dangerous behavior; it has been ported to Linux. There is an entire
field of study on domain and type enforcement (DTE) that specifies and controls the privileges a
program has [Grimm and Bershad, 2001; Badger et al., 1996]. A number of secure Linux projects
are trying to make a more trustable trusted computing base, and provide finer access controls than
the all-encompassing permissions that root has on a UNIX host. Of course, the finer-grained the
controls, the more difficult it is for the administrator to understand just what privileges are being
granted. There are no easy answers here.



164 Using Some Tools and Services

The Trouble with Shared Libraries

Shared libraries have become very common. Instead of including copies of all the
library routines in each executable file, they are loaded into virtual memory, and a single
common copy is available to all. Multiple executions of a single binary file have shared
text space on most systems since the dawn of time. But more RAM led to tremendous
software bloat, especially in the X Window System, which resulted in a need to share code
among multiple programs.

Shared libraries can greatly reduce the size and load time of binaries. For example,
echo on a NetBSD system is 404 bytes long. But echo calls the stdio library, which is
quite large. Linked statically, the program requires 36K bytes, plus 11K of data; linked
dynamically, it needs just 2 K of program and 240 bytes of data. These are substantial
savings, and probably reduce load time as well.

Shared libraries also offer a single point of control, a feature we like when using a
firewall. Patches are installed and compiled only once. Some security research projects
have used shared libraries to implement their ideas. It’s easier than hacking the kernel.

So what are our security objections to using shared libraries in security-critical pro-
grams? They provide a new way to attack the security of a host. The shared libraries are
part of the critical code, though they are not part of the physical binary. They are one
more thing to secure, in a system that is already hard to tighten up. Indeed, hackers have
installed trap doors into shared library routines. One mod adds a special password to the
password-processing routine, opening holes in every root program that asks for a pass-
word.

It is no longer sufficient to checksum the login binary: now the routines in the shared
libraries have to be verified as well, and that’s a somewhat more complicated job. Flaws in
the memory management software become more critical. A way to overwrite the address
space of an unprivileged program might turn into a way to attack a privileged program, if
the attacker can overwrite the shared segment. That shouldn’t be possible, of course, but
the unprivileged program shouldn’t have had any holes either.

There have been problems with setuid programs and shared libraries as well.a In some
systems, users can control the search path used to find various library routines. Imagine
the mischief if a user-written library can be fed to a privileged program.

Chroot environments become more difficult to install. Suddenly, programs have this
additional necessary baggage, complicating the security concerns.

We are not persuaded that the single point of update is a compelling reason either. You
should know which are your security-sensitive routines, and recompile them. The back
door update muddles the situation. For programs not critical to security, go ahead and use
shared libraries.

a. CERT Advisory CA-1992-11; CERT Vulnerability Note VU#846832



Jailing the Apache Web Server 165

8.6 Jailing the Apache Web Server

At this writing, the Apache Web server (see WWW.APACHE.ORG) is the most popular one on the
Net. It is free, efficient, and comes with source code. It has a number of security features: It tries
to relinquish root privileges when they aren’t needed, user scripts can be run under given user
names, and these can even be confined using jail-like programs such as suexec and CGIWrap.

Why does Apache need to run as root? It runs on port 80, which is a privileged port. It may
run a CGI script as a particular user, or in a chroot environment, both requiring root permissions.

In any case, the Apache Web server is fairly complex. When it is run under its own recogni-
zance, we are trusting the Apache code and our own configuration skills. The Apache manual is
clear that misconfiguration can cause security problems.

The trusted computing base for Apache is problematic. It uses shared libraries when available,
as well as dynamic shared objects (DSOs) to load various capabilities at runtime. These optimiza-
tions are usually made in the name of efficiency, though in this case they can slow down the server.
In these days of cheap memory and disk space, we should be moving toward simpler programs.

If we really want high assurance that a bug in the Apache server software won’t compromise
our host, we can confine the program in a box of our own devising. In the following exam-
ple, we have inetd serve port 80, and call the jail program to confine the server to directory
/usr/apache. We get much more control, but lose the optimizations Apache provides by serv-
ing the port itself. (For a high-volume Web server, this can be a critical issue.) A typical line in
/etc/inetd.conf might be

http stream tcp nowait root /usr/local/etc/jail

jail -u 99 -g 60001 -l /tmp/jail.log /usr/apache /bin/httpd -d /

(Note that this recipe specifies root. It has to for the chroot in Apache to work.)
Life is much simpler and safer in the jail if we generate a static binary, with fixed modules.

For Apache 1.3.26, the following configure call sufficed on a FreeBSD system:

CFLAGS="-static" CFLAGS_SHLIB="-static" LD_SHLIB="-static"

./configure --disable-shared=all

The binary src/httpd can be copied into the jail.
It can be a fight to generate a static binary for a program. The documentation usually doesn’t

contain instructions, so one has to wade through configuration files and often source code. Apache
2.0 uses libtool, and it appears to be impossible to generate what we want without modifying the
release software.

The Apache configuration files are pretty simple. For this arrangement, you will need to
include the following in httpd.conf:

ServerType inetd

HostnameLookups off

ServerRoot /

DocumentRoot "/pages"

UserDir Disabled

along with the various other normal configuration options.



166 Using Some Tools and Services

As usual with chroot environments, we have to include various system files to keep the server
happy. The contents of the jail can become ridiculous (as was the case for Irix 6.2), but here we
have:

drwxr-xr-x 2 root wheel 512 Jun 21 10:44 bin

drwxr-xr-x 3 root wheel 512 Nov 25 2001 conf

drwxr-xr-x 2 root wheel 512 Nov 25 2001 etc

drwxr-xr-x 3 root wheel 2048 Nov 25 2001 icons

drwxr-xr-x 2 root wheel 2048 Jun 1 00:02 logs

drwxr-xr-x 14 root wheel 512 Jan 2 20:39 pages

Directory Files Reason
bin httpd server executable
conf httpd.conf server configuration

mime.types server needs them
etc group GID/name mappings

pwd.db UID/name mappings
icons (various) images for the server
logs (various) all the logging data
pages (various) the Web pages

Of course, the server runs as account daemon, and has write permission only on the specific log
files in the log directory. An exploited server can overwrite the logs (append-only files would
be better) and fill up the log file system. It can fill up the file system and swap space, taking the
machine down. But it can’t deface the Web pages, as there is a separate instantiation of the server
for each request, and it doesn’t have write access to the binary. (What we’d really like is a chroot

that takes effect just after the program load is completed, so the binary wouldn’t have to exist in
the jail at all.) It would be able to read all of our pages, and even our SSL keys if we ran that too.
(See Section 8.12 for a way around that last problem.)

One file we don’t need is /bin/sh. Marcus Ranum suggests that this is a fine opportunity
for a burglar alarm. Put in its place an executable that copies its arguments and inputs to a safe
place and generates a high-priority alarm if it is ever invoked. This extra defensive layer can make
sudden heros when a day-zero exploit is discovered.

Many Web servers could be run this way. If the host is resistant to attack, and the Web server
is configured this way, it is almost impossible for a net citizen to corrupt a Web page. This
arrangement could have saved a number of organizations great embarrassment, at the expense of
some performance.

Clearly, this solution works only for read-only Web offerings, with limited loads. Active
content implies added capabilities and dangers.

8.6.1 CGI Wrappers

CGI scripts are programs that run to generate Web responses. These programs are often simple
shell or Perl scripts, but they can also be part of a complex database access arrangement. They
have often been used to break into Web servers.



Aftpd—A Simple Anonymous FTP Daemon 167

Program flaws are the usual reason: they don’t check their input or parameters. Input string
length may be unchecked, exposing the program to stack-smashing. Special characters may be
given uncritically to Perl for execution, allowing the sender to execute arbitrary Perl commands.
(The Perl Taint feature helps to avoid this.) Even some sample scripts shipped with browsers have
had security holes (see CERT Advisory CA-96.06 and CERT Advisory CA-97.24).

CGI scripts are often the wildcard on an otherwise secure host. The paranoid system admin-
istrator can arrange to secure a host, exclude users, provide restricted file access, and run safe or
contained servers. But other users often have to supply CGI scripts. If they make a programming
error, do we risk the entire machine? Careful inspection and review of CGI scripts may help, but
it is hard to spot all the bugs in a program.

Another solution is to jail the scripts with chroot. The Apache server comes with a program
called suexec, which is similar to the jail discussed in Section 8.6. This carefully checks its
execution environment, and runs the given CGI script if it believes it is called from the Web
server. Another program, CGIWrap, does the same thing. Note, though, that such scripts still
need read access to many resources, perhaps including your user database.

8.6.2 Security of This Web Server

Many organizations have suffered public humiliation when their Web servers have been cracked.
Can this happen here?

We are on pretty firm ground if the Web server offers read-only Web pages, without CGI
scripts. The server runs as a nonprivileged user. That user has write permission only on the log
files: The binaries and Web contents are read-only for this account. Assuming that the jail program
can’t be cracked, our Web page contents are safe, even if there is a security hole in the Web server.
Such a hole could allow the attacker to damage or alter the log files, a minor annoyance, not a
public event. They could also fill our disk partition, probably bringing down the service.

The rest of the host has to be secure from attack, as do the provisioning link and master
computer. With very simple host configurations, this can be done with reasonably high assurance
of security.

As usual, we can always be overwhelmed with a denial-of-service attack. The real challenge
is in securing high-end Web servers.

8.7 Aftpd—A Simple Anonymous FTP Daemon

Anonymous FTP is an old file distribution method, but it still works and is compatible with Web
browsers. It is relatively easy to set up an anonymous FTP service. For the concerned gatekeeper,
the challenge is selecting the right version of ftpd to install. In general, the default ftpd that comes
with most systems has too much privilege. Versions of ftpd range from inadequate to dangerously
baroque. An example of the latter is wu-ftpd, which has many convenient features, but also a long
history of security problems.

We use a heavily modified version of a standard ftpd program developed with help from Mar-
cus Ranum and Norman Wilson. Many cuts and few pastes were used. The server allows anony-
mous FTP logins only, and relinquishes privileges immediately after it confines itself with chroot.



168 Using Some Tools and Services

By default, it offers only read access to the directory tree; write access is a compilation option.
We don’t run this anymore, but if we did, it would certainly be jailed.

The actual setup of an anonymous FTP service is described well in the vendor manual pages.
Several caveats are worth repeating, though: Be absolutely certain that the root of the FTP area is
not writable by anonymous users; be sure that such users cannot change the access permissions;
don’t let the ftp account own anything in the tree; don’t let users create directories (they could store
stolen files there); and do not put a copy of the real /etc/passwd file into the FTP area (even if
the manual tells you to). If you get the first three wrong, an intruder can deposit a .rhosts file
there, and use it to rlogin as user ftp, and the problems caused by the last error should be obvious
by now.

8.8 Mail Transfer Agents

8.8.1 Postfix

We think that knowledge of a programmer’s security attitudes is one of the best predictors of a
program’s security. Wietse Venema is one of the fussiest programmers we know. A year after his
mailer, postfix, was running almost perfectly, it still wasn’t out of alpha release. This is quite a
contrast to the typical rush to get software to market. Granted, the financial concerns are different:
Wietse had the support of IBM Research; a start-up company may depend on early release for
their financial survival.

But Wietse’s meticulous care shows in his software. This doesn’t mean it is bug-free, or even
free of security holes, but he designed security in from the start. Postfix was designed to be a safe
and secure replacement for sendmail. It handles large volumes of mail well, and does a reasonable
job handling spam.

It can be configured to send mail, receive mail, or replace sendmail entirely. The send-only
configuration is a good choice for secure servers that need to report things to an administrator, but
don’t need to receive mail themselves.

The compilation is easy on any of the supported operating systems. Its lack of compilation
warnings is another good sign of clean coding. None of its components run setuid; most of them
don’t even run as root. The installation has a lot of options, particularly for spam filtering, but
mail environments differ too much for one size to fit all. We do suggest that the smptd daemon be
run in chroot jail, just in case.

Because postfix runs as a sendmail replacement, there is the usual danger that a system upgrade
will overwrite postfix’s /usr/lib/sendmail with some newer version of sendmail.

8.9 POP3 and IMAP

The POP3 and IMAP services require read and write access to users’ mailboxes. They can be
run in chroot jail under an account that has full access to the mailboxes, but not to anything else.
The protocols require read access to passwords, so the keys have to be stored in the jail, or loaded
before jailing the software.



Samba: An SMB Implementation 169

Numerous implementations of POP3 are available. The protocol is easy to implement, and
many of these can be jailed with the chroot command. One can even use sslwrap to implement
an encrypted server. It would be nice to have an inetd-based server that jails itself after reading in
the mail passwords.

IMAP4 has a lot more features than POP3. This makes it more convenient, but fundamen-
tally more dangerous to implement, as the server needs more file system access. In the default
configuration, user mailboxes are in their home directories so jailing IMAP4 configuration is less
beneficial. This is another case where a protocol, POP3, seems to be better than its successors, at
least from a security point of view.

8.10 Samba: An SMB Implementation

Samba is a set of programs that implement the SMB protocol (see Section 3.4.3) and others on a
UNIX system. A UNIX system can offer printer, file system, and naming services to a collection
of PCs. For example, it can be a convenient way to let PC users edit pages on a Web server.

It is clear that a great deal of care has gone into the Samba system. Unfortunately, it is a large
and complex system, and the protocols themselves, especially the authentication protocols, are
weak. Like the Apache Web server, it has a huge configuration file, and mistakes in configuration
can expose the UNIX host to unintended access.

In the preferred and most efficient implementation, samba runs as a stand-alone daemon under
account root. It switches to the user’s account after authentication. Several authentication schemes
are offered, including the traditional (and very weak) Lan Manager authentication.

A second option is to run the server from inetd. As usual, the start-up time is a bit longer, but
we haven’t noticed the difference in actual usage. In this case, smbd can run under any given user;
for example, nobody. Then it has the lowest possible file permissions. This is a lot better than root

access, but it still means that every file and directory to be shared must be checked for world-read
and world-write access.

If we forgo the printer access, and just wish to share a piece of the file system, we can try to
jail the whole package. For our experimental implementation we are supporting four Windows
users on a home network. Each user is directed to a different TCP port on the same IP address
using a program that implements the NetBIOS retarget command. This simple protocol answers
“map network drive” queries on TCP port 139 to alternate IP addresses and TCP ports. Each of
these alternate ports runs smbd in a jail specific to that user.

Each jail has a mostly unwritable smbd directory that contains lib/etc/smbpasswd,
lib/codepages, smb.conf, a writable locks directory, and a log file. Besides these boil-
erplate files, the directory contains the files we wish to store and share. One share is used by the
entire family to share files and store backups, which we can save by backing up the UNIX server.
Our Windows machines do not need to run file sharing. We have not yet shared the printers in this
manner.

This arrangement works well on a local home network. It might be robust against outside
attack, but if it isn’t, the server host is still safe. Because the SMB protocol is not particularly
secure, we can’t use this safely from traveling laptops. Hence, we can hide these ports on an



170 Using Some Tools and Services

unannounced network of the home net, so they can’t even be reached from the Internet except by
compromising a local host first. This isn’t impossible, but it does give the attackers another layer
to penetrate.

With IPsec, we might be able to extend this service to off-site hosts.

8.11 Taming Named

The domain name service is vital for nearly all Internet operations. Clients use the service to
locate hosts on the Internet using a resolver. DNS servers publish these addresses, and must be
accessible to the general public.

The most widespread DNS server, named, does cause concern. It is large, and runs as root

because it needs to access UDP port 53. This is a bad combination, and we have to run this server
externally to service the world’s queries about our namespace. There have been a number of
successful attacks on this code (see, for example, CERT Advisory CA-1997-22, CERT Advisory
CA-1998-05, CERT Advisory CA-1999-14, and CERT Advisory CA-2001-02). (See Figure 14.2
for more on the response to CERT Advisory CA-1998-05.) Note that these attacks are on the
server code itself, rather than the more common DNS attacks involving the delivery of incorrect
answers.

The named program can contain itself in a chroot environment, and that certainly makes it
safer. Some versions can even give up root access after binding to UDP port 53. Because the
privileges aren’t relinquished until after the configuration file is processed, it may still be subject
to attack from the configuration file, but that should be a hard file for an attacker to access. The
following call is an example of this:

named -c /named.conf -u bind -g bind -t /usr/local/etc/named.d

This runs named in a jail with user and group bind. If named is conquered, the damage is limited
to the DNS system. This is not trivial, but much easier to repair: we can still have confidence in
the host itself. Of course, we have to compile named with static libraries, or else include all the
shared libraries in the jail.

Adam Shostack has conspired to contain named in a chroot environment [Shostack, 1997]. It is
more involved than our examples here because shared libraries and related problems are involved,
but it’s a very useful guide if your version of named can’t isolate itself.

8.12 Adding SSL Support with Sslwrap

A crypto layer can add a lot of security to a message stream. SSL is widely implemented in
clients, and is well suited to the task. The program sslwrap provides a neat, clean front end to TCP
services. It is a simple program that is called by inetd to handle the SSL handshake with the client
using a locally generated certificate. When the handshake is complete, it forwards the plaintext
byte stream to the actual service, perhaps on a private IP address or over a local, physically secure
network. Several similar programs are available, including stunnel.



Adding SSL Support with Sslwrap 171

This implementation does not limit who can connect to the service, but it does ensure that
the byte stream is encrypted over the public networks. This encryption can protect passwords
that the underlying protocol normally sends in the clear. A number of important protocols have
SSL-secured alternates available on different TCP ports:

Standard SSL SSL
Service TCP Port TCP Port Name Type of Service
POP3 110 995 POP3S fetch mail
IMAP 143 993 IMAPS fetch/manage mail
SMTP 25 465 SMTPS deliver mail (smtps is deprecated)
telnet 21 992 telnets terminal session
http 80 443 HTTPS Web access
ftp 21 990 FTPS file transfer control channel
ftp/data 20 989 FTPS-data file transfer data channel

There are monolithic servers that support SSL for some of these, but the SSL routines are
large and possible sources of security holes in the server. Sslwrap is easily jailed, isolating this
risk nicely. (When the slapper SSL worm struck—see CERT Advisory CA-2002-27—a Web
server we run was not at risk. Rather than running HTTPS on port 443, the machine ran sslwrap.
Yes, that could have been penetrated, but there were no writable files in its tiny jail, and only the
current instantiation of sslwrap was at risk, not the Web server itself. Of course, the private key
could still be compromised, although slapper did not do that. Apache ran in a separate jail.)

RFC 2595 [Newman, 1999] has some complaints about the use of alternate ports for the
TLS/SSL versions of these services. The current philosophy is to avoid creating any more such
ports; [Hoffman, 2002] is an example of the current philosophy. While there are advantages to
doing things that way, it does make it harder to use outboard wrappers.


