
5

Classes of Attacks

Thus far, we have discussed a number of techniques for attacking systems. Many of these share
common characteristics. It is worthwhile categorizing them; the patterns that develop can suggest
where protections need to be tightened.

5.1 Stealing Passwords

(Speak, friend, and enter.)

“What does it mean by speak, friend, and enter?” asked Merry.

“That is plain enough,” said Gimli. “If you are a friend, speak the password, and the
doors will open, and you can enter.”

. . .

“But do not you know the word, Gandalf?” asked Boromir in surprise.

“No!” said the wizard. . . . “I do not know the word—yet. But we shall soon see.”

Lord of the Rings

—J.R.R. TOLKIEN

The easiest way into a computer is usually through the front door, which is to say, the login

command. On nearly all systems, a successful login is based on supplying the correct password
within a reasonable number of tries.

The history of the generic (even non-UNIX) login program is a series of escalated attacks and
defenses: a typical arms race. We can name early systems that stored passwords in the clear in
a file. One system’s security was based on the secrecy of the name of that password file: it was
readable by any who knew its name. The system’s security was “protected” by ensuring that the
system’s directory command would not list that filename. (A system call did return the filename.)

Licensed under a Creative Commons Attribution-Non-Commericial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

https://creativecommons.org/licenses/by-nc-nd/4.0/

95

96 Classes of Attacks

This approach relied on security by obscurity. Obscurity is not a bad security tool, though it
has received a bad reputation in this regard. After all, what is a cryptographic key but a small,
well-designed piece of obscurity. The failure here was the weakness of the obscurity, and the lack
of other layers in the defenses.

System bugs are an exciting way to crack a system, but they are not the easiest way to attack.
That honor is reserved for a rather mundane feature: user passwords. A high percentage of system
penetrations occur because of the failure of the entire password system.

37
We write “password system” because there are several causes of failure. However, the
most common problem is that people tend to pick very bad passwords. Repeated studies
have shown that password-guessing is likely to succeed; see, for example, [Klein, 1990]

or [Morris and Thompson, 1979]. We are not saying that everyone will pick a poor password, but
an attacker usually needs only one bad choice.

Password-guessing attacks take two basic forms. The first involves attempts to log in using
known or assumed usernames and likely guesses at passwords. This succeeds amazingly often;
sites often have account-password pairs such as field-service, guest-guest, etc. These pairs
often come out of system manuals! The first try may not succeed, nor even the tenth, but all too
often, one will work—and once the attacker is in, your major line of defense is gone. Regrettably,
few operating systems can resist attacks from the inside.

This approach should not be possible! Users should not be allowed an infinite number of
login attempts with bad passwords, failures should be logged, users should be notified of failed
login attempts on their accounts, and so on. None of this is new technology, but these things are
seldom done, and even more seldom done correctly. Many common mistakes are pointed out in
[Grampp and Morris, 1984], but few developers have heeded their advice. Worse yet, much of the
existing logging on UNIX systems is in login and su; other programs that use passwords—ftpd,
rexecd, various screen-locking programs, etc.—do not log failures on most systems. Furthermore,
on systems with good logs, the administrators do not check them regularly. Of course, a log of
usernames that didn’t log in correctly will invariably contain some passwords.

The second way hackers go after passwords is by matching guesses against stolen password
files (/etc/passwd on UNIX systems). These may be stolen from a system that is already
cracked, in which case the attackers will try the cracked passwords on other machines (users
tend to reuse passwords), or they may be obtained from a system not yet penetrated. These are
called dictionary attacks, and they are usually very successful. Make no mistake about it: If your
password file falls into enemy hands, there is a very high probability that your machine will be
compromised. Klein [1990] reports cracking about 25% of the passwords; if that figure is accurate
for your machine, and you have just 16 user accounts, there is a 99% chance that at least one of
those passwords will be weak.

Cryptography may not help, either, if keys are derived from user-supplied passwords. Experi-
ments with Kerberos [Wu, 1999] show this quite clearly.

A third approach is to tap a legitimate terminal session and log the password used. With this
approach, it doesn’t matter how good your password is; your account, and probably your system,
is compromised.

We can draw several conclusions from this. The first, of course, is that user education in
how to choose good passwords is vital. Sadly, although many years have passed since Morris and

Stealing Passwords 97

How Long Should a Password Be?

It is generally agreed that the former eight-character limit that UNIX systems imposed is
inadequate [Feldmeier and Karn, 1990; Leong and Tham, 1991]. But how long should a
password be?

Part of the problem with the UNIX system’s password-hashing algorithm is that it uses
the seven significant bits of each typed character directly as an encryption key. Because
the algorithm used (DES; see[NBS, 1977]) permits only 56 bit keys, the limit of eight is
derived, not selected. But that begs the question.

The 128 possible combinations of seven bits are not equally probable. Not only do
most people avoid using control characters in their passwords, most do not even use char-
acters other than letters. Most folks, in fact, tend to pick passwords composed solely of
lowercase letters.

We can characterize the true value of passwords as keys by using information theory
[Shannon, 1949]. For ordinary English text of 8 letters, the information content is about
2.3 bits per letter, perhaps less [Shannon, 1948, 1951]. We thus have an effective key
length of about 19 bits, not 56 bits, for passwords composed of English words.

Some people pick names (their own, their spouse’s, their children’s, and so on) for
passwords. That gives even worse results, because of just how common certain names are.
Experiments performed using the AT&T online phone book show that a first name has
only about 7.8 bits of information in the whole name. These are very bad choices indeed.

Longer English phrases have a lower information content per letter, on the order of
1.2 to 1.5 bits. Thus, a password of 16 bytes is not as strong as one might guess if words
from English phrases are used; there are only about 19 to 24 bits of information there. The
situation is improved if the user picks independent words, to about 38 bits. But if users fill
up those bytes with combinations of names, we have not helped the situation much.

With the prevalence of password sniffing, passwords shouldn’t be used at all, or at least
should be cryptographically hidden from dictionary attacks.

98 Classes of Attacks

Thompson’s paper [1979] on the subject, user habits have not improved much. Nor have tightened
system restrictions on allowable passwords helped that much, although there have been a number
of attempts, e.g., [Spafford, 1992; Bishop, 1992]. Others have tried to enforce password security
through retroactive checking [Muffett, 1992]. But perversity always tends toward a maximum,
and the hackers only have to win once.

People pick poor passwords—it’s human nature. There have been many attempts to force
people to pick hard-to-guess passwords [Brand and Makey, 1985], but without much success. It
only takes one account to break into a host, and people with small dictionaries have success rates
of better than 20% [Klein, 1990]. Large dictionaries can reach tens of megabytes in size. Dic-
tionaries include words and word stems from most written languages. They can include personal
information like room number, phone number, hobbies, favorite authors, and so on. Some of this
is, quite helpfully, in the password file itself on many machines; others will happily supply it to
callers via the finger command.

38
The immediate goal of many network attacks is not so much to break in directly—that is
often harder than is popularly supposed—but to grab a password file. Services that we
know have been exploited to snatch password files include FTP, TFTP, the mail system,

NIS, rsh, finger, uucp, X11, and more. In other words, it’s an easy thing for an attacker to do,
if the system administrator is careless or unlucky in choice of host system. Defensive measures
include great care and a conservative attitude toward software.

If you cannot keep people from choosing bad passwords, it is vital that the password file itself
be kept out of enemy hands. This means that one should

• carefully configure the security features for services such as Sun’s NIS,

• restrict files available from tftpd, and

• avoid putting a genuine /etc/passwd file in the anonymous FTP area.

Some UNIX systems provide you with the capability to conceal the hashed passwords from
even legitimate users. If your system has this feature (sometimes called a shadow or adjunct

password file), we strongly urge you to take advantage of it. Many other operating systems wisely
hash and hide their password files.

A better answer is to get rid of passwords entirely. Token-based authentication is best; at
the least, use a one-time password scheme such as One-Time Password (OTP) [Haller, 1994;
Haller and Metz, 1996]. Again, though, watch out for guessable passphrases.

5.2 Social Engineering

“We have to boot up the system.”

. . .

The guard cleared his throat and glanced wistfully at his book. “Booting is not my
business. Come back tomorrow.”

Social Engineering 99

“But if we don’t boot the system right now, it’s going to get hot for us. Overheat.
Muy caliente and a lot of money.”

The guard’s pudgy face creased with worry, but he shrugged. “I cannot boot. What
can I do?”

“You have the keys, I know. Let us in so we can do it.”

The guard blinked resentfully. “I cannot do that,” he stated. “It is not permitted.”

. . .

“Have you ever seen a computer crash?” he demanded. “It’s horrible. All over the
floor!”

Tea with the Black Dragon

—R.A. MACAVOY

Of course, the old ways often work the best. Passwords can often be found posted around a
terminal or written in documentation next to a keyboard. (This implies physical access, which
is not our principle concern in this book.) The social engineering approach usually involves a
telephone and some chutzpah, as has happened at AT&T:

“This is Ken Thompson. Someone called me about a problem with the ls command.
He’d like me to fix it.”

“Oh, OK. What should I do?”

“Just change the password on my login on your machine; it’s been a while since I’ve
used it.”

“No problem.”

There are other approaches as well, such as mail-spoofing. CERT Advisory CA-91:04 (April 18,
1991) warns against messages (purportedly from a system administrator) asking users to run some
“test program” that prompts for a password.

Attackers have also been known to send messages like this:

From: smb@research.att.com

To: admin@research.att.com

Subject: Visitor

We have a visitor coming next week. Could you ask your

SA to add a login for her? Here’s her passwd line; use the

same hashed password.

pxf:5bHD/k5k2mTTs:2403:147:Pat:/home/pat:/bin/sh

Note that this procedure is flawed even if the note were genuine. If Pat is a visitor, she should not
use the same password on our machines as she does on her home machines. At most, this is a
useful way to bootstrap her login into existence, but only if you trust her to change her password
to something different before someone can take advantage of this. (On the other hand, it does
avoid having to send a cleartext password via e-mail. Pay your money and choose your poison.)

100 Classes of Attacks

Certain actions simply should not be taken without strong authentication. You have to know

who is making certain requests. The authentication need not be formal, of course. One of us
recently “signed” a sensitive mail message by citing the topic of discussion at a recent lunch. In
most (but not all) circumstances, an informal “three-way handshake”—a message and a reply,
followed by the actual request—will suffice. This is not foolproof: Even a privileged user’s
account can be penetrated.

For more serious authentication, the cryptographic mail systems described in Chapter 18 are
recommended. But remember: No cryptographic system is more secure than the host system on
which it is run. The message itself may be protected by a cryptosystem the NSA couldn’t break,
but if a hacker has booby-trapped the routine that asks for your password, your mail will be neither
secure nor authentic.

Sometimes, well-meaning but insufficiently knowledgeable people are responsible for propa-
gating social engineering attacks. Have you ever received e-mail from a friend warning you that,
for example, sulfnbk.exe is a virus and should be deleted, and that you should warn all of your
friends IMMEDIATELY? It’s a hoax, and may even damage your machine if you follow the ad-
vice. Unfortunately, too many people fall for it—after all, a trusted friend or colleague warned
them.

For an insider’s account—nay, a former perpetrator’s account—of how to perform social en-
gineering, see [Mitnick et al., 2002].

5.3 Bugs and Back Doors

One of the ways the Internet Worm [Spafford, 1989a, 1989b; Eichin and Rochlis, 1989; Rochlis
and Eichin, 1989] spread was by sending new code to the finger daemon. Naturally, the daemon
was not expecting to receive such a thing, and there were no provisions in the protocol for re-
ceiving one. But the program did issue a gets call, which does not specify a maximum buffer
length. The Worm filled the read buffer and more with its own code, and continued on until it
had overwritten the return address in gets’s stack frame. When the subroutine finally returned,
it branched into that buffer and executed the invader’s code. The rest is history.

This buffer overrun is called stack-smashing, and it is the most common way attackers subvert
programs. It takes some care to craft the code because the overwritten characters are machine code
for the target host, but many people have done it. The history of computing and the literature is
filled with designs to avoid or frustrate buffer overflows. It is not even possible in many computer
languages. Some hardware (like the Burroughs machines of old) would not execute code on the
stack. In addition, a number of C compilers and libraries use a variety of approaches to frustrate
or detect stack-smashing attempts.

Although the particular hole and its easy analogues have long since been fixed by most ven-
dors, the general problem remains: Writing correct software seems to be a problem beyond the
ability of computer science to solve. Bugs abound.

Bugs and Back Doors 101

Secure Computing Standards

What is a secure computer, and how do you know if you have one? Better yet, how do
you know if some vendor is selling one?

The U.S. Department of Defense took a stab at this in the early 1980s, with the creation
of the so-called Rainbow Series. The Rainbow Series was a collection of booklets (each
with a distinctively colored cover) on various topics. The most famous was the “Orange
Book” [Brand, 1985], which described a set of security levels ranging from D (least secure)
to A1. With each increase in level, both the security features and the assurance that they
were implemented correctly went up. The definition of “secure” was, in effect, that it
satisfied a security model that closely mimicked the DoD’s classification system.

But that was one of the problems: DoD’s idea of security didn’t match what other
people wanted. Worse yet, the Orange Book was built on the implicit assumption that the
computers in question were 1970s-style time-sharing machines—classified and unclassi-
fied programs were to run on the same (expensive) mainframe. Today’s computers are
much cheaper. Furthermore, the model wouldn’t stop viruses from traveling from low se-
curity to high security compartments; the intent was to prevent leakage of classified data
via overt and covert channels. There was no consideration of networking issues.

The newer standards from other countries were broader in scope. The U.K. issued its
“Confidence Levels” in 1989, and the Germans, the French, the Dutch, and the British pro-
duced the Information Technology Security Evaluation Criteria document that was pub-
lished by the European Commission. That, plus the 1993 Canadian Trusted Computer
Product Evaluation Criteria, led to the draft Federal Criteria, which in turn gave rise to the
Common Criteria [CC, 1999], adopted by ISO.

Apart from the political aspects—Common Criteria evaluations in any country are
supposed to be accepted by all of the signatories—the document tries to separate different
aspects of security. Thus, apart from assurance being a separate rating scale (one can
have a high-assurance system with certain features, or a low-assurance one with the same
features), the different functions were separated. Thus, some secure systems can support
cryptography and controls on resource utilization, while not worrying about trusted paths.
But this means that it’s harder to understand exactly what it means for a system to be
“secure”—you have to know what it’s designed to do as well.

102 Classes of Attacks

For our purposes, a bug is something in a program that does not meet its specifications.
(Whether or not the specifications themselves are correct is discussed later.) They are thus partic-
ularly hard to model because, by definition, you do not know which of your assumptions, if any,
will fail.

The Orange Book [Brand, 1985] (see the box on page 101) was a set of criteria developed
by the Department of Defense to rate the security level of systems. In the case of the Worm, for
example, most of the structural safeguards of the Orange Book would have done no good at all.
At best, a high-rated system would have confined the breach to a single security level. The Worm
was effectively a denial-of-service attack, and it matters little if a multilevel secure computer is
brought to its knees by an unclassified process or by a top-secret process. Either way, the system
would be useless.

The Orange Book attempts to deal with such issues by focusing on process and assurance re-
quirements for higher rated systems. Thus, the requirements for a B3 rating includes the following
statement in Section 3.3.3.1.1:

The TCB [trusted computing base] shall be designed and structured to use a complete,
conceptually simple protection mechanism with precisely defined semantics. This
mechanism shall play a central role in enforcing the internal structuring of the TCB
and the system. The TCB shall incorporate significant use of layering, abstraction and
data hiding. Significant system engineering shall be directed toward minimizing the
complexity of the TCB and excluding from the TCB modules that are not protection-
critical.

In other words, good software engineering practices are mandated and enforced by the evaluating
agency. But as we all know, even the best-engineered systems have bugs.

The Morris Worm and many of its modern-day descendents provide a particularly apt lesson,
because they illustrate a vital point: The effect of a bug is not necessarily limited to ill effects or
abuses of the particular service involved. Rather, your entire system can be penetrated because of
one failed component. There is no perfect defense, of course—no one ever sets out to write buggy
code—but there are steps one can take to shift the odds.

The first step in writing network servers is to be very paranoid. The hackers are out to get
you; you should react accordingly. Don’t believe that what is sent is in any way correct or even
sensible. Check all input for correctness in every respect. If your program has fixed-size buffers of
any sort (and not just the input buffer), make sure they don’t overflow. If you use dynamic memory
allocation (and that’s certainly a good idea), prepare for memory or file system exhaustion, and
remember that your recovery strategies may need memory or disk space, too.

Concomitant with this, you need a precisely defined input syntax; you cannot check something
for correctness if you do not know what “correct” is. Using compiler-writing tools such as yacc

or lex is a good idea for several reasons, chief among them is that you cannot write down an input
grammar if you don’t know what is legal. You’re forced to write down an explicit definition of
acceptable input patterns. We have seen far too many programs crash when handed garbage that
the author hadn’t anticipated. An automated “syntax error” message is a much better outcome.

The next rule is least privilege. Do not give network daemons any more power than they need.
Very few need to run as the superuser, especially on firewall machines. For example, some portion

Authentication Failures 103

of a local mail delivery package needs special privileges, so that it can copy a message sent by
one user into another’s mailbox; a gateway’s mailer, though, does nothing of the sort. Rather, it
copies mail from one network port to another, and that is a horse of a different color entirely.

Even servers that seem to need privileges often don’t, if structured properly. The UNIX FTP
server, to cite one glaring example, uses root privileges to permit user logins and to be able to
bind to port 20 for the data channel. The latter cannot be avoided completely—the protocol does
require it—but several possible designs would let a small, simple, and more obviously correct
privileged program do that and only that. Similarly, the login problem could be handled by a front
end that processes only the USER and PASS commands, sets up the proper environment, gives
up its privileges, and then executes the unprivileged program that speaks the rest of the protocol.
(See our design in Section 8.7.)

One final note: Don’t sacrifice correctness, and verifiable correctness at that, in search of
“efficiency.” If you think a program needs to be complex, tricky, privileged, or all of the above to
save a few nanoseconds, you’ve probably designed it wrong. Besides, hardware is getting cheaper
and faster; your time for cleaning up intrusions, and your users’ time for putting up with loss of
service, is expensive, and getting more so.

5.4 Authentication Failures

Dover!" no prover!" — “Trust, but verify.”

—RUSSIAN PROVERB

Many of the attacks we have described derive from a failure of authentication mechanisms. By
this we mean that a mechanism that might have sufficed has somehow been defeated. For example,
source-address validation can work, under certain circumstances (e.g., if a firewall screens out
forgeries), but hackers can use rpcbind to retransmit certain requests. In that case, the ultimate
server has been fooled. The message as it appeared to them was indeed of local origin, but its
ultimate provenance was elsewhere.

Address-based authentication also fails if the source machine is not trustworthy. PCs are the
obvious example. A mechanism that was devised in the days when time-sharing computers were
the norm no longer works when individuals can control their own machines. Of course, the usual
alternative—ordinary passwords—is no bargain either on a net filled with personal machines;
password-sniffing is easy and common.

Sometimes authentication fails because the protocol doesn’t carry the right information. Nei-
ther TCP nor IP ever identifies the sending user (if indeed such a concept exists on some hosts).
Protocols such as X11 and rsh must either obtain it on their own or do without (and if they can
obtain it, they have to have some secure way of passing it over the network).

Even cryptographic authentication of the source host or user may not suffice. As mentioned
earlier, a compromised host cannot perform secure encryption.

104 Classes of Attacks

5.4.1 Authentication Races

Eavesdroppers can easily pick up a plain password on an unencrypted session, but they may also
have a shot at beating some types of one-time password schemes.1 A susceptible authentication
scheme must have a single valid password for the next login, regardless of the source. The next
entry in an OTP list (described in Section 7.4) is a good example, and was the first known target
of an attack that we describe here.

For this example, we assume that the password contains only digits and is of known length.
The attacker initiates ten connections to the desired service. Each connection is waiting for the
same unknown password. The valid user connects, and starts typing the correct password. The
attack program watches this, and relays the correct characters to its ten connections as they are
typed. When only one digit remains to be entered, the program sends a different digit to each of
its connections, before the valid user can type the last digit. Because the computer is faster, it wins
the race, and one of the connections is validated. These authentication schemes often allow only a
single login with each password, so the valid user will be rejected, and will have to try again. Of
course, the attacker needs to know the length of the password, but this is usually well-known.

If an attacker can insert himself between the client and server during authentication, he can
win an authenticated connection to the host—he relays the challenge to the client and learns the
correct answer. An attack on one such protocol is described in [Bellovin and Merritt, 1994].

The authenticator can do a number of things to frustrate this attack [Haller et al., 1998], but
they are patches to an intrinsic weakness of the authentication scheme. Challenge/response au-
thentication completely frustrates this attack, because each of the attacker’s connections gets a
different challenge and requires a different response.

5.5 Protocol Failures

The previous section discussed situations in which everything was working properly, but trustwor-
thy authentication was not possible. Here, we consider the converse: areas where the protocols
themselves are buggy or inadequate, thus denying the application the opportunity to do the right
thing.

A case in point is the TCP sequence number attack described in Chapter 2. Because of insuf-
ficient randomness in the generation of the initial sequence number for a connection, it is possible
for an attacker to engage in source-address spoofing. To be fair, TCP’s sequence numbers were
not intended to defend against malicious attacks. To the extent that address-based authentication
is relied on, though, the protocol definition is inadequate. Other protocols that rely on sequence
numbers may be vulnerable to the same sort of attack. The list is legion; it includes the DNS and
many of the RPC-based protocols.

In the cryptographic world, finding holes in protocols is a popular game. Sometimes, the
creators simply made mistakes. More often, the holes arise because of different assumptions.
Proving the correctness of cryptographic exchanges is a difficult business and is the subject of

1. See http://www.tux.org/pub/security/secnet/papers/secureid.pdf.

Information Leakage 105

much active research. For now, the holes remain, both in academe and—according to various
dark hints by Those Who Know—in the real world as well.

Secure protocols must rest on a secure foundation. Consider ssh, which is a fine (well, we hope
it’s fine) protocol for secure remote access. Ssh has a feature whereby a user can specify a trusted
public key by storing it in a file called authorized keys. Then, if the client knows the private
key, the user can log in without having to type a password. In UNIX, this file typically resides in
the .ssh directory in the user’s home directory. Now, consider the case in which someone uses
ssh to log into a host with NFS-mounted home directories. In that environment, an attacker can
spoof the NFS replies to inject a bogus authorized keys file. Therefore, while ssh is viewed
as a trusted protocol, it fails to be secure in certain reasonably common environments.

The authorized keys file introduces another subtle vulnerability. If a user gets a new
account in a new environment, she typically copies all of her important files there from an existing
account. It is not unheard of for users to copy their entire .ssh directory, so that all of the ssh

keys are available from the new account. However, the user may not realize that copying the
authorized keys file means that this new account can be accessed by any key trusted to
access the previous account. While this may appear like a minor nit, it is possible that the new
account is more sensitive, and the automatic granting of access through ssh may be undesirable.

Note that this is a case of trust being granted by users, not system administrators. That’s
generally a bad idea.

Another case in point is a protocol failure in the 802.11 wireless data communication stan-
dard. Problems with the design of WEP (see Section 2.5) demonstrate that security is difficult to
get right, and that engineers who build systems that use cryptography should consult with cryp-
tographers, rather than to try to design something from scratch. This sort of security is a very
specialized discipline, not well suited to amateurs.

5.6 Information Leakage

Most protocols give away some information. Often, that is the intent of the person using those
services: to gather such information. Welcome to the world of computer spying. The information
itself could be the target of commercial espionage agents or it could be desired as an aid to a
break-in. The finger protocol is one obvious example. Apart from its value to a password-guesser,
the information can be used for social engineering. (“Hey, Robin—the battery on my handheld
authenticator died out here in East Podunk; I had to borrow an account to send this note. Could
you send me the keying information for it?” “Sure, no problem; I knew you were traveling.
Thanks for posting your schedule.”)

Even such mundane information as phone and office numbers can be helpful. During the
Watergate scandal, Woodward and Bernstein used a Committee to Re-Elect the President phone
book to deduce its organizational structure [Woodward and Bernstein, 1974]. If you’re in doubt
about what information can be released, check with your corporate security office; they’re in the
business of saying “no.”

In a similar vein, some sites offer access to an online phone book. Such things are convenient,
of course, but in the corporate world, they’re often considered sensitive. Headhunters love such

106 Classes of Attacks

things. They find them useful when trying to recruit people with particular skills. Nor is such in-
formation entirely benign at universities. Privacy considerations (and often legal strictures) dictate
some care about what information can be released. Examples of this are the Family Educational

Rights and Privacy Act (FERPA) and the EU Privacy Directives.

Another fruitful source of data is the DNS. We have already described the wealth of data that
can be gathered from it, ranging from organizational details to target lists. Controlling the outflow
is hard; often, the only solution is to limit the externally visible DNS to list gateway machines
only.

Sophisticated hackers know this, of course, and don’t take you at your word about what ma-
chines exist. They do port number and address space scans, looking for interesting services and
hidden hosts. The best defense here is a good firewall; if they can’t send packets to a machine, it’s
much less likely to be penetrated.

5.7 Exponential Attacks—Viruses and Worms

Exponential attacks use programs to spread themselves, multiplying their numbers quickly. When
the programs travel by themselves, they are worms. When they attach to other programs, they are
viruses. The mathematics of their spread is similar, and the distinction not that important. The
epidemiology of such programs is quite similar to biological infectious agents.

These programs succeed by exploiting common bugs or behaviors found in a large population
of susceptible programs or users. They can spread around the world within hours, and potentially
in a few minutes [Staniford et al., 2002; Rubin, 2001]. They can cause vast economic harm
spread over a large community. The Melissa worm clogged the Microsoft-based e-mail in some
companies for five days. Various worms have added substantial load to the entire Internet. (Nor
is this threat new, or restricted to the Internet. The “IBM Christmas Card virus” clogged IBM’s
internal bisync network in 1987. See RISKS Digest, Vol. 5, Issue 81.)

These programs tend to infect “targets of opportunity,” rather than specific individuals or
organizations. But their payloads can and do attack popular political and commercial targets.

There are several ways to minimize the chance of getting a virus. By definition, the least
popular way is to stay out of the popular monoculture. If you write your own operating system
and applications, you are unlikely to be infectible. Microsoft Windows systems have traditionally
hosted the vast majority of viruses, which means that Macintosh and UNIX users have suffered
less. But this is changing, especially for Linux users. We are now seeing Linux worms, as well as
cross-platform worms that can spread through several monocultures, and by direct network access
as well as via Web pages and e-mail.

If you don’t communicate with an affected host, you can’t get the virus. Careful control of
network access and the files obtained from foreign sources can greatly reduce the risk of infection.
Note that there are also a number of human-propagated viruses, where people forward messages
(often containing urban legends) to all of their friends, with instructions to send to all of their
friends. These mostly serve as an annoyance. However, they can cause panic in individuals with
less computer knowledge. Some contain incorrect messages that the recipient’s computer has been
infected. In one instance, this was accompanied by instructions to remove a crucial system file.
Many people damaged their own computers by following these instructions.

Denial-of-Service Attacks 107

Virus-scanning software is popular and quite effective against known viruses. The software
must be updated constantly, as there is an arms race between virus writers and virus detection
software companies. The viruses are becoming fantastically effective at hiding their presence and
activities. Virus scanners can no longer be content looking for certain strings in the executable
code: They have to emulate the code and look for viral behavior. As the viruses get more sophisti-
cated, virus detection software will probably have to take more time examining each file, perhaps
eventually taking too long. It is possible that virus writers may eventually be able to make code
that cannot be identified in a reasonable amount of time.

Finally, it would be nice to execute only approved, unmodified programs. There are crypto-
graphic technologies than can work here, but the entire approach is tied up with the political furor
over copyright protection mechanisms and privacy.

5.8 Denial-of-Service Attacks

Hello! Hello! Are you there? Hello! I called you up to say hello. I said hello. Can
you hear me, Joe?

Oh, no. I can not hear your call. I can not hear your call at all. This is not good and I
know why. A mouse has cut the wire. Good-by!

One Fish, Two Fish, Red Fish, Blue Fish

—DR. SEUSS

We’ve discussed a wide variety of popular attacks on Internet hosts. These attacks rely on such
things as protocol weaknesses, programming bugs in servers, and even inappropriately helpful
humans. Denial-of-Service (DOS) attacks are a different beast. They are the simple overuse of
a service—straining software, hardware, or network links beyond their intended capacity. The
intent is to shut down or degrade the quality of a service, and that is generally a modest goal.

These attacks are different because they are obvious, not subtle. Shutting down a service
should be easy to detect. Though the attack is usually easy to spot, the source of the attack may
not be. They often involve generated packets with spoofed, random (and useless) return addresses.

Distributed Denial-of-Service (DDoS) attacks use many hosts on the Internet. More often than
not, the participating hosts are unwitting accomplices to the attack, having been compromised in
some way and outfitted with some malicious code. DDoS attacks are more difficult to recover
from because the attacks come from all over. They are discussed further in Section 5.8.3.

39
There is no absolute remedy for a denial-of-service attack. As long as there is a public

service, the public can abuse it. It is possible to make a perfectly secure site unavailable
to the general public for a fair amount of time, and do this anonymously.

It is easy to compute a conservative value for the cost of a DOS attack. If a Web server is down
for several days, a business should have a fairly good idea of what that cost them. If it doesn’t, it
probably didn’t have a good business plan for the Web service in the first place.

Companies may try to recover some of these losses through lawsuits, if a culprit can be located.
The attack is obvious and easily explained to a jury. This potential may force intermediate parties,
such as ISPs, to cooperate more than they might otherwise. Of course, the trouble is finding
someone to sue; DDoS attacks are hard to trace back.

108 Classes of Attacks

5.8.1 Attacks on a Network Link

Network link attacks can range from a simple flood of e-mail (mail bombing or spamming)2 to the
transmission of packets carefully crafted to crash software on a target host. The attack may fill a
disk, swamp a CPU, crash a system, or simply overload a network link.

The crudest attack is to flood a network link. To flood a network link, attackers need only
generate more packets than the recipient can handle. Only the destination field of the packet has
to be right: the rest can be random (providing the checksum is correct.) It doesn’t take that many
packets to fill a T1 link: less than 200 KB/second should do it. This can be launched from a single
host, providing the connecting network links are a bit faster than the target’s.

Several attackers can cooperatively launch an attack that focuses several generators on a target.
The traffic from each generator may be low, but the sum of the attacking rates must be greater than
the receiver’s network link capacity. If the attack is properly coordinated, as in the case of DDoS
attacks, hundreds of compromised hosts with slow network connections can flood a target service
connected with a high-capacity network link. Posting e-mail addresses to a very popular Web site,
such as Slashdot, could result in e-mail flood attacks once spammers obtain the addresses.

5.8.2 Attacking the Network Layer

Many of the worst attacks are made on the network layer—the TCP/IP implementation in the
host. These attacks exploit some performance weakness or bug. Given that a typical TCP/IP
implementation involves tens of thousands of lines of C code, and runs in privileged space in most
computers, it is hard for a developer to debug all possible problems. The edit/compile/reboot cycle
is long, and protocols are notoriously hard to debug, especially the error conditions.

The problem can be bad enough under normal usage. It can get much worse when an active
adversary is seeking performance holes or even a packet that will crash the host.

Killer and ICMP Packets

There have been rumors around the Internet for years about more potent—i.e., more evil—packets.
We have already seen killer packets that can tickle a bug and crash a host. These packets may be
very large, oddly fragmented, have strange or nonsensical options, or other attributes that test code
that isn’t used very often (see, for example, CERT Advisory CA-96:26, December 18, 1996, and
CERT Advisory CA-00:11, June 9, 2000). Algorithm-savvy attackers can even push programs to
perform inefficiently by exploiting weaknesses in queuing or search methods (see the next section
for one such case).

Some folks delight in sending bogus ICMP packets to a site, to disrupt its communications.
Sometimes these are Destination Unreachable messages. Sometimes they are the more
confusing—and more deadly—messages that reset the host’s subnet mask. (Why, pray tell, do
hosts listen to such messages when they’ve sent no such inquiry?) Other hackers play games with
routing protocols, not to penetrate a machine, but to deny it the ability to communicate with its
peers.

2. “Spam” should not be confused with the fine meat products of the Hormel Corporation.

Denial-of-Service Attacks 109

SYN Packet Attacks

Of course, some packets hit their targets harder than others. The first well-publicized denial-of-
service attack was directed at an ISP, Panix. Panix received about 150 TCP SYN packets a second
(see Section 2.1.3). These packets flooded the UNIX kernel’s “half open” connection processing,
which was fairly simplistic. When the half-open table was full, all further connection attempts
were dropped, denying valid users access to the host. SYN packet attacks are described in some
detail in [Northcutt and Novak, 2000].

This is the only attack we didn’t document in the first edition of this book, because we had

no suggestions for fighting it. The description was removed just before the book went to press,

a decision we regret. The Panix attack was made using software that two hacker magazines had

published a few months before [daemon9 et al., 1996].

The TCP code in most systems was never designed with such attacks in mind, which is how
a fairly slow packet rate could shut down a specific TCP service on a host. These were potent
packets against weak software. In the aftermath of the attack, the relevant TCP software was
beefed up considerably. All it took was sufficient attention.

Application-Level Attacks—Spam

Of course, it is possible to flood a host at the application level. Such an attack may be aimed at
exhausting the process table or the available CPU.

Perhaps a disk can be filled by using e-mail or FTP to send a few gigabytes. It’s hard to set an
absolute upper bound on resource consumption. Apart from the needs of legitimate power users,
it’s just too easy to send 1 MB a few hundred times instead. Besides, that creates a great deal of
receiving processes on your machine, tying it up still further.

The best you can do is provide sufficient resources to handle just about anything (disk space
costs are plummeting these days), in the right spots (e.g., separate areas for mail, FTP, and espe-
cially precious log data); and make provisions for graceful failure. A mailer that cannot accept
and queue an entire incoming mail job should indicate that to the sender. It should not give an “all
clear” response until it knows that the message is safely squirreled away.

E-mail spam is now a fact of life. Most Internet users receive a handful of these messages
every day, and that is after their service provider may have filtered out the more obvious garbage.
The extent of the problem became obvious when we set up an account on one of the free Web-
based mail servers and used it to sell one item in an online auction. Although the account was
never used for anything else, every time we check it (about once a month), there are hundreds of
unsolicited mail messages, touting all sorts of Web sites for losing weight, making money fast,
and fulfilling other online fantasies. For most people, spam is a nuisance they’ve come to accept.
However, the kind of spam caused by e-mail viruses and worms (and users who should know
better) has brought many a mailer to its knees.

5.8.3 DDoS

DDoS attacks received international attention when they successfully brought down some of the
best known Web portals in February, 2000. (Coincidentally, this happened shortly after one of

110 Classes of Attacks

zombie

Attacker Victim

zombie

zombie

zombie

zombie zombie

Figure 5.1: Distributed Denial-of-Service Attack The attacker sends a message to the command node. The

command node then sends a message to the zombies, which in turn flood the target with traffic.

us (Steve) described how these attacks work at The North American Network Operators’ Group

(NANOG). The Washington Post wondered in print if there was a connection. We doubt it, but
don’t know for sure.) DDoS attacks are DOS attacks that come simultaneously from many hosts
conscripted from all over the net. They work as follows (also see Figure 5.1):

1. The attacker uses common exploits to install a zombie program on as many machines as he
can, all over the Internet, in many different administrative domains. The zombie binds to a
port and waits for instructions.

2. The attacker installs a command program somewhere on the Internet. The command node
has a list of all of the locations of the zombies. The command node then waits for instruc-
tions.

3. The attacker waits.

4. When it is time to strike, the attacker sends a message to the command node indicating the
address of the target. The command node then sends a message to each of the zombies with
the address of the target.

5. At once, the zombies flood the target with enough traffic to overwhelm it.

The message from command node to zombie usually has a spoofed source address, and can
even use cryptography to make the messages harder to identify. The traffic from the zombies can
be sent with spoofed IP source addresses to make it difficult to trace the actual source, though
most attackers don’t seem to bother. In addition, the communication from the command node
often uses ICMP echo reply, which is allowed by many firewalls.

Several popular DDoS tools, with many variants, are available on the Internet. One of the first
was Tribe Flood Network (TFN). It is available in source code form from many sites. The attacker
can choose from several flooding techniques, such as UDP flood, TCP SYN flood, ICMP echo
request flood, or a smurf attack. A code in the ICMP echo reply from the command node tells
the zombies which flood to employ. Other DDoS tools are TFN2K (a more advanced version of

Denial-of-Service Attacks 111

TFN that includes Windows NT and many UNIX flavors), Trinoo, and Stacheldraht. The latter
is quite advanced, complete with encrypted connections and an auto-update feature. Imagine a
hacker PKI, a web of mistrust?

Newer tools are even more sophisticated. Slapper, a Linux-targeted worm, sets up a peer-to-
peer network among the many zombie nodes, which eases the command node’s communications
problems. Others use IRC channels as their control path.

5.8.4 What to Do About a Denial-of-Service Attack

Denial-of-service attacks are difficult to deal with. We can mitigate an attack, but there are no
absolute solutions.

Any public service can be abused by the public.

When you are under one of these attacks, there are four general things you can do about it:

1. Find a way to filter out the bad packets,

2. Improve the processing of the incoming data somehow,

3. Hunt down and shut down the attacking sites, and

4. Add hardware and network capacity to handle your normal load plus the attack.

None of these responses is perfect. You quickly enter an arms race with the attackers, and your
success against the attack depends on how far your opponent is willing to go. Let’s look at these
approaches.

Filter Out the Bad Packets

There may be something specific you can identify in the attacking packets that makes it easy
to filter these out without much trouble. Perhaps the packets come from a particular port. They
might appear to come from a network that would never support one of your legitimate users. These
idiosyncrasies can be quite technical—in one attack, the packets always started with a particular
TCP sequence number. You may find yourself deep in the details of TCP and IP when trying to
discard evil packets (but see RFC 3514).

The filter may be installed in a router, or even in the kernel of the host under attack. The filter
doesn’t have to be perfect, and it may be okay to turn away some percentage of your legitimate
traffic. The details depend very specifically on the attack and your business. It may be much better
to let 80% of your users come in than 0%. It’s not ideal, but we didn’t promise a perfect solution
to these attacks.

Early in the Panix attack, the TCP sequence number was nonrandom, making it easy to filter
out the bad packets. The attackers changed this to a random number, and the arms race was on.
The return address and now-random sequence number in the attacking packets was generated by
the rand and random functions. Could the pseudorandom sequence be predicted and attacking
packets identified? Gene Spafford found that it could, if the attacking host did not use a strong
random number generator. One version of the published attack program sent packets with an

112 Classes of Attacks

Resilience of the Internet—Experts to the Rescue

The Internet was designed to be robust from attack: the packets flow around the outage.
We are told that Iraq’s packet-switched network was the only one that stayed up during
heavy bombing in 1991.

Farmers know that it is dangerous to plant a large area (like Kansas) with the identical
strain of wheat. This is called a monoculture, and monocultures are prone to common-
mode attacks.

The Internet is nearly a monoculture. A host must run some implementation of TCP/IP
to participate. Most Internet hosts run the same version of the same software. When a bug
is discovered, it will probably be available on millions of hosts. This is a basic advantage
that the hackers have, because it is unfeasible and silly for each of us to write our own
operating system or TCP/IP implementation.

But it also means that many experts are familiar with the same Internet, and are often
quickly available when a new threat arises. They can and do pool their expertise to deal
with new and interesting problems. Two examples come to mind, though there have been
many others.

When the Morris Worm appeared in 1988, it quickly brought many major sites to
their knees. Immediately, several groups disassembled the worm’s code, analyzed it, and
published their results. Workarounds and vaccines were quickly available, and the worm
was pretty much tamed within a week.

When Panix was attacked with the SYN packet denial-of-service attack, a group of
TCP/IP implementors quickly formed a closed mailing list and started discussing numer-
ous options for dealing with this problem. Sample code appeared quickly, was criticized
and improved, and patches were available from many vendors within a week or two.

The Internet citizen benefits from this sort of cooperation. We cannot always anticipate
new threats, but we have many people ready to respond and provide solutions. It is usually
easy to install new software, much easier than replanting Kansas.

Of course, if the problem is in hardware . . .

Denial-of-Service Attacks 113

unusually low initial TTL field. We could ignore packets with a low TTL value, as nearly all IP
implementations use a fairly high initial value. These are the games one has to play at this stage,
while the attackers are debugging their packet generator. (Note also that low TTL values can result
from traceroutes. Do you want to block those?)

There may be other anomalies. Normal packets have certain characteristics that random ones
lack. Some commercial products look for these anomalies and use them to drop attack packets.

Typical attack packets have random return IP addresses. If they were a single address or simple
range of addresses, we might be able to simply ignore them, unless they appeared to come from
an important customer. Given random return addresses, we could try to filter out a few of them on
some reasonable basis.

For example, though much of the Internet address space has been allocated, not nearly as
much is in use and accessible from the general Internet. Though a company may have an entire
/8 network assigned to it, it may only announce a tiny bit externally. We could throw away any
random packets that appear to come from the rest of that network.

It would not be hard to construct a bitmap or a Bloom filter [Bloom, 1970] of the 224 addresses
that are unassigned or unannounced. Turn off all the multicast nets. Clear any nets that don’t
appear in the BGP4 list of announced networks. One could even randomly ping some of the
incoming flow of packets and reject further packets from a net that is unresponsive. Be careful
though: Setting the wrong bit in this table could be a fine denial-of-service attack in itself.

Of course, such a bitmap could be quite useful network-wide, and might be a good service
for someone to provide. We don’t suggest that an actual filter necessarily be implemented with
a single bitmap: There are better ways to implement this check that use much less memory. The
global routing table keeps hitting size limits, requiring router upgrades.

We might also create a filter that identifies our regular users. When an attack starts, we scan
logs for the past month or so to collect the network addresses of our regular users and the ports
they use. A filter can check to see if the packet appears to come from a friend, and reject it if it
doesn’t.

The success of this filter depends on the kind of services we are supplying. It would work
better for telnet sessions from our typical users than from Web sessions from the general public.
E-mail might be filtered well this way: We would still receive mail from our recent correspondents,
but unfortunately might turn away new ones. Again, the filter is not perfect, but at least we can
transact some business.

In a free society, shunning can be a powerful tool to discipline misbehavers. We can decide
not to talk to someone, period. Various religious groups like the Amish have used this to enforce
their rules. The filters we’ve discussed can be used to deny access to our services to someone we
don’t like.

For example, if denial-of-service packets consistently come from a particular university, we
can simply cut off the entire university’s access to us. This happened to MIT a few years ago; so
many hackers were using their hosts that many sites refused to accept packets from the university.

114 Classes of Attacks

The legitimate users at MIT were having noticeable trouble reaching many sites. The offending
department changed their access rules as a result, and most hackers moved on.

Sometimes, the proper defense is legal. There have been a few cases (e.g., CompuServe v. Cy-

ber Promotions, Inc., 962 F.Supp. 1015 (S.D. Ohio 1997)) in which a court has barred a spammer
from annoying an ISP’s subscribers. We applaud such decisions.

Improve the Processing Software

If you have the source code to your system, you may be able to improve it. This solution is not
practical for most sites, which simply lack the time, expertise, and interest in modifying a kernel
to cope with a denial-of-service attack. The relevant source is often not available, as in the case of
routers or Microsoft products. Such sites ask for help from the vendors, or seek other solutions.

Hunt Them Down Like Dogs

These packets have to come from somewhere. Perhaps we can hunt them down to the source
and quench the attack. We don’t hold out much hope of actually catching the attacker, as the
packet-generating host has almost certainly been subverted by a distant attacker, but maybe we’ll
get lucky.

The TTL field in the packets may give us a clue to the number of hops between the attacker
and us. A typical IP path may hit 20 hops or more, so we have a fair distance to go. But different
operating systems have characteristic starting values; this lets us narrow the range considerably.

The return address is probably not going to be helpful. If it is predictable, it is probably easier
to simply filter out the packets and ignore them. If the source address is accurate, it should be easy
to contact the source and do something about the packet flow, or complain to an intervening ISP.
Of course, in a DDoS attack, there may be too many different sources for this to be feasible.

If the return addresses are random and spoofed, we have to trace the packets back through the
busy Internet backbones to the source host [Savage et al., 2000]. This requires the understanding
and cooperation of the Internet Service Providers. Many ISPs are improving their capabilities to
do this.

Will the ISPs cooperate? Most do, when served with a court order. But international bound-
aries make that tougher.

Is it legal for them to perform the traceback? Is this a wiretap? Do I have a right to see a
packet destined for me before it reaches my network?

Perhaps the obvious approach for the ISP is to use router commands to announce the passage
of certain packets. Cisco routers have an IP DEBUG command that can match and print packets
that match a particular pattern. This can be used on each of their routers until the packets are
traced back to one of their customers, or another ISP. We are told that this command will hang
the router if it is very busy. This has to be repeated for previous hops, probably on different ISPs,
perhaps in different countries.

Some routers have other facilities that will help. Cisco’s NetFlow, for example, can indicate
the interface from which traffic is arriving.

[Stone, 2000] describes an overlay network that can simplify an ISP’s traceback problems, but
it demands advance planning by the ISP.

Denial-of-Service Attacks 115

If the packets are coming from one of the ISP’s own customers, they may contact the customer
for further help, or install a filter to prevent this spoofing from that customer. Such a filter is
actually a very good idea, and some ISPs have installed them on the routers to their customers.
It ensures that the packets coming from a customer have a return address that matches the nets
announced for that customer.

Such a filter may slow the router a bit, but the connections to a customer are usually over
relatively slow links, like DS1 lines. A typical router can filter at these speeds with plenty of CPU
power to spare. More troubling is the extra administrative effort required. When an ISP announces
a new net, it will have to change the filter rules in an edge router as well. This does take extra
effort, and is another opportunity to make a mistake.

By the way, this filter should not just drop spoofed packets—this is useful information that
should not be thrown away. Log the rejected packets somewhere, and inform the customer that he
or she is generating suspicious packets. This alert action can help catch hackers and prevent the
misuse of a customer’s hosts. It also demonstrates a competence that a competing ISP may not
have.

It would be nice to have the Internet’s core routers perform similar filtering, rejecting packets
with incorrect return addresses. They should already have the appropriate information (from the
BGP4 routing tables), and the lookup could be performed in parallel with the destination routing
computation. The problem is that many routing paths are asymmetric. This would add cost and
complexity to routers, which are already large and expensive. Router vendors and ISPs don’t seem
to have an incentive to add this filtering.

There are other ways of detecting the source of a packet flow. An ISP can disconnect a major
feed for a few seconds and see if the packet flow stops at the target. This simple and alarming
technique can be used quickly if you have physical access to the cables. Most clients won’t notice
the brief outage. Simply disconnect network links until the right one is found.

This can also be done from afar with router commands of various kinds. It has even been
suggested that a more cooperative ISP could announce a route to the attacked network, short-
circuiting the packets away from a less “clueful” carrier. If this mechanism isn’t implemented
correctly, it too can be the source of denial-of-service attacks.

One could imagine a command to a router: “Don’t forward packets to my net for the next
second.” We could note the interruption of the incoming packet stream and trace the packets
back. This command itself could be used to launch a denial-of-service attack. The command
might require a proper cryptographic signature, or perhaps the router only accepts one of these
commands every few minutes. There are games one can play with router configurations and
routing protocols to do this very quickly, but only the ISP’s operations staff can trigger it3.

A promising approach to congestion control is Pushback [Mahajan et al., 2002; Ioannidis and
Bellovin, 2002]. The idea is for routers to identify aggregates of traffic that are responsible for
congestion. The aggregate traffic is then dropped. Finally, requests to preferentially drop the
aggregate traffic are propagated back toward the source of the traffic. The idea is to enhance the
service to well-behaved flows that may be sharing links with the bad traffic.

3. See http://www.nanog.org/mtg-0210/ispsecure.html, especially pp. 68–76.

116 Classes of Attacks

Increase the Capacity of the Target

This is probably the most effective remedy for denial-of-service attacks. It can also be the most
expensive. If they are flooding our network, we can install a bigger pipe. A faster CPU with more
memory may be able to handle the processing. In the Panix attack, a proposal was advanced to
change the TCP protocol to require less state for a half-open connection, or to work differently
within the current TCP rules.

It’s usually hard to increase the capacity of a network link quickly, and expensive as well. It
is also disheartening to have to spend that kind of money simply to deal with an attack.

It may be easiest to improve the server’s capacity. Commercial operating systems and network
server software vary considerably in their efficiency. A smarter software choice may help. We
don’t advocate particular vendors, but would like to note that the implementations with longer
histories tend to be more robust and efficient. They represent the accumulation of more experience.

But the problem won’t go away. Some day in the future, after all the network links are en-
crypted, all the keys are distributed, all the servers are bug-free, all the hosts are secure, and all
the users properly authenticated, denial-of-service attacks will still be possible. Well-prepared
dissidents will orchestrate well-publicized attacks on popular targets, like governments, major
companies, and unpopular individuals. We expect these attacks to be a fact of life on the Internet.

5.8.5 Backscatter

An IP packet has to have a source address—the field is not optional. DOS attackers don’t wish
to use their own address or a stereotyped address because it may reveal the source of the attack,
or at least make the attack packets easy to identify and filter out. Often, they use random return
addresses. This makes it easier to measure the attack rate for the Internet as a whole.

When a host is attacked with DOS packets, it does manage to handle some of the load. It
responds to the spoofed IP addresses, which means it is spraying return packets across the Internet
address space. These packets can be caught with a packet telescope, a program that monitors
incoming traffic on an announced but unused network.

We actually encountered this effect in 1995, when we announced the then unused AT&T net
12.0.0.0/8 and monitored the incoming packet stream. We caught between 5 and 20 MB per day
of random packets from the Internet. Some packets leaked out from networks that were using net
12 internally. Others came from configuration errors of various sorts. But the most interesting
packets came from hosts under various IP spoofing attacks. The Bad Guys had chosen AT&T’s
unused network as a source for their spoofed packets, perhaps as a joke or nod to “the telephone
company.” What we were seeing were the death cries of hosts all over the net.

In [Moore et al., 2001] this was taken much further. They monitored and analyzed this
backscatter traffic to gain an idea of the actual global rate and targets for these attacks. It is
rare that we have a technique that gives us an indication of the prevalence of an attack on a global
basis. Aside from research uses, this data has commercial value: Many companies monitor clients
for trouble, and a general packet telescope is a fine sensor for detecting DOS attacks early.

We used a /8 network to let us catch 1/256 of the randomly addressed packets on the net-
work. Much smaller networks, i.e., smaller telescopes, can still get a good sampling of this

Botnets 117

traffic—a /16 network is certainly large enough. By one computation, a /28 (16 hosts) was re-
ceiving six or so of these packets per day.

Of course, there’s an arms race implied with these techniques. The attackers may want to
avoid using return addresses of monitored networks. But if packet telescopes are slipped into
various random smaller networks, it may be hard to avoid tipping off the network astronomers.

5.9 Botnets

The zombies used for DDoS attacks are just the tip of the iceberg. Many hackers have constructed
botnets: groups of bots—robots, zombies, and so on—that they can use for a variety of nefarious
purposes.

The most obvious, of course, is the DDoS attacks described earlier. But they also use them
for distributed vulnerability scanning. After all, why use your own machine for such things when
you can use hundreds of other people’s machines? Marcus Leech has speculated on using worms
for password-cracking or distributed cryptanalysis [Leech, 2002], in an Internet implementation
of Quisquater and Desmedt’s Chinese Lottery [Quisquater and Desmedt, 1991]. Who knows if
that’s already happening?

The bots are created by traditional means: Trojan horses and especially worms. Ironically,
one of the favorite Trojan horses is a booby-trapped bot-builder: The person who runs it thinks
that he’s building his own botnet, but in fact his bots (and his own machine) have become part of
someone else’s net.

Using worms to build a botnet—slapper is just one example4—can be quite devastating, be-
cause of the potential for exponential spread [Staniford et al., 2002]. Some worms even look for
previously installed back doors, and take over someone else’s bots.

The “command node” and the bots communicate in a variety of ways. One of the favorites is
IRC: It’s already adapted to mass communication, so there’s no need for a custom communication
infrastructure. The commands are, of course, encrypted. Among the commands are some to cause
the bot to update itself with new code—one wouldn’t want an out-of-date bot, after all.

5.10 Active Attacks

In the cryptographic literature, there are two types of attacker. The first is a passive adversary,
who can eavesdrop on all network communication, with the goal learning as much confidential in-
formation as possible. The other is an active intruder, who can modify messages at will, introduce
packets into the message stream, or delete messages. Many theoretical papers model a system as
a star network, with an attacker in the middle. Every message (packet) goes to the attacker, who
can log it, modify it, duplicate it, drop it, and so on. The attacker can also manufacture messages
and send them as though they are coming from anyone else.

The attacker needs to be positioned on the network between the communicating victims so that
he or she can see the packets going by. The first public description of an active attack against TCP

4. See CERT Advisory CA-2002-27, September 14, 2002.

118 Classes of Attacks

that utilized sequence number guessing was described in 1985 [Morris, 1985]. While these attacks
were considered of theoretical interest at that time, there are now tools available that implement
the attack automatically. Tools such as Hunt, Juggernaut, and IP-Watcher are used to hijack TCP
connections.

Some active attacks require disabling one of the legitimate parties in the communication (often
via some denial-of-service attack), and impersonating it to the other party. An active attack against
both parties in an existing TCP connection is more difficult, but it has been done [Joncheray,
1995]. The reason it is harder is because both sides of a TCP connection maintain state that
changes every time they send or receive a message. These attacks generally are detectable to a
network monitor, because many extra acknowledgment and replayed packets exist, but they may
go undetected by the user.

Newer attack tools use ARP-spoofing to plant the man in the middle. If you see console
messages warning of ARP information being overwritten, pay attention. . .

Cryptography at the high layers can be used to resist active attacks at the transport layer, but
the only response at that point is to tear down the connection. Link- or network-layer cryptog-
raphy, such as IPsec, can prevent hijacking attacks. Of course, there can be active attacks at the
application level as well. The man-in-the-middle attack against the Diffie-Hellman key agreement
protocol is an example of this. (Active attacks at the political layer are outside the scope of this
book.)

