
Copyright 1994 AT&T and Lumeta Corporation. All Rights Reserved.

Notice: For personal use only. These materials may not be reproduced or distributed in any form

or by any means except that they may be downloaded from this source and printed for personal use.

2

An Overview of TCP/IP

In this chapter we present an overview of the TCP/IP protocol suite. Although we realize that this
is familiar material to many people who read this book, we suggest that you not skip the chapter;
our focus here is on security, so we discuss the protocols and areas of possible danger in that light.

A word of caution: a security-minded system administrator often has a completely different
view of a network service than a user does. These two parties are often at opposite ends of the
security/convenience balance. Our viewpoint is tilted toward one end of this balance.

2.1 The Different Layers

The phrase TCP/IP is the usual shorthand phrase for a collection of communications protocols.
It was originally developed under the auspices of the U.S. Defense Advanced Research Projects
Agency (then DARPA, now ARPA), and was deployed on the old ARPANET in 1983. The overview
we can present here is necessarily sketchy. For a more thorough picture, the reader is referred to
any of a number of books, such as those by Comer [Comer, 1991; Comer and Stevens, 1994] or
Stevens [Stevens, 1994].

A schematic of the data flow is shown in Figure 2.1. Each row is a different protocol layer.
The top layer contains the applications: mail transmission, login, video servers, etc. They call the
lower layers to fetch and deliver their data. In the middle of the spider web is the Internet Protocol
(IP) [Postel, 1981b]. IP is a packet multiplexer. Messages from higher level protocols have an IP
header prepended to them. They are then sent to the appropriate device driver for transmission.
We will examine the IP layer first.

2.1.1 IP

IP packets are the bundles of data that form the foundation for the TCP/IP protocol suite. Every
packet carries a 32-bit source and destination address, some option bits, a header checksum, and a
payload of data. A typical IP packet is a few hundred bytes long. These packets flow by the billions

19

20 An Overview of TCP/IP

IP

TCP UDP

Device
Driver

Device
Driver

Device
Driver

ICMP

Application Application Application

Figure 2.1: A schematic diagram of the different layers involving TCP/IP.

across the world over Ethernets, serial lines, FDDI rings, packet radio connections, Asynchronous
Transfer Mode (ATM) links, etc.

There is no notion of a virtual circuit or “phone call” at the IP level: every packet stands alone.
IP is an unreliable datagram service. No guarantees are made that packets will be delivered,
delivered only once, or delivered in any particular order. Nor is there any check for packet
correctness. The checksum in the IP header covers only that header.

In fact, there is no guarantee that a packet was actually sent from the given source address. In
theory, any host can transmit a packet with any source address. Although many operating systems
control this field and ensure that it leaves with a correct value, you cannot rely on the validity of
the source address, except under certain carefully controlled circumstances. Authentication, and
security in general, must use mechanisms in higher layers of the protocol.

A packet traveling a long distance will travel through many hops. Each hop terminates in a
host or router, which forwards the packet to the next hop based on routing information. During
these travels a packet may be fragmented into smaller pieces if it is too long for a hop. A router
may drop packets if it is too congested. Packets may arrive out of order, or even duplicated, at the
far end. There is usually no notice of these actions: higher protocol layers (i.e., TCP) are supposed
to deal with these problems and provide a reliable circuit to the application.

If a packet is too large for the next hop, it is fragmented. That is, it is divided up into two
or more packets, each of which has its own IP header, but only a portion of the payload. The
fragments make their own separate ways to the ultimate destination. During the trip, fragments

The Different Layers 21

Table 2.1: Address Formats

High-order Network Host Number
Class bits Portion Portion of Addresses

A 0 7 24 16,777,214
B 10 14 16 65,534
C 110 21 8 254
D 1110 Multicast group 268,435,456
E 1111 (Experimental use) –

may be further fragmented. When the pieces arrive at the target machine, they are reassembled.
No reassembly is done at intermediate hops.

How IP knows which router to use and how that router determines the proper next hop are
questions that are discussed in Section 2.2.

IP Addresses

Addresses in IP are 32 bits long and are divided into two parts, a network portion and a host
portion. The exact boundary depends on the first few bits of the address. The details are shown in
Table 2.1. Host address portions of all 0’s and all 1’s are reserved.

Generally, the host portion of the address is further divided into a subnet and host address.
Subnets are used for routing within an organization. The number of bits used for the subnet is
determined locally; one very common strategy is to divide a single Class B network into 254
subnetworks.

Most people don’t use the actual IP address: they prefer a domain name. The name is usually
translated by a special distributed database called the Domain Name System.

These subnet partitioning schemes are wasting addresses and causing the Internet to run out of
IP addresses, although there are nowhere near 232 hosts connected to the Internet yet. Proposals
are pending to change the interpretation of the IP address formats to expand the address space
greatly.

IP Security Labels

IP has a number of optional fields that may appear, but they are not commonly used. For our
purposes, the important ones are the security label and strict and loose source routing. These latter
two options are discussed in Section 2.2.

The IP security option [Housley, 1993; Kent, 1991] is currently used primarily by military sites,
although there is movement toward defining a commercial variant. Each packet is labeled with
the sensitivity of the information it contains. The labels include both a hierarchical component
(Secret, Top Secret, etc.) and an optional category: nuclear weapons, cryptography, hammer
procurement, and so on.

22 An Overview of TCP/IP

While a complete discussion of security labels and mandatory access control is far beyond
the scope of this book, a very brief overview is in order. First, the labels indicate the security
level of the ultimate sending and receiving processes. A process may not write to a medium with
a lower security level, because that would allow the disclosure of confidential information. For
obvious reasons, it may not read from a medium containing information more highly classified.
The combination of these two restrictions will usually dictate that the processes on either end of a
connection be at the exact same level. More information can be found in [Amoroso, 1994].

Some systems, such as UNIX System V/MLS [Flink and Weiss, 1988, 1989], maintain security
labels for each process. They can thus attach the appropriate option field to each packet. For more
conventional computers, the router can attach the option to all packets received on a given wire.

Within the network itself, the primary purpose of security labels is to constrain routing deci-
sions. A packet marked “Top Secret” may not be transmitted over an insecure link cleared only
for “Bottom Secret” traffic. A secondary use is to control cryptographic equipment; that selfsame
packet may indeed be routed over an insecure circuit if properly encrypted with an algorithm and
key rated for “Top Secret” messages.

2.1.2 ARP

IP packets are usually sent over Ethernets. The Ethernet devices do not understand the 32-bit IP
addresses: they transmit Ethernet packets with 48-bit Ethernet addresses. Therefore, an IP driver
must translate an IP destination address into an Ethernet destination address. While there are some
static or algorithmic mappings between these two types of addresses, a table lookup is usually
required. The Address Resolution Protocol (ARP) [Plummer, 1982] is used to determine these
mappings.

ARP works by sending out an Ethernet broadcast packet containing the desired IP address.
That destination host, or another system acting on its behalf, replies with a packet containing the
IP and Ethernet address pair. This is cached by the sender to reduce unnecessary ARP traffic.

There is some risk here if untrusted nodes have write-access to the local net. Such a machine
could emit phony ARP messages and divert all traffic to itself; it could then either impersonate
some machines or simply modify the data streams en passant.

The ARP mechanism is usually automatic. On special security networks, the ARP mappings
may be statically hard-wired, and the automatic protocol suppressed to prevent interference.

2.1.3 TCP

The Transport Control Protocol (TCP) [Postel, 1981c] provides reliable virtual circuits to user
processes. Lost or damaged packets are retransmitted; incoming packets are shuffled around, if
necessary, to match the original order of transmission.

The ordering is maintained by sequence numbers in every packet. Each byte sent, as well as
the open and close requests, are numbered individually (Figure 2.2). All packets except for the
very first TCP packet sent during a conversation contain an acknowledgment number; it gives the
sequence number of the last sequential byte successfully received.

The Different Layers 23

Active open

Connection
established

Client close

Connection closed

Passive open

Connection
established

Server close

Connection closed

SYN(1000)

SYN(2000), ACK(1001)

ACK(2001)

ACK, data

ACK(2300), FIN(1500)

ACK(1501)

ACK(1501), FIN(2400)

ACK(2401)

Client Server

Figure 2.2: Picture of a sample TCP session. The initial packet, with the SYN (“synchronize,” or open re-
quest) bit set, transmits the initial sequence number for its side of the connection. Theinitial sequence
numbers are random. All subsequent packets have the ACK (“acknowledge”) bit set. Note the acknowledg-
ment of the FIN (“final”) bit and the independent close operations.

24 An Overview of TCP/IP

Every TCP message is marked as being from a particular host and port number, and to a
destination host and port. The 4-tuple

�
localhost � localport � remotehost � remoteport �

uniquely identifies a particular circuit. It is not only permissible, it is quite common to have many
different circuits on a machine with the same local port number; everything will behave properly
as long as either the remote address or port number differ.

Servers—processes that wish to provide some service via TCP—listen on particular ports. By
convention server ports are low-numbered. This convention is not always honored, which can
cause security problems, as we’ll see later. The port numbers for all of the standard services are
assumed to be known to the caller. A listening port is in some sense half-open; only the local host
and port number are known. (Strictly speaking, not even the local host address need be known.
Computers can have more than one IP address, and connection requests can usually be addressed
to any of the legal addresses for that machine.) When a connection request packet arrives, the other
fields are filled in. If appropriate, the local operating system will clone the listening connection so
that further requests for the same port may be honored as well.

Clients use the offered services. Client processes rarely ask for specific port numbers on their
local host, although they are allowed to do so. They normally receive whatever port number their
local operating system chooses to assign to them.

Most versions of TCP and UDP for UNIX systems enforce the rule that only the superuser
(root) can create a port numbered less than 1024. These are privileged ports. The intent is that
remote systems can trust the authenticity of information written to such ports. The restriction is a
convention only, and is not required by the protocol specification. Conforming implementations
need not honor this. In any event, it is meaningless on single-user machines such as PCs. The
implications are clear: one can trust the sanctity of the port number only if one is certain that the
originating system has such a rule, is capable of enforcing it, and is administered properly.

The sequence numbers mentioned earlier have another function. Because the initial sequence
number for new connections changes constantly, it is possible for TCP to detect stale packets from
previous incarnations of the same circuit (i.e., from previous uses of the same 4-tuple). There
is also a modest security benefit: a connection cannot be fully established until both sides have
acknowledged the other’s initial sequence number. This is shown in the third line of Figure 2.2.

2

But there is a threat lurking here. If an attacker can predict the target’s choice of starting
points—and Morris showed that this was indeed possible under certain circumstances
[Morris, 1985; Bellovin, 1989]—then it is possible for the attacker to trick the target into

believing that it is talking to a trusted machine. In that case, protocols that depend on the IP source
address for authentication (e.g., the “r” commands discussed later) can be exploited to penetrate
the target system. This is known as a sequence number attack.

Two further points are worth noting. First, Morris’s attack depended in part on being able to
create a legitimate connection to the target machine. If those are blocked, perhaps by a firewall,
the attack would not succeed. Conversely, a gateway machine that extends too much trust to inside
machines may be vulnerable, depending on the exact configuration involved. Second, the concept
of a sequence number attack can be generalized. Many protocols other than TCP are vulnerable

The Different Layers 25

[Bellovin, 1989]. In fact, TCP’s three-way handshake at connection establishment time provides
more protection than do some other protocols.

2.1.4 UDP

The User Datagram Protocol (UDP) [Postel, 1980] extends to application programs the same level
of service used by IP. Delivery is on a best-effort basis; there is no error correction, retransmission,
or lost, duplicated, or re-ordered packet detection. Even error detection is optional with UDP.

To compensate for these disadvantages, there is much less overhead. In particular, there is no
connection setup. This makes UDP well suited to query/response applications, where the number
of messages exchanged is small compared to the connection setup/teardown costs incurred by
TCP.

When UDP is used for large transmissions it tends to behave badly on a network. The protocol
itself lacks flow control features, so it can swamp hosts and routers and cause extensive packet
loss.

UDP uses the same port number and server conventions as does TCP, but in a separate address
space. Similarly, servers usually (but not always) inhabit low-numbered ports. There is no notion
of a circuit. All packets destined for a given port number are sent to the same process, regardless
of the source address or port number.

3

It is much easier to spoof UDP packets than TCP packets, since there are no handshakes or
sequence numbers. Extreme caution is therefore indicated when using the source address
from any such packet. Applications that care must make their own arrangements for

authentication.

2.1.5 ICMP

The Internet Control Message Protocol (ICMP) [Postel, 1981a] is the low-level mechanism used
to influence the behavior of TCP and UDP connections. It can be used to inform hosts of a better
route to a destination, to report trouble with a route, or to terminate a connection because of
network problems. It also supports the single most important low-level monitoring tool for system
and network administrators: the ping program [Stevens, 1990].

4

Many ICMP messages received on a given host are specific to a particular connection or
are triggered by a packet sent by that machine. In such cases, the IP header and the first
64 bits of the transport header are included in the ICMP message. The intent is to limit

the scope of any changes dictated by ICMP. Thus, a Redirect message or a Destination
Unreachable message should be connection-specific. Unfortunately, older ICMP implemen-
tations do not use this extra information. When such a message arrives, all connections between
some pair of hosts will be affected. If you receive a Destination Unreachable saying that
some packet could not reach host FOO.COM, all connections to FOO.COM will be torn down. This
is true even if the original message was triggered by a port-specific firewall filter; it is therefore
considered polite for firewalls to refrain from generating ICMP messages that might tear down
legitimate calls originating from the same machine. We should also note that some parts of the

26 An Overview of TCP/IP

hacker community are fond of abusing ICMP to tear down connections; programs to exploit this
vulnerability have been captured.

5

Worse things can be done with Redirect messages. As explained in the following
section, anyone who can tamper with your knowledge of the proper route to a destination
can probably penetrate your machine. The Redirect messages should be obeyed only

by hosts, not routers, and only when the message comes from a router on a directly attached
network. However, not all routers (or, in some cases, their administrators) are that careful; it is
sometimes possible to abuse ICMP to create new paths to a destination. If that happens, you are
in serious trouble indeed.

2.2 Routers and Routing Protocols

“Roo
���

ting” is what fans do at a football game, what pigs do for truffles under oak trees
in the Vaucluse, and what nursery workers intent on propagation do to cuttings from
plants. “Rou

� �
ting” is how one creates a beveled edge on a tabletop or sends a corps

of infantrymen into full-scale, disorganized retreat. Either pronunciation is correct
for routing, which refers to the process of discovering, selecting, and employing paths
from one place to another (or to many others) in a network.

Open Systems Networking: TCP/IP and OSI
—DAVID M. PISCITELLO AND A. LYMAN CHAPIN

Routing protocols are mechanisms for the dynamic discovery of the proper paths through the
Internet. They are fundamental to the operation of TCP/IP. Routing information establishes two
paths: from the calling machine to the destination and back. (The second path is usually the
reverse of the first. When they aren’t, it is called an asymmetric route and is generally not a good
thing.) From a security perspective, it is the return path that is often more important. When a
target machine is attacked, what path do the reverse-flowing packets take to the attacking host?
If the enemy can somehow subvert the routing mechanisms, then the target can be fooled into
believing that the enemy’s machine is really a trusted machine. If that happens, authentication
mechanisms that rely on source address verification will fail.

6

There are a number of ways to attack the standard routing facilities. The easiest is to
employ the IP loose source route option. With it, the person initiating a TCP connection
can specify an explicit path to the destination, overriding the usual route selection process.

According to RFC 1122 [Braden, 1989b], the destination machine must use the inverse of that
path as the return route, whether or not it makes any sense, which in turn means that an attacker
can impersonate any machine that the target trusts.

The easiest way to defend against source routing problems is to reject packets containing the
option. Many routers provide this facility. Source routing is rarely used for legitimate reasons,
although those do exist. For example, it can be used for debugging certain network problems.
You will do yourself little harm by disabling it. Alternatively, some versions of rlogind and rshd

The Domain Name System 27

will reject connections with source routing present. This option is inferior because there may be
other protocols with the same weakness, but without the same protection.

7

Another path attackers can take is to play games with the routing protocols themselves. For
example, it is relatively easy to inject bogus Routing Information Protocol (RIP) [Hedrick,
1988] packets into a network. Hosts and other routers will generally believe them. If the

attacking machine is closer to the target than is the real source machine, it is easy to divert traffic.
Many implementations of RIP will even accept host-specific routes, which are much harder to
detect.

Some routing protocols, such as RIP Version 2 [Malkin, 1993] and Open Shortest Path
First (OSPF) [Moy, 1991], provide for an authentication field. These are of limited utility for
three reasons. First, the only authentication mechanisms currently defined are simple passwords.
Anyone who has the ability to play games with routing protocols is also capable of collecting
passwords wandering by on the local Ethernet cable. Second, if a legitimate speaker in the routing
dialog has been subverted, then its messages—correctly and legitimately signed by the proper
source—cannot be trusted. Finally, in most routing protocols each machine speaks only to its
neighbors, and they will repeat what they are told, often uncritically. Deception thus spreads.

Not all routing protocols suffer from these defects. Those that involve dialogs between pairs
of hosts are harder to subvert, although sequence number attacks, similar to those described
earlier, may still succeed. A stronger defense, though, is topological. Routers can and should be
configured so that they know what routes can legally appear on a given wire. In general, this can
be a difficult matter, but firewall routers are ideally positioned to implement the scheme relatively
simply. This notion is discussed further in the following chapter.

2.3 The Domain Name System

The Domain Name System (DNS) [Mockapetris, 1987a, 1987b; Lottor, 1987; Stahl, 1987] is a
distributed database system used to map host names to IP addresses, and vice versa. (Some vendors
call DNS bind, after a common implementation of it.) In its normal mode of operation, hosts send
UDP queries to DNS servers. Servers reply with either the proper answer or with information
about smarter servers. Queries can also be made via TCP, but TCP operation is usually reserved
for zone transfers. Zone transfers are used by backup servers to obtain a full copy of their portion
of the name space. They are also used by hackers to obtain a list of targets quickly.

A number of different sorts of records are stored by the DNS. An abbreviated list is shown in
Table 2.2.

The DNS name space is tree structured. For ease of operation, subtrees can be delegated
to other servers. Two logically distinct trees are used. The first maps host names such as
NINET.RESEARCH.ATT.COM to addresses like 192.20.225.3. Other per-host information may option-
ally be included, such as HINFO or MX records. The second tree is for inverse queries, and contains
PTR records; in this case, it would map 3.225.20.192.IN-ADDR.ARPA to NINET.RESEARCH.ATT.COM.
There is no enforced relationship between the two trees, though some sites have attempted the
mandate such a link for some services.

28 An Overview of TCP/IP

Table 2.2: Some DNS record types

Type Function
A Address of a particular host.
NS Name server. Delegates a subtree to another server.
SOA Start of authority. Denotes start of subtree; contains cache and configu-

ration parameters, and gives the address of the person responsible for the
zone.

MX Mail exchange. Names the host that processes incoming mail for the
designated target. The target may contain wild cards such as *.ATT.COM,
so that a single MX record can redirect the mail for an entire subtree.

HINFO Host type and operating system information. Omit it, or supply inaccurate
information.

CNAME An alias for the real name of the host.
PTR Used to map IP addresses to host names.

8

This disconnection can lead to trouble. A hacker who controls a portion of the inverse
mapping tree can make it lie. That is, the inverse record could falsely contain the name
of a machine your machine trusts. The attacker then attempts an rlogin to your machine;

which, believing the phony record, will accept the call.
Most newer systems are now immune to this attack. After retrieving the putative host name

via the DNS, they use that name to obtain its set of IP addresses. If the actual address used for the
connection is not in this list, the call is bounced and a security violation logged.

The cross-check can be implemented in either the library subroutine that generates host names
from addresses (gethostbyaddr on many systems) or in the daemons that are extending trust
based on host name. It is important to know how your operating system does the check; if you do
not know, you cannot safely replace certain pieces. Regardless, whichever component detects an
anomaly should log it.

9

There is a more damaging variant of this attack. In this version, the attacker contaminates
the target’s cache of DNS responses prior to initiating the call. When the target does the
cross-check, it appears to succeed, and the intruder gains access. A variation on this attack

involves flooding the target’s DNS server with phony responses, thereby confusing it.
Although the very latest implementations of the DNS software are immune to this, it seems

imprudent to assume that there are no more holes. We strongly recommend that exposed machines
not rely on name-based authentication. Address-based authentication, though weak, is far better.

There is also a danger in a feature available in many implementations of DNS resolvers
[Gavron, 1993]. They allow users to omit trailing levels if the desired name and the user’s name
have components in common.

For example, suppose someone on FOO.DEPT.BIG.EDU tries to connect to some destination
BAR.COM. The resolver would try BAR.COM.DEPT.BIG.EDU, BAR.COM.BIG.EDU, and BAR.COM.EDU

before trying the (correct) BAR.COM. Therein lies the risk. If someone were to create a domain

Standard Services 29

COM.EDU, they could intercept traffic intended for anything under .COM. And if they had any wild
card DNS records, the situation would be even worse.

Authentication problems aside, the DNS is problematic for other reasons. It contains a wealth
of information about a site: machine names and addresses, organizational structure, etc. Consider,
for example, the joy a spy would feel on learning of a machine named FOO.7ESS.ATT.COM, and then
being able to dump the entire 7ESS.ATT.COM domain to learn how many computers were allocated
to developing this new telephone switch. (As far as we know, there is no 7ESS project within
AT&T.)

Keeping this information from the overly curious is hard. Restricting zone transfers to the
authorized secondary servers is a good start, but clever attackers can exhaustively search your
network address space via DNS inverse queries, giving them a list of host names. From there,
they can do forward lookups and retrieve other useful information.

2.4 Standard Services

2.4.1 SMTP

When the staff of an unnetworked company is asked what benefits of Internet connection they
desire, electronic mail heads the list. If you are talking mail transport on the Internet, you are
usually talking about the Simple Mail Transport Protocol (SMTP) [Postel, 1982; Braden, 1989a].

SMTP transports 7-bit ASCII text characters using a simple, slightly arcane protocol. Here is
the log from a sample session. The arrows show the direction of data flow.

<--- 220 inet.att.com SMTP
---> HELO A.SOME.EDU
<--- 250 inet.att.com
---> MAIL FROM:<Ferd.Berfle@A.SOME.EDU>
<--- 250 OK
---> RCPT TO:<mark.farkle@research.att.com>
<--- 250 OK
---> DATA
<--- 354 Start mail input; end with <CRLF>.<CRLF>
---> From Ferd.Berfle@A.SOME.EDU Thu Jan 27 21:00:05 EST 1994
---> From: Ferd.Berfle@A.SOME.EDU
---> To: mark.farkle@research.att.com
---> Date: Thu, 27 Jan 94 21:00:05 EST
--->
---> Meet you for lunch after the meeting with Sparkle.
--->
---> Ferd
---> .
--->
<--- 250 OK
.... A.SOME.EDU!Ferd.Berfle sent 273 bytes to research.att.com!mark.farkle
---> QUIT
<--- 221 inet.att.com Terminating

30 An Overview of TCP/IP

Here the remote site, A.SOME.EDU, is transferring mail to the local machine, INET.ATT.COM. It is a
simple protocol. Postmasters and hackers learn these commands and occasionally type them by
hand.

10

Notice that the caller specified a return address in the “MAIL FROM” command. At this
level there is no reliable way for the local machine to verify the return address. You do
not know for sure who sent you mail based on SMTP. You must use some higher level

mechanism if you need trust or privacy.
An organization needs at least one mail guru. It helps to concentrate the mailer expertise at a

gateway, even if the inside networks are fully connected to the Internet. Then administrators on
the inside need only get their mail to the gateway mailer. The gateway can ensure that outgoing
mail headers conform to standards. The organization becomes a better network citizen when there
is a single, knowledgeable contact for reporting mailer problems.

The mail gateway is also an excellent place for corporate mail aliases for every person in a
company. (When appropriate, such lists must be guarded carefully: they are tempting targets for
industrial espionage.)

From a security standpoint, the basic SMTP by itself is fairly innocuous. It could, however,
be the source of a denial-of-service attack, an attack that’s aimed at preventing legitimate use of
the machine. Suppose I arrange to have 50 machines each mail you 1000 1-MB mail messages.
Can your systems handle it? Can they handle the load? Is the spool directory large enough?

The mail aliases can provide the hacker with some useful information. Commands such as

VRFY <postmaster>
VRFY <root>

often translate the mail alias to the actual login name. This can give clues about who the system
administrator is and which accounts might be most profitable if successfully attacked. It’s a matter
of policy whether this information is sensitive or not. The finger service, discussed later, can
provide much more information.

The EXPN subcommand expands a mailing list alias; this is problematic because it can lead
to a loss of confidentiality. A useful technique is to have the alias on the well-known machine
point to an inside machine, not reachable from the outside so that the expansion can be done there
without risk.

11

The most common implementation of SMTP is contained in sendmail [Costales, 1993].
This program is included in most UNIX software distributions, but you get less than you
pay for. Sendmail is a security nightmare. It consists of tens of thousands of lines of C

and often runs as root. It is not surprising that this violation of the principle of minimal trust
has a long and infamous history of intentional and unintended security holes. It contained one
of the holes used by the Internet Worm [Spafford, 1989a, 1989b; Eichin and Rochlis, 1989;
Rochlis and Eichin, 1989] and was mentioned in a New York Times article [Markoff, 1989].
Privileged programs should be as small and modular as possible. An SMTP daemon does not need
to run as root.

For most gatekeepers, the big problem is configuration. The sendmail configuration rules
are infamously obtuse, spawning a number of useful how-to books such as [Costales, 1993] and
[Avolio and Vixie, 1994]. And even when a mailer’s rewrite rules are relatively easy, as in the

Standard Services 31

System V Release 4 mailer or AT&T’s research upas mailer [Presotto, 1985], it can still be difficult
to figure out what to do. RFCs 822 and 1123 [Crocker, 1982; Braden, 1989a] give useful advice.

Sendmail can be avoided or tamed to some extent, and there are other mailers available. We
have also seen simple SMTP front ends for sendmail that do not run as root and implement a
simple and hopefully reliable subset of the SMTP commands [Carson, 1993; Avolio and Ranum,
1994]. For that matter, if sendmail is not doing local delivery (as is the case on gateway machines),
it does not need to run as root. It does need write permission on its spool directory (typically
/var/spool/mqueue), read permission on /dev/kmem so it can determine the current load
average, and some way to bind to port 25. The latter is most easily accomplished by running it via
inetd, so that sendmail itself need not issue the bind call.

12

The content of the mail can also pose dangers. Apart from possible bugs in the receiving
machine’s mailer, automated execution of Multipurpose Internet Mail Extensions (MIME)-
encoded messages [Borenstein and Freed, 1993] is potentially quite dangerous. The

structured information encoded in them can indicate actions to be taken. For example, the
following is an excerpt from the announcement of the publication of an RFC:

Content-Type: Message/External-body;
name="rfc1480.txt";
site="ds.internic.net";
access-type="anon-ftp";
directory="rfc"

Content-Type: text/plain

A MIME-capable mailer would retrieve the RFC for you automatically.
But suppose that a hacker sent a forged message containing this:

Content-Type: Message/External-body;
name=".rhosts";
site="ftp.visigoth.org";
access-type="anon-ftp";
directory="."

Content-Type: text/plain

Would your MIME agent blithely overwrite the existing .rhosts file in your current working
directory? Would you notice if the text of the message otherwise appeared to be a legitimate RFC
announcement?

Other MIME dangers include the ability to mail executable programs and to mail Postscript
files that themselves can contain dangerous actions. These problems and others are discussed at
some length in the MIME specification.

2.4.2 Telnet

Telnet provides simple terminal access to a machine. The protocol includes provisions for handling
various terminal settings such as raw mode, character echo, etc. As a rule, telnet daemons call
login to authenticate and initialize the session. The caller supplies an account name and usually a
password to login.

32 An Overview of TCP/IP

A telnet session can occur between two trusted machines. In this case, a secure telnet [Borman,
1993b; Safford et al., 1993a] can be used to encrypt the entire session, protecting the password
and session contents.

13

Most telnet sessions come from untrusted machines. Neither the calling program, calling
operating system, nor the intervening networks can be trusted. The password and the
terminal session are available to prying eyes. The local telnet program may be compro-

mised to record username and password combinations or log the entire session. This is a common
hacking trick, and we have seen it employed often; see, for example, the shenanigans reported at
Texas A&M University [Safford et al., 1993b].

Traditional passwords are not reliable when any part of the communications link is tapped.
Hackers are doing this a lot, and they are focusing on major network backbones.1 We strongly
recommend the use of a one-time password scheme. The most common are based on some sort of
hand-held authenticator (Chapter 5). We defer further discussion of our particular implementation
until Chapter 4, except to note one point: our telnet server does not call login to validate the
session. There are no opportunities to play games with login. All that is available externally is
our much simpler authentication server. The simpler program is easier to verify.

The authenticators can secure a login nicely, but they do not protect the rest of a session.
For example, wiretappers can read any proprietary information contained in mail read during the
session. If the telnet command has been tampered with, it could insert unwanted commands into
your session, or it could retain the connection after you think you have logged off. (The same
could be done by an opponent who plays games with the wires, but those tricks are very much
harder, and—at this point—are not likely unless your opponents are extremely sophisticated.)

It is possible to encrypt telnet sessions, as will be discussed in Chapter 13. But encryption is
useless if you cannot trust one of the endpoints. Indeed, it can be worse than useless: the untrusted
endpoint must be provided with your key, thus compromising it.

2.4.3 The Network Time Protocol

The Network Time Protocol (NTP) [Mills, 1992] is a valuable adjunct to gateway machines. As
its name implies, it is used to synchronize a machine’s clock with the outside world. It is not a
voting protocol; rather, NTP believes in the notion of absolute correct time, as disclosed to the
network by machines with atomic clocks or radio clocks tuned to national time synchronization
services. Each machine talks to one or more neighbors; the machines organize themselves into
a directed graph, depending on their distance from an authoritative time source. Comparisons
among multiple sources of time information allow NTP servers to discard erroneous inputs; this
provides a high degree of protection against deliberate subversion as well.

Knowing the correct time allows you to match log files from different machines. The time-
keeping ability of NTP is so good (generally to within an accuracy of 10 ms or better) that one
can easily use it to determine the relative timings of probes to different machines, even when they
occur nearly simultaneously. Such information can be very useful in understanding the attacker’s

1See CERT Advisory CA:94:01, February 3, 1994.

Standard Services 33

$ finger smb@research.att.com
[research.att.com]

If you want to send mail to someone at AT&T,
address your mail using the following format:
firstname.lastname@att.com

Figure 2.3: Output from our finger command.

technology. An additional use for accurate timestamps is in cryptographic protocols; certain
vulnerabilities can be reduced if one can rely on tightly synchronized clocks.

Log files created by the NTP daemon can also provide clues to actual penetrations. Hackers
are fond of replacing various system commands and of changing the per-file timestamps to remove
evidence of their activities. On UNIX systems, though, one of the timestamps—the “i-node
changed” field—cannot be changed explicitly; rather, it reflects the system clock as of when any
other changes are made to the file. To reset the field, hackers can and do temporarily change the
system clock to match. But fluctuations are quite distressing to NTP servers, which think that they
are the only ones playing with the time of day, and when they are upset in this fashion, they tend
to mutter complaints to the log file.

14

NTP itself can be the target of various attacks [Bishop, 1990]. In general, the point of
such an attack is to change the target’s idea of the correct time. Consider, for example,
a time-based authentication device or protocol. If you can reset a machine’s clock to an

earlier value, you can replay an old authentication string.
To defend against such attacks, newer versions of NTP provide for cryptographic authentication

of messages. Although a useful feature, it is somewhat less valuable than it might seem, because
the authentication is done on a hop-by-hop basis. An attacker who cannot speak directly to your
NTP daemon may nevertheless confuse your clock by attacking the servers from which your
daemon learns of the correct time. In other words, to be secure, you should verify that your time
sources also have authenticated connections to their sources, and so on up to the root. (Defending
against low-powered transmitters that might confuse a radio clock is beyond the scope of this
book.) You should also configure your NTP daemon to ignore trace requests from outsiders; you
don’t want to give away information on other tempting targets.

2.4.4 Looking up People

Two standard protocols, finger [Harrenstien, 1977] and whois [Harrenstien and White, 1982], are
commonly used to look up information about individuals. The former can be quite dangerous.

15

The finger protocol can be used to get information about either an individual user or the
users logged on to a system. An example is shown in Figure 7.1 on page 134. The amount
and quality of the information returned can be cause for concern. Farmer and Venema

[1993] call finger “one of the most dangerous services, because it is so useful for investigating a
potential target.” It provides personal information, which is useful for password-guessers, when
the account was last used (seldom or never used accounts are much more likely to have bad

34 An Overview of TCP/IP

passwords), where the user last connected from (and hence a likely target for an indirect attack),
and more.

To be sure, the most important output from finger—the mapping between a human-readable
name and an electronic mail address—is very important. For this reason, many sites are reluctant
to disable finger. The point may be moot. If firewalls are used, the gateway machine will not have
logins—and hence finger data—for most users. Nor, of course, will there be any point to trying a
password-guessing attack against the firewall machine.

A reasonable compromise is to install a custom finger daemon that consults a sanitized database
or that simply tells how to send mail to someone within the organization. The output from our
replacement for fingerd is shown in Figure 2.3. That said, we still log all requests, in case of other
trouble from some site.

The whois protocol is much more benign, since it only supplies contact information. The
standard Internet-wide servers, at NIC.DDN.MIL and RS.INTERNIC.NET, are limited in their scope.
Some organizations run their own, but that is not very common.

2.5 RPC-based Protocols

2.5.1 RPC and the Portmapper

Sun’s Remote Procedure Call (RPC) protocol [Sun Microsystems, 1988, 1990] underlies many of
the newer services. Unfortunately, many of these services represent potential security problems.
A thorough understanding of RPC is vital.

The basic concept is simple enough. The person creating a network service uses a special
language to specify the names of the external entry points and their parameters. A precompiler
converts this specification into stub or glue routines for the client and server modules. With the
help of this glue and a bit of boilerplate, the client can make ordinary-seeming subroutine calls to
a remote server. Most of the difficulties of network programming are masked by the RPC layer.

RPC can live on top of either TCP or UDP. Most of the essential characteristics of the transport
mechanisms show through. Thus, a subsystem that uses RPC over UDP must still worry about
lost messages, duplicates, out-of-order messages, etc. However, record boundaries are inserted in
the TCP-based version.

RPC messages begin with their own header. Included in it are the program number, the
procedure number denoting the entry point within the procedure, and some version numbers. Any
attempt to filter RPC messages must be keyed on these fields. The header also includes a sequence
number. It is used to match queries with replies.

16

There is also an authentication area. A null authentication variant can be used for anony-
mous services. For more serious services, the so-called UNIX authentication field is
included. This includes the numeric user-id and group-id of the caller, and the name of the

calling machine. Great care must be taken here! The machine name should never be trusted (and
important services, such as NFS, ignore it in favor of the IP address), and neither the user-id nor
the group-id are worth anything unless the message is from a privileged port. Indeed, even then
they are worth little with UDP-based RPC; forging a source address is trivial in that case. Never
take any serious action based on such a message.

RPC-based Protocols 35

RPC does support cryptographic authentication using DES, the Data Encryption Standard
[NBS, 1977]. This is sometimes called Secure RPC. All calls are authenticated using a shared
session key (see Chapter 13). The session keys are distributed using Diffie-Hellman exponential
key exchange (see [Diffie and Hellman, 1976] or Chapter 13), though Sun’s version is not strong
enough [LaMacchia and Odlyzko, 1991] to resist a sophisticated attacker.

Unfortunately, DES-authenticated RPC is not well integrated into most systems. NFS is the
only standard protocol that uses it, though one group has added it to their versions of telnet and
FTP [Safford et al., 1993a], and some X11 implementations can use it. Furthermore, the key
distribution mechanisms are very awkward, and do not scale well for use outside of local area
networks.

OSF’s Distributed Computing Environment (DCE) uses DES-authenticated RPC, but with
Kerberos as a key distribution mechanism [Rosenberry et al., 1992]. DCE also provides access
control lists for authorization.

With either type of authentication, a host is expected to cache the authentication data. Future
messages may include a pointer to the cache entry, rather than the full field. This should be borne
in mind when attempting to analyze or filter RPC messages.

The remainder of an RPC message consists of the parameters to or results of the particular
procedure invoked. These (and the headers) are encoded using the External Data Representation
(XDR) protocol [Sun Microsystems, 1987]. Unlike ASN.1 [ISO, 1987a, 1987b], XDR does not
include explicit tags; it is thus impossible to decode—and hence filter—without knowledge of the
application.

With the notable exception of NFS, RPC-based servers do not normally use fixed port numbers.
They accept whatever port number the operating system assigns them, and register this assignment
with the portmapper. (Those servers that need privileged ports pick and register unassigned low-
numbered ones.) The portmapper—which itself uses the RPC protocol for communication—acts
as an intermediary between RPC clients and servers. To contact a server, the client first asks the
portmapper on the server’s host for the port number and protocol (UDP or TCP) of the service.
This information is then used for the actual RPC call.

The portmapper has other abilities that are even less benign. For example, there is a call to
unregister a service, fine fodder for denial-of-service attacks since it is not well authenticated. The
portmapper is also happy to tell anyone on the network what services you are running (Figure 2.4);
this is extremely useful when developing attacks. (We have seen captured hacker log files that
show many such dumps, courtesy of the standard rpcinfo command.)

17

The most serious problem with the portmapper, though, is its ability to issue indirect
calls. To avoid the overhead of the extra roundtrip necessary to determine the real port
number, a client can ask that the portmapper forward the RPC call to the actual server.

But the forwarded message, of necessity, carries the portmapper’s own return address. It is thus
impossible for the applications to distinguish the message from a genuinely local request, and thus
to assess the level of trust that should be accorded to the call.

Some versions of the portmapper will do their own filtering. If yours will not, make sure that
no outsiders can talk to it. But remember that blocking access to the portmapper will not block
direct access to the services themselves; it’s very easy for an attacker to scan the port number
space directly.

36 An Overview of TCP/IP

program vers proto port
100000 2 tcp 111 portmapper
100000 2 udp 111 portmapper
100029 1 udp 656 keyserv
100026 1 udp 729 bootparam
100021 1 tcp 735 nlockmgr
100021 1 udp 1029 nlockmgr
100021 3 tcp 739 nlockmgr
100021 3 udp 1030 nlockmgr
100020 2 udp 1031 llockmgr
100020 2 tcp 744 llockmgr
100021 2 tcp 747 nlockmgr
100021 2 udp 1032 nlockmgr
100024 1 udp 733 status
100024 1 tcp 736 status
100011 1 udp 3739 rquotad
100001 2 udp 3740 rstatd
100001 3 udp 3740 rstatd
100001 4 udp 3740 rstatd
100002 1 udp 3741 rusersd
100002 2 udp 3741 rusersd
100012 1 udp 3742 sprayd
100008 1 udp 3743 walld
100068 2 udp 3744

Figure 2.4: A portmapper dump. It shows the services that are being run, the version number, and the port
number on which they live. Note that many of the port numbers are greater than 1024.

Even without portmapper-induced problems, the RPC services have had a checkered security
history. Most were written with only local Ethernet connectivity in mind and therefore are
insufficiently cautious. For example, some window systems used RPC-based servers for cut-and-
paste operations and for passing file references between applications. But outsiders were able to
abuse this ability to obtain copies of any files on the system. There have been other problems as
well. It is worth a great deal of effort to block RPC calls from the outside.

2.5.2 NIS

One of the most dangerous RPC applications is the Network Information Service (NIS), formerly
known as YP. (The service was originally known as Yellow Pages, but that name infringed phone
company trademarks in the United Kingdom.) NIS is used to distribute a variety of important
databases from a central server to its clients. These include the password file, the host address
table, and the public and private key databases used for Secure RPC. Access can be by search
key, or the entire file can be transferred.

18

If you are suitably cautious (read: “sufficiently paranoid”), your hackles should be rising
by now. Many of the risks are obvious. An intruder who obtains your password file has a
precious thing indeed. The key database can be almost as good; private keys for individual

RPC-based Protocols 37

users are generally encrypted with their login passwords. But it gets worse.
Consider a security-conscious site that uses a so-called shadow password file. Such a file holds

the actual hashed passwords. They are not visible to anyone who obtains /etc/passwd via
NIS. But such systems need some mechanism for applications to use when validating passwords.
This is done via an RPC-based service, and this service does not log high rates of queries, as might
be generated by an attacker.

19

NIS clients need to know about backup servers, in case the master is down. In some
versions, clients can be told—remotely—to use a different, and possibly fraudulent, NIS
server. This server could supply bogus /etc/passwd file entries, incorrect host ad-

dresses, etc.
Some versions of NIS can be configured to disallow the most dangerous activities. Obviously,

you should do this if possible. Better still, do not run NIS on exposed machines; the risks are high,
and—for gateway machines—the benefits very low.

2.5.3 NFS

The Network File System (NFS) [Sun Microsystems, 1989, 1990], originally developed by Sun
Microsystems, is now supported on most computers. It is a vital component of most workstations,
and it is not likely to go away any time soon.

For robustness, NFS is based on RPC, UDP, and stateless servers. That is, to the NFS server—
the host that generally has the real disk storage—each request stands alone; no context is retained.
Thus, all operations must be authenticated individually. This can pose some problems, as we shall
see.

To make NFS access robust in the face of system reboots and network partitioning, NFS clients
retain state: the servers do not. The basic tool is the file handle, a unique string that identifies
each file or directory on the disk. All NFS requests are specified in terms of a file handle, an
operation, and whatever parameters are necessary for that operation. Requests that grant access to
new files, such as open, return a new handle to the client process. File handles are not interpreted
by the client. The server creates them with sufficient structure for its own needs; most file handles
include a random component as well.

The initial handle for the root directory of a file system is obtained at mount time. The
server’s mount daemon, an RPC-based service, checks the client’s host name and requested file
system against an administrator-supplied list, and verifies the mode of operation (read-only versus
read/write). If all is well, the file handle for the root directory of the file system is passed back to
the client.

20

Note carefully the implications of this. Any client who retains a root file handle has
permanent access to that file system. While standard client software renegotiates access
at each mount time, which is typically at reboot time, there is no enforceable requirement

that it do so. (Actually, the kernel could have its own access control list. In the name of efficiency,
this is not done by typical implementations.) Thus, NFS’s mount-based access controls are quite
inadequate. It is not possible to change access policies and lock out existing but now-untrusted
clients, nor is there any way to guard against users who pass around root file handles. (We know
someone who has a collection of them posted on his office wall.)

38 An Overview of TCP/IP

File handles are normally assigned at file system creation time, via a pseudo-random number
generator. (Some older versions of NFS used an insufficiently random—and hence guessable—
seed for this process. Reports indicate that successful guessing attacks have indeed taken place.)
New handles can only be written to an unmounted file system, using the fsirand command. Prior
to doing this, any clients that have the file system mounted should unmount it, lest they receive
the dreaded “stale file handle” error. It is this constraint—coordinating the activities of the server
and its myriad clients—that makes it so difficult to revoke access. NFS is too robust!

Some UNIX file system operations, such as file or record locks, require that the server retain
state, despite the architecture of NFS. These operations are implemented by auxiliary processes
using RPC. Servers also use such mechanisms to keep track of clients that have mounted their file
systems. As we have seen, this data need not be consistent with reality and is not, in fact, used by
the system for anything important.

To the extent that it is available, NFS can use Secure RPC. This guards against address
spoofing and replay attacks. But Secure RPC is not available on all platforms and is difficult
to deploy under certain circumstances. For example, some machines do not support key change
operations unless NIS is in use.

NFS generally relies on a set of numeric user and group identifiers that must be consistent
across the set of machines being served. While this is convenient for local use, it is not a solution
that scales. Some implementations provide for a map function. NFS access by root is generally
prohibited, a restriction that often leads to more frustration than protection.

Normally, NFS servers live on port 2049. The choice of port number is problematic, as it is in
the “unprivileged” range, and hence is in the range assignable to ordinary processes. Packet filters
that permit UDP conversations must be configured to block inbound access to 2049; the service
is too dangerous. Furthermore, some versions of NFS live on random ports, with the portmapper
providing addressing information.

NFS poses risks to client machines as well. Someone with privileged access to the server
machine can create setuid programs or device files, and then invoke or open them from the
client. Some NFS clients have options to disallow import of such things; make sure you use them
if you mount file systems from untrusted sources.

A more subtle problem with browsing archives via NFS is that it’s too easy for the server
machine to plant booby-trapped versions of certain programs likely to be used, such as ls. If the
user’s $PATH has the current directory first, the phony version will be used, rather than the client’s
own ls command. The best defense here is for the client to delete the “execute” bit on all imported
files (though not directories). Unfortunately, we do not know of any standard NFS clients that
provide this option.

Version 3 is starting to be deployed. Its most notable attribute (for our purposes) is support for
transport over TCP. That will make authentication much easier.

2.5.4 Andrew

The Andrew File System (AFS) [Howard, 1988; Kazar, 1988] is another networked file system
that can, to some extent, interoperate with NFS. Its major purpose is to provide a single scalable,
global, location-independent file system to an organization, or even to the Internet as a whole.

File Transfer Protocols 39

AFS allows files to live on any server within the network, with caching occurring transparently,
and as needed.

AFS uses the Kerberos authentication system [Bryant, 1988; Kohl and Neuman, 1993; Miller et
al., 1987; Steiner et al., 1988], which is described further in Chapter 13, and a Kerberos-based user
identifier mapping scheme. It thus provides a considerably higher degree of safety than does NFS.
Furthermore, Kerberos scales better than does secure RPC. That notwithstanding, there have been
security problems with some earlier versions of AFS, but those have now been corrected; see, for
example, [Honeyman et al., 1992].

2.6 File Transfer Protocols

2.6.1 TFTP

The Trivial File Transport Protocol (TFTP) is a simple UDP-based file transfer mechanism. It has
no authentication in the protocol. It is often used to boot diskless workstations and X11 terminals.

A properly configured TFTP daemon restricts file transfers to one or two directories, typically
/usr/local/boot and the X11 font library. In the old days most manufacturers released their
software with TFTP accesses unrestricted. This made a hacker’s job easy:

$ tftp target.cs.boofhead.edu
tftp> get /etc/passwd /tmp/passwd
Received 1205 bytes in 0.5 seconds
tftp> quit
$ crack </tmp/passwd

21

This is too easy. Given a typical dictionary password hit rate of about 25%, this machine
and its trusted mates are goners. We recommend that no machine run TFTP unless it really
needs to. If it does, make sure it is configured correctly, to deliver only the proper files,

and only to the proper clients.
Some routers use TFTP to load either executable images or configuration files. The latter

is especially risky, not so much because a sophisticated hacker could generate a bogus file (in
general, that would be quite difficult) but because configuration files often contain passwords. A
TFTP daemon used to supply such files should be set up so that only the router can talk to it. (On
occasion, we have noticed that our gateway router—owned and operated by our Internet service
provider—has tried to boot via broadcast TFTP on our LAN. If we had been so inclined, we
could have changed its configuration, and that of any other routers of theirs that used the same
passwords. Fortunately, we’re honest, right?)

2.6.2 FTP

The File Transfer Protocol (FTP) [Postel and Reynolds, 1985] supports the transmission and
character set translation of text and binary files. In a typical session (Figure 2.5), the user’s ftp
command opens a control channel to the target machine. The lines starting with ---> show
the commands that are actually sent over the wire; responses are preceded by a 3-digit code.

40 An Overview of TCP/IP

$ ftp -d research.att.com
220 inet FTP server (Version 4.271 Fri Apr 9 10:11:04 EDT 1993) ready.
---> USER anonymous
331 Guest login ok, send ident as password.
---> PASS guest
230 Guest login ok, access restrictions apply.
---> SYST
215 UNIX Type: L8 Version: BSD-43
Remote system type is UNIX.
---> TYPE I
200 Type set to I.
Using binary mode to transfer files.
ftp> ls
---> PORT 192,20,225,3,5,163
200 PORT command successful.
---> TYPE A
200 Type set to A.
---> NLST
150 Opening ASCII mode data connection for /bin/ls.
bin
dist
etc
ls-lR.Z
netlib
pub
226 Transfer complete.
---> TYPE I
200 Type set to I.
ftp> bye
---> QUIT
221 Goodbye.
$

Figure 2.5: A sample FTP session.

Sometimes, such as after a USER command is sent, the response code indicates that the daemon
has entered some special state where only certain commands are accepted.

The actual data, be it a file transfer or the listing from a directory command, is sent over a
separate data channel. The server uses port 20 for its end. By default, the client uses the same
port number as is used for the control channel. The FTP protocol specification suggests that a
single channel be created and kept open for all data transfers during the session. Most common
implementations create a new connection for each file. Furthermore, due to one of the more
obscure properties of TCP (the TIMEWAIT state, for the knowledgeably curious), a different port
number must be used each time. Normally, the client listens on a random port number, and informs
the server of this via the PORT command. In turn, the server makes a call to the given port.

The protocol does provide a way to have the server pick a new port number and to receive the
call instead of initiating it. While the intent of this feature was to support third-party transfers—a
clever FTP client could talk to two servers simultaneously, have one do a passive open request,

File Transfer Protocols 41

and the other talk to that machine and port, rather than the client’s—we can use this feature for
our own ends. See the discussion of the PASV command in Chapter 3.

By default, transfers are in ASCII mode. Before sending or receiving a file that has other
than printable ASCII characters arranged in (system-dependent) lines, both sides must enter image
(also known as binary) mode via a TYPE I command. In the example shown earlier, at startup
time the client program asks the server if it, too, is a UNIX system; if so, the TYPE I command
is generated automatically.

Anonymous ftp is a major program and data distribution mechanism. Sites that so wish can
configure their FTP servers to allow outsiders to retrieve files from a restricted area of the system
without prearrangement or authorization. By convention, users log in with the name anonymous
to use this service. Some sites request that the user’s real electronic mail address be used as the
password, a request more honored in the breach; however, some FTP servers are attempting to
enforce the rule.

Both FTP and the programs that implement it are real problems for Internet gatekeepers. Here
is a partial list of complaints:

�
The service, running unimpeded, can drain a company of its vital files in short order.

�
The protocol uses two TCP connections, complicating the job of gating this service through a
firewall. In most cases an outgoing control connection requires an incoming data connection.

�
The ftpd daemon runs as root initially since it normally processes a login to some account,
including the password processing. Worse yet, it cannot shed its privileged identity after
login; some of the fine points of the protocol require that it be able to bind connection
endpoints to port 20, which is in the “privileged” range.

�
Historically, there have been several bugs in the daemon, which have opened disastrous
security holes.

On the other hand, anonymous FTP has become a principal standard on the Internet for publishing
software, papers, pictures, etc. Most major sites need to have a publicly accessible anonymous
FTP repository somewhere. Whether you want it or not, you most likely need it.

There is no doubt that anonymous FTP is a valuable service. It is, after electronic mail,
arguably the most important service on the Internet. But a fair amount of care must be exercised
in administering it.

22

The first and most important rule is that no file or directory in the anonymous FTP area
be writable or owned by the ftp login, because anonymous FTP runs with that user-id.
Consider the following attack: write a file named .rhosts to ftp’s home directory. Then

use that file to authorize an rsh connection as ftp to the target machine. If the ftp directory is
not writable but is owned by ftp, caution is still indicated: some servers allow the remote client
to change file permissions. (The existence of permission-changing commands in an anonymous
server is a misfeature in any event. If possible, we strongly recommend that you delete any such
code. Unidentified guests have no business setting any sort of security policy.)

42 An Overview of TCP/IP

23

The next rule is to avoid leaving a real /etc/passwd file in the anonymous FTP area.
You can give a hacker no greater gift than a real /etc/passwd file. If your utilities
won’t choke, delete the file altogether; if you must create one, make it a dummy file, with

no real accounts or (especially) hashed passwords. Our is shown in Figure 1.2 on page 12.
Whether or not to create a publicly writable directory for incoming files is quite controversial.

While such a directory is an undoubted convenience, denizens of the Internet demimonde have
found ways to abuse them. You may find that your machine has become a repository for pirated
software or digital erotica. This repository may be permanent or transitory; in the latter case,
individuals desiring anonymity from each other use your machine as an electronic interchange
track. One deposits the desired files and informs the other of their location; the second picks them
up and deletes them. (Note: At all costs, resist the temptation to infect the pirated software with
viruses. Such actions are not ethical. However, after paying due regard to copyright law, it is
proper to replace such programs with versions that print out homilies on theft, and to replace the
images with pictures of convicted former politicians.) Our gateway machines clear the incoming
file area nightly.

If feasible, use an FTP server that understands the notions of “inside” and “outside”. Files
created by an outsider should be tagged so that they are not readable by other outsiders. Alter-
natively, create a directory with search (x) but not read (r) permission, and create oddly named
writable directories underneath it. Authorized senders—those who have been informed of the odd
names—can deposit files in there, for your users to retrieve at their leisure.

A final caution is to regard anything in the FTP area as potentially contaminated. This is
especially true with respect to executable commands there, notably the copy of ls many servers
require. To guard your site against changes to this command, make it executable by the group that
ftp is in, but not by ordinary users of your machine. (Note that this is a defense against compromise
of the FTP area itself. The question of whether or not you should trust files imported from the
outside—you probably shouldn’t—is a separate one.)

2.6.3 FSP—The Sneaky File Transport Protocol

24

FSP—the name does not stand for anything—is another file transport protocol. It uses
a UDP port (often the privileged port 21) to implement a service similar to FTP. It is
unofficial, and isn’t used very often except by hackers, who have found it easy to install

and a convenient tool for shipping their tools and booty around. It does have some uses, though; its
primitives are more like NFS’s, which makes it more amenable to a decent (i.e., file system-like)
user interface. And some of its proponents claim that it’s more robust on congested links, though
that claim seems dubious: UDP lacks the congestion control of TCP. Still, discovery of FSP traffic
is cause for concern, given its history of misuse.

2.7 The “r” Commands

The “r” commands rely on the BSD authentication mechanism. One can rlogin to a remote
machine without entering a password if the authentication’s criteria are met. These criteria are:

The “r” Commands 43

�
The call must originate from a privileged TCP port. On other systems (like PCs) there are
no such restrictions, nor do they make any sense. A corollary of this is that rlogin and rsh
calls should only be permitted from machines where this restriction is enforced.

�
The calling user and machine must be listed in the destination machine’s list of trusted
partners (typically /etc/hosts.equiv) or in a user’s $HOME/.rhosts file.

�
The caller’s name must correspond to its IP address. (Most current implementations check
this. See Section 2.3.)

From a user’s viewpoint, this scheme works fairly well. A user can bless the machines he or she
wants to use, and isn’t bothered by passwords when reaching out to more computers. For the
hackers, these routines offer two benefits: a way into a machine, and an entry into even more
trusted machines once the first computer is breached. A principal goal of probing hackers is to
deposit an appropriate entry into /etc/hosts.equiv or some user’s .rhosts file. They
may try to use FTP, uucp, TFTP, or some other means. They frequently target the home directory
of accounts not usually accessed in this manner, like root, bin, ftp, or uucp. Be especially wary
of the latter two, as they are file transfer accounts that often own their own home directories. We
have seen uucp being used to deposit a .rhosts file in /usr/spool/uucppublic, and FTP
used to deposit one in /usr/ftp. The lesson is obvious: the permission and ownership structure
of the server machine must be set up to prohibit this.

When hackers have acquired an account on a computer, their first goals are usually to cover
their tracks by erasing logs (not that most versions of the rsh daemon create any), attaining root
access, and leaving trapdoors to get back in, even if the original access route is closed. The
/etc/hosts.equiv and $HOME/.rhosts files are a fine route.

Once an account is penetrated on one machine, many other computers may be accessible. The
hacker can get a list of likely trusting machines from /etc/hosts.equiv, files in the user’s
bin directory, or by checking the user’s shell history file. There are other system logs that may
suggest other trusting machines. With other /etc/passwd files available for dictionary attacks,
the target site may be facing a major disaster.

Notice that quite of a bit of a machine’s security is in the hands of the user, who can bless
remote machines in his or her own .rhosts file and can make the .rhosts file world-writable.
We think these decisions should only be made by the system administrator. Some versions of the
rlogin and rsh daemons provide a mechanism to enforce this; if yours do not, a cron job that hunts
down rogue .rhosts files might be in order.

Given the many weaknesses of this authentication system, we do not recommend that these
services be available on computers that are directly accessible from the Internet, and we do not
support them to or through our gateways.

There is a delicate trade-off here. The usual alternative to rlogin is to use telnet plus a cleartext
password, a choice that has its own vulnerabilities. In many situations, the perils of the latter
outweigh the risks of the former; your behavior should be adjusted accordingly.

There is one more use for rlogind that is worth mentioning. The protocol is capable of carrying
extra information that the user supplies on the command line, nominally as the remote login name.

44 An Overview of TCP/IP

This can be overloaded to contain a host name as well, as is done by the TIS Firewall Toolkit (see
Section 4.10). This is safe as long as you do not grant any privileges based on the information
thus received.

2.8 Information Services

2.8.1 World Wide Web

Of late, the growth of what might best be termed information protocols has been explosive. These
include gopher [Anklesaria et al., 1993], Wide Area Information Servers (WAIS), and others,
sometimes lumped together under the rubric World Wide Web (WWW). While they differ greatly
in detail, there are some essential points of similarity in how they operate.

Generally, a host contacts a server, sends a query or information pointer, and receives a
response. The response may either be a file to be displayed or it may be a pointer or set of pointers
to some other server. The queries, the documents, and the pointers are all potential sources of
danger.

25

In some cases, returned document formats include format tags, which implicitly specify
the program to be used to process the document. For example, the gopher protocol has a
uuencode format, which includes a file name and mode. Blindly believing such information

is obviously quite dangerous.
Similarly, MIME encoding can be used to return data to the client. As described earlier,

numerous alligators lurk in that swamp; great care is advised.

26

The server is in some danger, too, if it blindly accepts pointers. These pointers often have
file names embedded in them [Berners-Lee, 1993]. While the servers do attempt to verify
that the requested files are authorized for transfer, the verification process can be (and, in

fact, has been) buggy. Failures here can let outsiders retrieve any file on the server’s machine.
We would very much prefer a pointer syntax that included an optional field for a cryptographic

checksum of the information. That would make the pointers self-validating, and would prevent
outsiders from concocting them out of whole cloth. But the problem is a difficult one.

Sometimes, the returned pointer is a host address and port, and a short login dialog. We have
heard of instances where the port was actually the mail port, and the dialog a short script to send
annoying mail to someone. That sort of childish behavior falls in the nuisance category, but it may
lead to more serious problems in the future. If, say, a version of telnet becomes popular that uses
preauthenticated connections, the same stunt could cause someone to log in and execute various
commands on behalf of the attacker.

27

The greatest dangers in this vein result when the server shares a directory tree with
anonymous FTP. In that case, an attacker can first deposit control files and then ask the
information server to interpret them. This danger can be avoided if all publicly writable

directories in the anonymous FTP area are owned by the group under which the information
server runs, and the group-search bit is turned off for those directories. That will block access
by the server to anything in those directories. (Legitimate uploads can and should be moved to a
permanent area in a write-protected directory.)

Information Services 45

If, on the other hand, the server initiates a connection in response to a user’s request—and
gopherd will do that for FTP under certain circumstances—there is a very different problem. The
connection, though initiated on behalf of the client, appears to come from the server’s IP address.
Thus, any tests done by IP address will give the wrong result. In effect, address-spoofing gopherd
will permit laundering of FTP requests. This can have practical implications, as discussed in
Section 4.5.5.

28

The biggest danger, though, is from the queries. The most interesting ones do not involve a
simple directory lookup. Rather, they run some script written by the information provider—
and that means that the script is itself a network server, with all the dangers that entails.

Worse yet, these scripts are often written in Perl or as shell scripts, which means that these powerful
interpreters must reside in the network service area.

If at all possible, WWW servers should execute in a restricted environment, preferably safe-
guarded by chroot. But even this may not suffice, because the interpreters themselves must
reside in this area. We see no good solutions, other than to urge great care in writing the scripts.

2.8.2 NNTP—The Network News Transfer Protocol

Netnews is often transferred by the Network News Transfer Protocol (NNTP) [Kantor and Lapsley,
1986]. The dialog is similar to that used for SMTP. There is some disagreement on how NNTP
should be passed through firewalls.

The obvious way is to treat it the same as mail. That is, incoming and outgoing news article
should be processed and relayed by the gateway machine. But there are a number of disadvantages
to that approach.

First of all, netnews is a resource hog. It consumes vast amounts of disk space, file slots,
inodes, CPU time, etc. You may not want to bog down your regular gateway with such matters.
Concomitant with this are the associated programs to manage the database, notably expire and
friends. These take some administrative effort, and represent a moderately large amount of
software for the gateway administrator to have to worry about.

Second, all of these programs may represent a security weakness. There have been some
problems in nntpd, as well as in the rest of the netnews subsystem.

Third, many firewall architectures, including ours, are designed on the assumption that the
gateway machine may be compromised. That means that no company-proprietary newsgroups
should reside on the gateway, and that it should therefore not be an internal news hub.

Fourth, NNTP has one big advantage over SMTP: you know who your neighbors are for
NNTP. You can use this information to reject unfriendly connection requests.

Finally, if the gateway machine does receive news, it needs to use some mechanism, probably
NNTP, to pass on the articles received. Thus, if there is a hole in NNTP, the inside news machine
would be just as vulnerable to attack by whomever had taken over the gateway.

For all these reasons, some people suggest that a tunneling strategy be used instead, with
NNTP running on an inside machine. The gateway would use a relay program, similar to that
described in Chapter 4, to let the news articles pass directly to the inside news hub.

Note that this choice isn’t risk-free. If there are still problems in nntpd, the attacker can pass
through the tunnel. But any alternative that doesn’t involve a separate transport mechanism (such

46 An Overview of TCP/IP

as uucp, although that has its own very large share of security holes) would expose you to very
similar dangers.

2.8.3 Multicasting and the MBone

Multicasting is a generalization of the notions of unicast and broadcast. Instead of a packet being
sent to just one destination, or to all destinations on a network, a multicast packet is sent to some
subset of those destinations, ranging from no hosts to all hosts. The low-order 28 bits of a Class D
multicast address identify the multicast group to which a packet is destined. Hosts may belong to
zero or more multicast groups.

Since most commercial routers do not yet support multicasting, some hosts are used as multicast
routers to forward the packets. They speak a special routing protocol, the Distance Vector Multicast
Routing Protocol (DVMRP). Hosts on a network inform the local multicast router of their group
memberships using IGMP, the Internet Group Management Protocol [Deering, 1989]. That router,
in turn, forwards only packets that are needed by some local machines. The intent, of course, is to
limit the local network traffic.

The multicast routers speak among themselves by encapsulating the entire packet, including
the IP header, in another IP packet, with a normal destination address. When the packet arrives
on that destination machine, the encapsulation is stripped off. The packet is then forwarded to
other multicast routers, transmitted on the proper local networks, or both. Final destinations are
generally UDP ports.

A number of interesting network applications use the MBone—the multicast backbone on
the Internet—to reach large audiences. These include two-way audio and sometimes video
transmissions of things like Internet Talk Radio, meetings of the Internet Engineering Task Force
(IETF), NASA coverage of space shuttle activity, and even presidential addresses. (No, the
space shuttle coverage isn’t two-way; you can’t talk to astronauts in mid-flight.) A session
directory service provides information on what “channels”—multicast groups and port numbers—
are available.

29

The MBone presents problems for firewall-protected sites. The encapsulation hides the
ultimate destination of the packet. The MBone thus provides a path past the filtering
mechanism. Even if the filter understands multicasting and encapsulation, it cannot act

on the destination UDP port number because the network audio sessions use random ports. Nor
is consulting the session directory useful. Anyone is allowed to register new sessions, on any
arbitrary port above 3456. A hacker could thus attack any service where receipt of a single UDP
packet could do harm. Certain RPC-based protocols come to mind. This is becoming a pressing
problem for gatekeepers as internal users learn of multicasting and want better access through a
gateway.

By convention, dynamically assigned MBone ports are in the range 32769–65535. To some
extent, this can be used to do filtering, since many hosts avoid selecting numbers with the sign bit
on. The session directory program provides hooks to allow the user to request that a given channel
be permitted to pass through a firewall (assuming, of course, that your firewall can respond to
dynamic reconfiguration requests). Some older port numbers are grandfathered; see Appendix B
for a list.

The X11 System 47

A better idea would be to change the multicast support so that such packets are not delivered
to ports that have not expressly requested the ability to receive them. It is rarely sensible to hand
multicast packets to nonmulticast protocols.

2.9 The X11 System

X11 [Scheifler and Gettys, 1992] is the dominant windowing system used on the Internet today.
It uses the network for communication between applications and the I/O devices (the screen, the
mouse, etc.), which allows the applications to reside on different machines. This is the source of
much of the power of X11. It is also the source of great danger.

The fundamental concept of X11 is the somewhat disconcerting notion that the user’s terminal
is a server. This is quite the reverse of the usual pattern, in which the per-user small, dumb
machines are the clients, requesting services via the network from assorted servers. The server
controls all of the interaction devices. Applications make calls to this server when they wish to
talk to the user. It does not matter how these applications are invoked; the window system need
not have any hand in their creation. If they know the magic tokens—the network address of the
server—they can connect.

Applications that have connected to an X11 server can do all sorts of things. They can detect
keypresses, dump the screen contents, generate synthetic keypresses for applications that will
permit them, etc. In other words, if an enemy has connected to your keyboard, you can kiss your
computer assets good-bye. It is possible for an application to grab sole control of the keyboard,
when it wants to do things like read a password. Few users use that feature. Even if they did,
there’s another mechanism that will let you poll the keyboard up/down status map, and that one
can’t be locked out.

30

The problem is now clear. An attacker anywhere on the Internet can probe for X11 servers.
If they are unprotected, as is often the case, this connection will succeed, generally without
notification to the user. Nor is the port number difficult to guess; it is almost always port

6000 plus a very small integer, usually zero.
One application, the window manager, has special properties. It uses certain unusual primitives

so that it can open and close other windows, resize them, etc. Nevertheless, it is an ordinary
application in one very important sense: it, too, issues network requests to talk to the server.

A number of protection mechanisms are present in X11. Unfortunately, they are not as useful
as one might hope.

The first level is host address-based authentication. The server retrieves the network source
address of the application and compares it against a list of allowable sources; connection requests
from unauthorized hosts are rejected, often without any notification to the user. Furthermore, the
granularity of this scheme is to the level of the requesting machine, not an individual. There is no
protection against unauthorized users connecting from that machine to an X11 server.

A second mechanism uses a so-called magic cookie. Both the application and the server share
a secret byte string; processes without this string cannot connect to the server. But getting the
string to the server in a secure fashion is difficult. One cannot simply copy it over a possibly

48 An Overview of TCP/IP

monitored network cable, or use NFS to retrieve it. Furthermore, a network eavesdropper could
snarf the magic cookie whenever it was used.

A third X11 security mechanism uses a cryptographic challenge/response scheme. This
could be quite secure; however, it suffers from the same key distribution problem as does magic
cookie authentication. A Kerberos variant exists, but as of this writing it is not widely available.
Standardized Kerberos support is scheduled for the next major release of X11.

The best current alternative, if you have it available, is Secure RPC. It provides a key
distribution mechanism and a reasonably secure authentication mechanism. But be wary of the
problems with Secure RPC in general.

2.10 Patterns of Trust

A common thread running through this chapter is that computers often trust each other. This is well
and good for machines under common control; indeed, it is often necessary to their usability. But
the web of trust often spreads far wider than it should. It is a major part of a security administrator’s
job to ascertain and control which machines trust which, for what, and by what mechanisms. The
address-based mechanisms used by many of the standard protocols are inadequate in high-threat
environments such as gateways, and often internally as well.

The purpose of a firewall gateway is to sever the web of trust at certain key points. As we shall
see in the next chapter, a gateway machine trusts very few others, and only for certain functions. It
may trust everyone for mail, but only one or two for netnews. Anonymous FTP may be supported,
but no other type; its trust policies do not permit nonanonymous logins. More precisely, they do
not permit logins that have access to other than a limited area of the file system, as mediated by
a kernel mechanism (for UNIX systems, that is chroot); the ftpd server is far too complex to be
verified. Similarly, the gateway permits pass-through logins via telnet, but only after demanding
strong authentication.

One could certainly pick other trust policies. Arguably, incoming telnet sessions should not be
permitted, since an eavesdropper could spy on mail being read by a traveler or an active attacker
could take over a telnet session. The details of a policy will differ from place to place. The
important thing is to pick a policy explicitly, rather than having one put in place by the actions of
myriad vendors and system administrators.

